
Elementary Number Theory - Exercise 11a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that, in a primitive Pythagorean triple (a, b, c), a, b, c are pairwise coprime,
a and b have different parity, and c is odd.

Solution 1. We have a2 + b2 = c2 and gcd(a, b, c) = 1. If p is a prime dividing gcd(a, b), then
p must divide c2, and hence c, which contradicts gcd(a, b, c) = 1. We can argue in the same
for gcd(a, c) and gcd(b, c). Hence a, b, c must be pairwise coprime.

If a, b are both even, then a2 + b2 is even, so c would be even, and the triple would not be
primitive. If a, b are both odd, then a2 ≡ b2 ≡ 1 (mod 4), but c2 is even, so c2 ≡ 0 (mod 4),
which yields the contradiction 2 ≡ 0 (mod 4). This shows that a and b have different parity,
and consequently c is odd.

Problem 2. Find all Pythagorean triples (a, b, c) with c ≤ 25.

Solution 2. We know that the primitive triples with odd a are given by

a = m2 − n2, b = 2mn, c = m2 + n2,

where m > n are coprime natural numbers of different parity. Since c ≤ 25, we must have
n < m ≤

√
25 = 5. Checking if c = m2 + n2 for all 1 < n < m ≤ 25 which are coprime and

have different parity, we find the tuples

(m, n) ∈ {(2, 1), (4, 1), (3, 2), (4, 3)},

which give the 4 Pythagorean triples

[3, 4, 5], [15, 8, 17], [5, 12, 13], [7, 24, 25].

These are the primitive ones with odd a. By rescaling the first one with k = 1, 2, 3, 4, 5, and
replacing a with b in all solutions, we obtain 16 Pythagorean triples.

Problem 3. We have seen in the lecture that every primitive Pythagorean triple (a, b, c) with
odd a is given by

a = m2 − n2, b = 2mn, c = m2 + n2,

for some coprime m > n of different parity. Show that m, n are uniquely determined by
(a, b, c).

Solution 3. Suppose that we have coprime m > n of different parity, and coprime M > N
of different parity, such that

m2 − n2 = M2 −N2, 2mn = 2MN, m2 + n2 = M2 + N2.

Adding and subtracting the first and the third identity we obtain

m2 = M2, n2 = N2.

Since m, n, M, N are positive integers, this implies m = M and n = N .
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Problem 4. A Pythagorean triple (a, b, c) is called almost isosceles if |a− b| = 1.

1. Show that every almost isosceles Pythagorean triple is, up to switching a and b, of the
form (

x− 1
2 ,

x + 1
2 , y

)
where (x, y) ∈ N2 solves the negative Pell equation x2 − 2y2 = −1, and x ≥ 3.

2. Show that every solution (x, y) ∈ N2 of x2 − 2y2 = −1 is of the form (xn, yn) where

xn +
√

2yn = (1 +
√

2)2n+1.

3. Determine the first three almost isosceles Pythagorean triples.

Solution 4. 1. By interchanging a and b we can assume that a < b, i.e. b = a + 1. If we
put x = 2a + 1 and y = c, then a = x−1

2 and b = a + 1 = x+1
2 , so (a, b, c) is of the form(

x− 1
2 ,

x + 1
2 , y

)
.

Since this is a Pythogorean triple, we have(
x− 1

2

)2
+

(
x + 1

2

)2
= y2

Multiplying out yields x2 − 2y2 = −1. Since a ≥ 1, we have x = 2a + 1 ≥ 3.

2. Every solution (x, y) ∈ N2 of the negative Pell equation x2− 2y2 = −1 yields a solution
of positive Pell equation z2 − 2w2 = 1 via

z +
√

2w = (x +
√

2w)(
√

2− 1) = (2w − x) +
√

2(x− w).

Indeed, we have

z2 − 2w2 = (z +
√

2w)(z −
√

2w) = (x +
√

2w)(
√

2− 1)(x−
√

2w)(−
√

2− 1)
= (x +

√
2w)(x−

√
2w)(

√
2− 1)(−

√
2− 1) = −(x2 − 2y2) = 1.

Here we used that (
√

2 + 1)(
√

2 − 1) = 1. In fact, this gives a bijection between the
solutions in N2 of the negative and the positive Pell equation.
The fundamental solution of z2 − 2w2 = 1 is given by (z1, w1) = (3, 2), and we know
from Lagrange’s Theorem that every solution (z, w) ∈ N2 of z2− 2w2 = 1 is of the form
(zn, wn) where

zn +
√

2wn = (z1 +
√

2w1)n = (3 + 2
√

2)n.

On the other hand, we have
3 + 2

√
2 = (1 +

√
2)2,

so
zn +

√
2wn = (1 +

√
2)2n.

Hence, any solution (x, y) of x2 − 2w2 = −1 is given by (xn, yn) satisfying

(xn +
√

2yn)(
√

2− 1) = (1 +
√

2)2n.

Multiplying by 1 +
√

2 and using (1 +
√

2)(1−
√

2) = 1 gives

xn +
√

2yn = (1 +
√

2)2n+1.
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3. We use that (1 +
√

2)2 = (3 + 2
√

2) and compute

x1 +
√

2y1 = 1 +
√

2,

x2 +
√

2y2 = (1 +
√

2)(3 + 2
√

2) = 7 + 5
√

2,

x3 +
√

2y3 = (7 + 5
√

2)(3 + 2
√

2) = 41 + 29
√

2,

x4 +
√

2y4 = (41 + 29
√

2)(3 + 2
√

2) = 239 + 169
√

2.

The fundamental solution (x1, y1) = (1, 1) does not give a Pythagorean triple since
x < 3, but the other three solutions give the first three almost isosceles Pythagorean
triples

(3, 4, 5), (20, 21, 29), (119, 120, 169).

Problem 5. Fermat’s Last Theorem states that for n ≥ 3 the equation an + bn = cn has no
integer solution with a, b, c all different from 0. Show that it suffices to prove Fermat’s Last
Theorem for prime exponents n = p ≥ 3.

Solution 5. Suppose we had proved Fermat’s Theorem for each prime exponent p ≥ 3. Now
suppose that there would be a counter-example for some n ≥ 3, that is, an integer solution
of an + bn = cn with a, b, c 6= 0. Let p be a prime factor of n. Then we have

(an/p)p + (bn/p)p = (cn/p)p,

and an/p, bn/p, cn/p are non-zero integer solutions of ap + bp = cp, which is a contradiction.

Problem 6. Show that, for each n ∈ N, the numbers

(2n + 1, 2n2 + 2n, 2n2 + 2n + 1)

form a primitive Pythagorean triple. Compute them for n = 10m for m = 1, 2, 3, 4, 5 and
admire the beautiful pattern that you get.

Solution 6. We just need to check that

(2n + 1)2 + (2n2 + 2n)2 = (2n2 + 2n + 1)2,

which is easy to do. For n = 10m and m = 1, 2, 3, 4, 5 we get the triples

(21, 220, 221)
(201, 20200, 20201)
(2001, 2002000, 2002001)
(20001, 200020000, 200020001)
(200001, 20000200000, 20000200001).

Problem 7 (sage). Write a program which lists all Pythagorean triples (a, b, c) with c ≤ N
for a given N .
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