Elementary Number Theory - Exercise 7b ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

- **Problem 1.** 1. Choose two 4-digit primes p and q and generate your own public and private RSA keys¹.
 - 2. Exchange your public keys with another student and send each other a (very) short encrypted message². Use the following encoding for the letters:

$\frac{a}{01}$	b	c	d	e	f	g	h	i	j	k	l	m
01	02	03	04	05	06	07	08	09	10	11	12	13
n	0	p	q	r	s	t	u	v	w	x	y	z
14	<i>o</i> 15	16	17	18	19	20	21	22	23	24	25	26

Keep in mind that long messages have to be split into blocks of size less than N.

3. Figure out the private key of your RSA partner.

Problem 2. Let N = pq be a product of two odd primes, and $\varphi(N) = (p-1)(q-1)$. Show that p and q can quickly be computed if N and $\varphi(N)$ are known.

For example, given N = 7261 and $\varphi(N) = 7072$, compute p and q.

Problem 3. Let N = pq be a product of two odd primes. If p and q are too close, then N can quickly be factored, using *Fermat's factorization method*: the idea is to find a, b with $N = a^2 - b^2$, since then N = (a - b)(a + b) = pq is a factorization of N. If p, q are close, then b will be relatively small, so a will roughly be equal to \sqrt{N} . Here's the algorithm:

Compute $a = \lceil \sqrt{N} \rceil, \lceil \sqrt{N} \rceil + 1, \lceil \sqrt{N} \rceil + 2, \dots$ until $a^2 - N = b^2$ is a square. Then N = (a - b)(a + b) is a factorization of N.

Show that Fermat's method will always find a factorization of N = pq, and use it to factor N = 5959.

Problem 4. Let N = pq, where p is an odd prime, but q is a *Carmichael number* with gcd(p,q) = 1. Show that the RSA encryption and decryption still works on messages m with gcd(m, N) = 1.

Problem 5. In cryptographic applications, it is often important to keep computation costs low. Hence, it is common to use rather small public keys e to speed up the RSA encryption. A typical choice is e = 3, since the encryption then takes only 2 multiplications. Here we discuss two attacks on RSA with e = 3.

¹You could ask Wolframalpha for random 4-digit primes.

 $^{^2 \}mathrm{Use}$ Wolframalpha for the necessary computations.

- 1. Bob uses the public key e = 3 and the modulus N = 126589. Alice sends the encrypted message c = 3375 to Bob. Can you decrypt the message (without factoring N)?
- 2. Bob, Charles, and Dora all use the same public key e = 3, but with different moduli N_B, N_C, N_D . Let us assume that N_B, N_C, N_D are pairwise coprime³. Alice sends the same message m to Bob, Charles, and Dora, encrypted as c_B, c_C, c_D with their respective public keys and moduli. Use the Chinese Remainder Theorem to explain how m can be decrypted, without factoring any of the moduli.
- **Problem 6** (sage). 1. Implement the RSA key generation and encryption/decryption. You could ask the user for primes p and q, or offer random primes.
 - 2. Implement Fermat's factorization method, and factor N = 105327569.

³Bonus question: how can we break RSA if N_B, N_C, N_D are not pairwise coprime?