Elementary Number Theory - Exercise 12b ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Express p(5) and p(6) in terms of p(0) and p(1) using Euler's recursion. Then, compute p(7) from $p(6), p(5), \ldots, p(0)$.

Problem 2. Let $p_d(n)$ be the number of partitions of n into distinct parts, and $p_{odd}(n)$ the number of partitions of n into odd parts¹. Prove Euler's partition identity

$$p_{\rm d}(n) = p_{\rm odd}(n),$$

by showing the generating function identities

$$\sum_{n=0}^{\infty} p_{\rm d}(n) x^n = \prod_{n=1}^{\infty} (1+x^n),$$
$$\sum_{n=0}^{\infty} p_{\rm odd}(n) x^n = \prod_{n=1}^{\infty} \frac{1}{1-x^{2n-1}}.$$

Problem 3. Let $\sigma(n) = \sum_{d|n} d$ be the sum of the divisors of n. Show that its generating function is given by

$$\sum_{n=1}^{\infty} \sigma(n) x^n = \sum_{n=1}^{\infty} \frac{n x^n}{1 - x^n}.$$

Problem 4. The Fibonacci numbers F_m are defined recursively by

$$F_0 = 0, \quad F_1 = 1, \quad F_m = F_{m-1} + F_{m-2}.$$

For each $n \in \{1, ..., 15\}$, count the number of partitions of n into distinct non-consecutive Fibonacci numbers. Make a conjecture based on your results².

Problem 5 (sage). Write a program that computes p(n) using Euler's recursion. Use it to compute p(100).

¹As usual, we put $p_{\rm d}(0) = p_{\rm odd}(0) = 1$.

²Look up Zeckendorf's Theorem to validate your conjecture.