Elementary Number Theory - Exercise 10a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that, if $d=m^{2}$ is a square, then Pell's equation $x^{2}-d y^{2}=1$ only has the trivial solutions $(x, y)=(\pm 1,0)$.

Solution 1. We can factor

$$
\left(x^{2}-d y^{2}\right)=\left(x^{2}-m^{2} y^{2}\right)=(x-m y)(x+m y)
$$

If $(x-m y)(x+m y)=1$, then both factors equal 1 or -1 . Replacing (x, y) with $(-x,-y)$ we can assume that both factors are 1 , that is

$$
\begin{aligned}
& x-m y=1 \\
& x+m y=1
\end{aligned}
$$

Adding and subtracting the two equations, we get $x=1$ and $m y=0$, hence $y=0$.

Problem 2. Determine some non-trivial solutions of Pell's equation $x^{2}-2 y^{2}=1$ and use them to find a rational approximation $\frac{x}{y}$ to $\sqrt{2}$ with $\left|\frac{x}{y}-\sqrt{2}\right| \leq 10^{-6}$.
Solution 2. We have the trivial solutions $(\pm 1,0)$. Moreover, by replacing x, y with their negatives if necessary, it suffices to look for solutions $(x, y) \in \mathbb{N}^{2}$. By trying $(x, y)=(1,1),(x, y)=$ $(1,2),(x, y)=(2,1)$, and so on, we find the non-trivial solution

$$
\left(x_{1}, y_{1}\right)=(3,2)
$$

Since the tuples $(x, y) \in \mathbb{N}^{2}$ with $x<3$ do not give solutions, this is the fundamental solution. By Lagrange's Theorem, all non-trivial solutions are given by $\left(x_{n}, y_{n}\right)$, where

$$
x_{n}+y_{n} \sqrt{2}=\left(x_{1}+y_{2} \sqrt{2}\right)^{n}=(3+2 \sqrt{2})^{n}
$$

For example, we obtain the solutions

$$
(3,2), \quad(17,12), \quad(99,70), \quad(577,408), \quad(3363,2378)
$$

We have seen in the lecture that each solution (x, y) to Pell's equation $x^{2}-d y^{2}=1$ gives a rational approximation to $\frac{x}{y}$ to \sqrt{d} with

$$
\left|\frac{x}{y}-\sqrt{d}\right| \leq \frac{1}{2 y^{2}}
$$

Hence, if we want to achieve that $\left|\frac{x}{y}-\sqrt{2}\right| \leq 10^{-4}$, it suffices to find a solution (x, y) with $y \geq 10^{3}$. Above, we found the solution $\left(x_{5}, y_{5}\right)=(3363,2378)$, which leads to the rational approximation

$$
\frac{x_{5}}{y_{5}}=\frac{3363}{2378}=1.41421362489487
$$

Comparing this with

$$
\sqrt{2}=1.41421356237310
$$

we see that the first 7 digits are correct, so this is the desired rational approximation.

Problem 3. Let $d>0$ be a non-square. Consider the set

$$
\mathbb{Q}(\sqrt{d})=\{x+\sqrt{d} y: x, y \in \mathbb{Q}\} .
$$

1. Show that $\mathbb{Q}(\sqrt{d})$ is closed under addition and multiplication.
2. Show that $(x+\sqrt{d} y)^{-1}=\frac{x-\sqrt{d} y}{x^{2}-d y^{2}}$ for $(x, y) \neq(0,0)$, and deduce that $\mathbb{Q}(\sqrt{d})$ is a field.
3. If $(x, y) \in \mathbb{Q}^{2}$ solves Pell's equation $x^{2}-d y^{2}=1$, then we have

$$
(x+\sqrt{d} y)^{-n}=(x-\sqrt{d} y)^{n}
$$

for every $n \in \mathbb{Z}$.
Solution 3. 1. We have

$$
(x+\sqrt{d} y)(a+\sqrt{d} b)=(x+a)+\sqrt{d}(y+b)
$$

and

$$
(x+\sqrt{d} y)(a+\sqrt{d} b)=(x a+d y b)+\sqrt{d}(x b+y a)
$$

2. We have

$$
(x+\sqrt{d} y) \cdot \frac{x-\sqrt{d} y}{x^{-} d y^{2}}=1
$$

which implies the result. This works whenever $x+\sqrt{d} y \neq 0$, so every non-zero element in $\mathbb{Q}(\sqrt{d})$ is invertible. Since $\mathbb{Q}(\sqrt{d})$ contains 0 and 1 , is closed under addition and multiplication, and every non-zero element is invertible, it is a field.
3. We compute

$$
(x+\sqrt{d} y)^{n}(x-\sqrt{d} y)^{n}=((x+\sqrt{d} y)(x-\sqrt{d} y))^{n}=\left(x^{2}-d y^{2}\right)^{n}=1^{n}=1
$$

which implies the stated formula.

Problem 4. Compute the continued fraction expansion and the convergents of $\frac{128}{1527}$.
Solution 4. We compute

$$
\begin{aligned}
\frac{128}{1527} & =\frac{1}{\frac{1527}{128}}=\frac{1}{11+\frac{119}{128}}=\frac{1}{11+\frac{1}{\frac{128}{119}}}=\frac{1}{11+\frac{1}{1+\frac{9}{119}}} \\
& =\frac{1}{11+\frac{1}{1+\frac{1}{\frac{119}{9}}}}=\frac{1}{11+\frac{1}{1+\frac{1}{13+\frac{2}{9}}}}=\frac{1}{11+\frac{1}{1+\frac{1}{13+\frac{1}{2}}}} \\
& =\frac{1}{11+\frac{1}{1+\frac{1}{13+\frac{1}{4+\frac{1}{2}}}}}=[0,11,1,13,4,2] .
\end{aligned}
$$

The convergents are given by

$$
\begin{aligned}
& c_{0}=[0]=0 \\
& c_{1}=[0,11]=\frac{1}{11} \\
& c_{2}=[0,11,1]=\frac{1}{11+\frac{1}{1}}=\frac{1}{12}, \\
& c_{3}=[0,11,1,13]=\frac{1}{11+\frac{1}{1+\frac{1}{13}}}=\frac{14}{167} \\
& c_{4}=[0,11,1,13,4]=\frac{1}{11+\frac{1}{1+\frac{1}{13+\frac{1}{4}}}}=\frac{57}{680} .
\end{aligned}
$$

Problem 5. Show the identities

$$
\begin{aligned}
{\left[a_{0}, \ldots, a_{n}\right] } & =a_{0}+\frac{1}{\left[a_{1}, \ldots, a_{n}\right]}, \\
{\left[a_{0}, \ldots, a_{n}\right] } & =\left[a_{0}, \ldots, a_{n-1}+\frac{1}{a_{n}}\right], \\
{\left[a_{0}, \ldots, a_{n}\right] } & =\left[a_{0}, \ldots, a_{n}-1,1\right], \\
{\left[a_{0}, \ldots, a_{n}\right]^{-1} } & =\left[0, a_{0}, \ldots, a_{n}\right] .
\end{aligned}
$$

Solution 5. We have

$$
\left[a_{0}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}=a_{0}+\frac{1}{\left[a_{1}, \ldots, a_{n}\right]}
$$

and

$$
\left[a_{0}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{\left(a_{n-1}+\frac{1}{a_{n}}\right)}}}=\left[a_{0}, \ldots, a_{n-1}+\frac{1}{a_{n}}\right]
$$

and

$$
\left[a_{0}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots \cdot+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots \cdot+\frac{1}{a_{n-1}+\frac{1}{\left(a_{n}-1\right)+\frac{1}{1}}}}}=\left[a_{0}, \ldots, a_{n}-1,1\right]
$$

and

$$
\left[a_{0}, \ldots, a_{n}\right]^{-1}=0+\frac{1}{\left[a_{0}, \ldots, a_{n}\right]}=\left[0, a_{0}, \ldots, a_{n}\right]
$$

Problem 6 (sage). Write programs that

1. finds the fundamental solution to Pell's equation (apply it to $d=43$).
2. lists solutions to Pell's equation using Lagrange's Theorem.
3. computes the continued fraction expansion and the convergents of a rational number.
