Elementary Number Theory - Exercise 7a

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Apply the Fermat and Solovay-Strassen primality tests to n = 15 with a = 4 and a = 7.

Problem 2. Show that 1105 is a Carmichael number.

Problem 3. Let n be a Carmichael number. Show the following results.

- 1. n must be odd. *Hint:* Find a suitable a violating Fermat's Little Theorem.
- 2. Each prime factor of n is smaller than \sqrt{n} . Hint: Show that $(p-1) \mid (\frac{n}{p}-1)$.
- 3. n must have at least three different prime factors.
- 4. For primes p, q dividing n, we have $p \not\equiv 1 \pmod{q}$.

Problem 4. Prove the following rule due to Chernick, and use it to produce at least one Carmichael number:

If the three numbers 6k + 1, 12k + 1, 18k + 1 are prime, then their product

$$n = (6k+1)(12k+1)(18k+1)$$

is a Carmichael number.

Problem 5. Let G be a finite abelian group, with multiplication \cdot and identity element 1. We define the *order* $\operatorname{ord}(g)$ of an element $g \in G$ as the smallest natural number m such that $g^m = 1$.

- 1. Show that, if $g^{\ell} = 1$ for some $\ell \in \mathbb{Z}$, then $\operatorname{ord}(g) \mid \ell$. *Hint:* Division with remainder.
- 2. G is called *cyclic* if there exists a $g \in G$ such that every element in G can be written as g^m for some $m \in \mathbb{Z}$. Each such g is called a *generator* of G. Show that G is cyclic if and only if it contains an element g of order $\operatorname{ord}(g) = |G|$.

Problem 6. Show that there exists a number $a \in \mathbb{Z}$ such that $\operatorname{ord}(a) = p - 1$ in $(\mathbb{Z}/p\mathbb{Z})^*$. In particular, deduce that $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic.

Hint: Let ℓ be the smallest positive number such that $a^{\ell} \equiv 1 \pmod{p}$ for all a with gcd(a, p) = 1, and show that $\ell = p - 1$, using Fermat and Lagrange.

- **Problem 7** (sage). 1. Implement the Fermat and Solovay-Strassen primality tests and apply them to 561.
 - 2. Write a program that lists Carmichael numbers, and use it to find all Carmichael numbers \leq 1.000.000.