Elementary Number Theory - Exercise 8a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. For each $n=1,2, \ldots, 15$, check if n is a sum of two or three squares.

Problem 2. Write 45 and 585 as sums of two squares. Hint: Diophantus' two squares identity.

Problem 3. Show that, if n can be written as a sum of three squares, then n cannot be of the form $4^{a}(8 b+7)$ with non-negative integers a, b.

Problem 4. We let

$$
r_{4}(n)=\#\left\{(a, b, c, d) \in \mathbb{Z}^{2}: n=a^{2}+b^{2}+c^{2}+d^{2}\right\}
$$

be the number of ways to write n as sum of four squares. Show that $r_{4}(n)$ is divisible by 8 .

Problem 5. Show that every natural number can be written as a sum of five integer cubes. To this end, show that $n^{3} \equiv n(\bmod 6)$, hence $n^{3}-n=6 k$, and check that

$$
n=n^{3}+k^{3}+k^{3}+(-k-1)^{3}+(1-k)^{3} .
$$

Write $n=7$ as a sum of five cubes. However, convince yourself that 7 cannot be written as a sum of five cubes of non-negative integers.

Problem 6. Show that, if an odd prime p can be written in the form $p=x^{2}+2 y^{2}$, then -2 is a square modulo p.

Problem 7. Which integers n can be written in the form $n=x^{2}-y^{2}$?

Problem 8 (sage).

1. Write a program to find representations of an odd prime p as $p=x^{2}+2 y^{2}$, and use it to numerically verify that p can be written in this way if and only if -2 is a square modulo p.
2. Write a program that counts $r_{4}(n)$. Use it to numerically verify Jacobi's formula

$$
r_{4}(n)=8 \sum_{\substack{d \mid n \\ 4 \nmid d}} d
$$

