Elementary Number Theory - Exercise 9b ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that the inverse of a primitive form [a, b, c] in the class group is given by

$$[a, b, c]^{-1} = [a, -b, c].$$

Problem 2. Let $Q_1 = [a_1, b_1, c_1]$ and $Q_2 = [a_2, b_2, c_2]$ be united, and let $Q_1 \sim [a_1, B, a_2C]$ and $Q_2 \sim [a_2, B, a_1C]$. We defined the Gauss composion

$$Q_1 * Q_2 = [a_1 a_2, B, C].$$

Show that we have

$$(a_1x^2 + Bxy + a_2Cy^2)(a_2z^2 + Bzw + a_1Cw^2) = a_1a_2X^2 + BXY + CY^2,$$

where X = xz - Cyw and $Y = a_1xw + a_2yz + Byw$. In particular, deduce that the Gauss composition $Q_1 * Q_2$ represents all products of numbers represented by Q_1 and Q_2 .

Problem 3. Show that the Gauss composition of [2, 1, 3] with itself is given by [2, -1, 3].

Problem 4. Construct a group isomorphism from Cl(-23) to $\mathbb{Z}/3\mathbb{Z}$.

Problem 5. Show that a primitive, positive definite, reduced form Q = [a, b, c] has order ≤ 2 in the class group Cl(D) if and only if b = 0, a = b, or a = c.

Problem 6 (Homework). Show that Cl(-39) has order 4. Is it isomorphic to $\mathbb{Z}/4\mathbb{Z}$ or to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$?

Problem 7 (sage). Write a program which computes (the reduced representative of) the Gauss composition of two positive definite united forms.