Elementary Number Theory - Exercise 7a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Apply the Fermat and Solovay-Strassen primality tests to $n=15$ with $a=4$ and $a=7$.

Problem 2. Show that 1105 is a Carmichael number.
Problem 3. Let n be a Carmichael number. Show the following results.

1. n must be odd. Hint: Find a suitable a violating Fermat's Little Theorem.
2. Each prime factor of n is smaller than \sqrt{n}. Hint: Show that $(p-1) \left\lvert\,\left(\frac{n}{p}-1\right)\right.$.
3. n must have at least three different prime factors.
4. For primes p, q dividing n, we have $p \not \equiv 1(\bmod q)$.

Problem 4. Prove the following rule due to Chernick, and use it to produce at least one Carmichael number:

If the three numbers $6 k+1,12 k+1,18 k+1$ are prime, then their product

$$
n=(6 k+1)(12 k+1)(18 k+1)
$$

is a Carmichael number.

Problem 5. Let G be a finite abelian group, with multiplication - and identity element 1. We define the order $\operatorname{ord}(g)$ of an element $g \in G$ as the smallest natural number m such that $g^{m}=1$.

1. Show that, if $g^{\ell}=1$ for some $\ell \in \mathbb{Z}$, then $\operatorname{ord}(g) \mid \ell$.

Hint: Division with remainder.
2. G is called cyclic if there exists a $g \in G$ such that every element in G can be written as g^{m} for some $m \in \mathbb{Z}$. Each such g is called a generator of G. Show that G is cyclic if and only if it contains an element g of order ord $(g)=|G|$.

Problem 6. Show that there exists a number $a \in \mathbb{Z}$ such that $\operatorname{ord}(a)=p-1$ in $(\mathbb{Z} / p \mathbb{Z})^{*}$. In particular, deduce that $(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic.
Hint: Let ℓ be the smallest positive number such that $a^{\ell} \equiv 1(\bmod p)$ for all a with $\operatorname{gcd}(a, p)=$ 1 , and show that $\ell=p-1$, using Fermat and Lagrange.

Problem 7 (sage). 1. Implement the Fermat and Solovay-Strassen primality tests and apply them to 561 .
2. Write a program that lists Carmichael numbers, and use it to find all Carmichael numbers $\leq 1.000 .000$.

