Elementary Number Theory - Exercise 12b

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Express $p(5)$ and $p(6)$ in terms of $p(0)$ and $p(1)$ using Euler's recursion. Then, compute $p(7)$ from $p(6), p(5), \ldots, p(0)$.

Problem 2. Let $p_{\mathrm{d}}(n)$ be the number of partitions of n into distinct parts, and $p_{\text {odd }}(n)$ the number of partitions of n into odd parts 1 . Prove Euler's partition identity

$$
p_{\mathrm{d}}(n)=p_{\text {odd }}(n)
$$

by showing the generating function identities

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{\mathrm{d}}(n) x^{n} & =\prod_{n=1}^{\infty}\left(1+x^{n}\right) \\
\sum_{n=0}^{\infty} p_{\text {odd }}(n) x^{n} & =\prod_{n=1}^{\infty} \frac{1}{1-x^{2 n-1}}
\end{aligned}
$$

Problem 3. Let $\sigma(n)=\sum_{d \mid n} d$ be the sum of the divisors of n. Show that its generating function is given by

$$
\sum_{n=1}^{\infty} \sigma(n) x^{n}=\sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}}
$$

Problem 4. The Fibonacci numbers F_{m} are defined recursively by

$$
F_{0}=0, \quad F_{1}=1, \quad F_{m}=F_{m-1}+F_{m-2}
$$

For each $n \in\{1, \ldots, 15\}$, count the number of partitions of n into distinct non-consecutive Fibonacci numbers. Make a conjecture based on your result \boldsymbol{s}^{2}.

Problem 5 (sage). Write a program that computes $p(n)$ using Euler's recursion. Use it to compute $p(100)$.

[^0]
[^0]: ${ }^{1}$ As usual, we put $p_{\mathrm{d}}(0)=p_{\text {odd }}(0)=1$.
 ${ }^{2}$ Look up Zeckendorf's Theorem to validate your conjecture.

