Elementary Number Theory - Exercise 9a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Compute the reduced representative of the form $Q=[5,6,3]$.

Problem 2. Compute the class number $h(-8)$.

Problem 3. Let p be an odd prime. Show that

$$
p=x^{2}+2 y^{2} \quad \Leftrightarrow \quad p \equiv 1 \quad(\bmod 8) \quad \text { or } \quad p \equiv 3 \quad(\bmod 8) .
$$

Hint: Rewrite the condition on the right in terms of the Legendre symbol $\left(\frac{-2}{p}\right)$.

Problem 4. Show that the class number $h(D)$ for $D<0$ can become arbitrarily large. Hint: Choose $D=-4 p_{1} \cdots p_{n}$ with different primes p_{j}, and consider the forms $[a, 0, c]$.

Problem 5. Let $Q=[a, b, c]$ be positive definite of discriminant $D<0$. Show that, if $a<\sqrt{-D / 4}$ and $-a<b \leq a$, then Q is already reduced.

Problem 6. Show that, if Q represents 1 , then Q is equivalent to the principal form. Hint: Use Problem 5 from exercise sheet 8 b .

Problem 7 (sage). Write a program which, given a discriminant $D<0$, computes the reduced forms of discriminant D and the class number $h(D)$. Use it to list the class number $h(D)$ for $0>D \geq-100$.

