Elementary Number Theory - Exercise 11b
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that 2023 is a congruent number.

Problem 2. In this problem, we show that $13,14,15$ are congruent numbers, using different approaches.

1. Show that 13 is a congruent number, using the triangle with side lengths

$$
(104329,23400,106921) .
$$

2. Show that 14 is a congruent number, using that $(x, y)=(18,48)$ is a rational point on the elliptic curve $y^{2}=x^{3}-14^{2} x$.
3. Show that 15 is a congruent number by finding a Pythagorean triple (a, b, c) with area $a b / 2=60$.

Problem 3. Use Tunnell's Theorem to determine the congruent numbers ≤ 15.

Problem 4. Show that, if the converse of Tunnell's Theorem can be proved to be true (e.g. if the weak BSD conjecture is true), then every natural number $n \equiv 5,6,7(\bmod 8)$ is a congruent number.

Problem 5 (sage). Using Tunnell's Theorem, determine the congruent numbers ≤ 100. For each of the numbers which might be congruent, find a suitable rational right triangle to verify that they are indeed congruent.

