Elementary Number Theory - Exercise 8b

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Consider the quadratic forms

$$
Q_{1}=[1,2,3], \quad Q_{2}=[2,4,3], \quad Q_{3}=[1,3,1] .
$$

1. Write down the Gram matrices of Q_{1}, Q_{2} and Q_{3}.
2. Compute the discriminants of Q_{1}, Q_{2}, and Q_{3}.
3. Which of these forms is positive definite or indefinite?
4. Show that Q_{1} is equivalent to Q_{2} via

$$
Q_{2}=Q_{1} \circ\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)
$$

5. For each of the three forms, find three different integers that they represent.

Problem 2. Show that $Q=[a, b, c]$ properly represents a, c, and $a+b+c$.

Problem 3. Let $Q=[a, b, c]$ be a quadratic form.

1. Let $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Show that $T^{n}=\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$ and compute

$$
Q \circ T^{n}=\left[a, b+2 a n, a n^{2}+b n+c\right], \quad Q \circ S=[c,-b, a] .
$$

2. Let $M=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{SL}_{2}(\mathbb{Z})$, and write

$$
Q \circ M=M^{t} Q M=\left(\begin{array}{cc}
a^{\prime} & b^{\prime} / 2 \\
b^{\prime} / 2 & c^{\prime}
\end{array}\right)
$$

Show that $a^{\prime}, b^{\prime}, c^{\prime}$ are explicitly given by

$$
\begin{aligned}
a^{\prime} & =a \alpha^{2}+b \alpha \gamma+c \gamma^{2} \\
b^{\prime} & =2 a \alpha \beta+b(\alpha \delta+\beta \gamma)+2 c \gamma \delta \\
c^{\prime} & =a \beta^{2}+b \beta \delta+c \delta^{2}
\end{aligned}
$$

Problem 4. Let $Q=[a, b, c]$ and $Q^{\prime}=\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$ be equivalent. Show that

1. Q and Q^{\prime} (properly) represent the same integers.
2. Q and Q^{\prime} have the same discriminant.
3. Q is positive definite (resp. indefinite) if and only if Q^{\prime} is positive definite (resp. indefinite).
4. Q is primitive if and only if Q^{\prime} is primitive.

Problem 5. Show that a quadratic form properly represents an integer n if and only if it is equivalent to a form of the shape $\left[n, b^{\prime}, c^{\prime}\right]$ for some $b^{\prime}, c^{\prime} \in \mathbb{Z}$.
Hint: Use the explicit formula for the coefficients of $Q \circ M$ derived above.

Problem 6 (sage). A quadratic form can be represented in sage as an array $Q=[a, b, c]$. Write programs that

1. compute the discriminant of Q,
2. check whether Q is positive (resp. negative) definite or indefinite,
3. check whether Q is primitive,
4. compute $Q \circ M$ for $M \in \mathrm{SL}_{2}(\mathbb{Z})$.
