Elementary Number Theory - Exercise 12a

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that the number of ordered partitions of n is given by 2^{n-1}. Example: The ordered partitions of 3 are given by $3,2+1,1+2,1+1+1$.

Problem 2. Determine the partition numbers $p(6), p_{\mathrm{d}}(6), p_{\mathrm{d}}^{\text {even }}(6), p_{\mathrm{d}}^{\text {odd }}(6)$, and $p(6,3)$, by listing the corresponding partitions.

Problem 3. Draw the Ferrers diagram of the partition $12=6+3+2+1$ and determine the conjugate partition.

Problem 4. Consider the following two sets of partitions of n :

$$
S=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1}=\lambda_{2}\right\}, \quad T=\left\{\left(\lambda_{1}, \ldots, \lambda_{k}\right): \lambda_{1}, \ldots, \lambda_{k} \geq 2\right\}
$$

Show that $|S|=|T|=p(n)-p(n-1)$.

Problem 5. A partition is called self-conjugate if it is equal to its conjugate partition. Show that the number of self-conjugate partitions of n is equal to the number of partitions of n into distinct odd parts.

Problem 6. Let $p(n, k)$ be the number of partitions of n with exactly k parts. Show the generating function identity

$$
\sum_{n=0}^{\infty} p(n, k) x^{n}=\frac{x^{k}}{(1-x)\left(1-x^{2}\right) \cdots\left(1-x^{k}\right)}
$$

Hint: We have seen in the lecture that $p(n, k)$ also counts the number of partitions of n whose largest part equals k.

Problem 7 (sage). Write programs which

1. list all partitions of n, and thereby compute $p(n)$,
2. compute $p(n)$ using the recusion $p(n, k)=p(n-1, k-1)+p(n-k, k)$.
