Elementary Number Theory - Exercise 11a

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that, in a primitive Pythagorean triple $(a, b, c), a, b, c$ are pairwise coprime, a and b have different parity, and c is odd.

Problem 2. Find all Pythagorean triples (a, b, c) with $c \leq 25$.

Problem 3. A Pythagorean triple (a, b, c) is called almost isosceles if $|a-b|=1$.

1. Show that every almost isosceles Pythagorean triple is, up to switching a and b, of the form

$$
\left(\frac{x-1}{2}, \frac{x+1}{2}, y\right)
$$

where $(x, y) \in \mathbb{N}^{2}$ solves the negative Pell equation $x^{2}-2 y^{2}=-1$, and $x \geq 3$.
2. Show that every solution $(x, y) \in \mathbb{N}^{2}$ of $x^{2}-2 y^{2}=-1$ is of the form $\left(x_{n}, y_{n}\right)$ where

$$
x_{n}+\sqrt{2} y_{n}=(1+\sqrt{2})^{2 n+1}
$$

3. Determine the first three almost isosceles Pythagorean triples.

Problem 4. Fermat's Last Theorem states that for $n \geq 3$ the equation $a^{n}+b^{n}=c^{n}$ has no integer solution with a, b, c all different from 0 . Show that it suffices to prove Fermat's Last Theorem for prime exponents $n=p \geq 3$.

Problem 5. Show that, for each $n \in \mathbb{N}$, the numbers

$$
\left(2 n+1,2 n^{2}+2 n, 2 n^{2}+2 n+1\right)
$$

form a primitive Pythagorean triple. Compute them for $n=10^{m}$ for $m=1,2,3,4,5$ and admire the beautiful pattern that you get.

Problem 6 (sage). Write a program which lists all Pythagorean triples (a, b, c) with $c \leq N$ for a given N.

