Elementary Number Theory - Exercise 9b

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that the inverse of a primitive form $[a, b, c]$ in the class group is given by

$$
[a, b, c]^{-1}=[a,-b, c] .
$$

Problem 2. Let $Q_{1}=\left[a_{1}, b_{1}, c_{1}\right]$ and $Q_{2}=\left[a_{2}, b_{2}, c_{2}\right]$ be united, and let $Q_{1} \sim\left[a_{1}, B, a_{2} C\right]$ and $Q_{2} \sim\left[a_{2}, B, a_{1} C\right]$. We defined the Gauss composion

$$
Q_{1} * Q_{2}=\left[a_{1} a_{2}, B, C\right] .
$$

Show that we have

$$
\left(a_{1} x^{2}+B x y+a_{2} C y^{2}\right)\left(a_{2} z^{2}+B z w+a_{1} C w^{2}\right)=a_{1} a_{2} X^{2}+B X Y+C Y^{2},
$$

where $X=x z-C y w$ and $Y=a_{1} x w+a_{2} y z+B y w$. In particular, deduce that the Gauss composition $Q_{1} * Q_{2}$ represents all products of numbers represented by Q_{1} and Q_{2}.

Problem 3. Show that the Gauss composition of $[2,1,3]$ with itself is given by $[2,-1,3]$.

Problem 4. Construct a group isomorphism from $\mathrm{Cl}(-23)$ to $\mathbb{Z} / 3 \mathbb{Z}$.

Problem 5. Show that a primitive, positive definite, reduced form $Q=[a, b, c]$ has order ≤ 2 in the class group $\mathrm{Cl}(D)$ if and only if $b=0, a=b$, or $a=c$.

Problem 6 (Homework). Show that $\mathrm{Cl}(-39)$ has order 4. Is it isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ or to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$?

Problem 7 (sage). Write a program which computes (the reduced representative of) the Gauss composition of two positive definite united forms.

