Problem 1. Show that, in a primitive Pythagorean triple (a, b, c), a, b, c are pairwise coprime, a and b have different parity, and c is odd.

Solution 1. We have $a^2 + b^2 = c^2$ and gcd(a, b, c) = 1. If p is a prime dividing gcd(a, b), then p must divide c^2 , and hence c, which contradicts gcd(a, b, c) = 1. We can argue in the same for gcd(a, c) and gcd(b, c). Hence a, b, c must be pairwise coprime.

If a, b are both even, then $a^2 + b^2$ is even, so c would be even, and the triple would not be primitive. If a, b are both odd, then $a^2 \equiv b^2 \equiv 1 \pmod{4}$, but c^2 is even, so $c^2 \equiv 0 \pmod{4}$, which yields the contradiction $2 \equiv 0 \pmod{4}$. This shows that a and b have different parity, and consequently c is odd.

Problem 2. Find all Pythagorean triples (a, b, c) with $c \leq 25$.

Solution 2. We know that the primitive triples with odd *a* are given by

$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$,

where m > n are coprime natural numbers of different parity. Since $c \le 25$, we must have $n < m \le \sqrt{25} = 5$. Checking if $c = m^2 + n^2$ for all $1 < n < m \le 25$ which are coprime and have different parity, we find the tuples

$$(m,n) \in \{(2,1), (4,1), (3,2), (4,3)\},\$$

which give the 4 Pythagorean triples

$$[3,4,5], [15,8,17], [5,12,13], [7,24,25]$$

These are the primitive ones with odd a. By rescaling the first one with k = 1, 2, 3, 4, 5, and replacing a with b in all solutions, we obtain 16 Pythagorean triples.

Problem 3. We have seen in the lecture that every primitive Pythagorean triple (a, b, c) with odd a is given by

$$a = m^2 - n^2$$
, $b = 2mn$, $c = m^2 + n^2$,

for some coprime m > n of different parity. Show that m, n are uniquely determined by (a, b, c).

Solution 3. Suppose that we have coprime m > n of different parity, and coprime M > N of different parity, such that

$$m^2 - n^2 = M^2 - N^2$$
, $2mn = 2MN$, $m^2 + n^2 = M^2 + N^2$.

Adding and subtracting the first and the third identity we obtain

$$m^2 = M^2, \quad n^2 = N^2.$$

Since m, n, M, N are positive integers, this implies m = M and n = N.

Problem 4. A Pythagorean triple (a, b, c) is called *almost isosceles* if |a - b| = 1.

1. Show that every almost isosceles Pythagorean triple is, up to switching a and b, of the form (x - 1, x + 1)

$$\left(\frac{x-1}{2}, \frac{x+1}{2}, y\right)$$

where $(x, y) \in \mathbb{N}^2$ solves the negative Pell equation $x^2 - 2y^2 = -1$, and $x \ge 3$.

2. Show that every solution $(x, y) \in \mathbb{N}^2$ of $x^2 - 2y^2 = -1$ is of the form (x_n, y_n) where

$$x_n + \sqrt{2}y_n = (1 + \sqrt{2})^{2n+1}.$$

- 3. Determine the first three almost isosceles Pythagorean triples.
- **Solution 4.** 1. By interchanging a and b we can assume that a < b, i.e. b = a + 1. If we put x = 2a + 1 and y = c, then $a = \frac{x-1}{2}$ and $b = a + 1 = \frac{x+1}{2}$, so (a, b, c) is of the form

$$\left(\frac{x-1}{2},\frac{x+1}{2},y\right).$$

Since this is a Pythogorean triple, we have

$$\left(\frac{x-1}{2}\right)^2 + \left(\frac{x+1}{2}\right)^2 = y^2$$

Multiplying out yields $x^2 - 2y^2 = -1$. Since $a \ge 1$, we have $x = 2a + 1 \ge 3$.

2. Every solution $(x, y) \in \mathbb{N}^2$ of the negative Pell equation $x^2 - 2y^2 = -1$ yields a solution of positive Pell equation $z^2 - 2w^2 = 1$ via

$$z + \sqrt{2}w = (x + \sqrt{2}w)(\sqrt{2} - 1) = (2w - x) + \sqrt{2}(x - w).$$

Indeed, we have

$$z^{2} - 2w^{2} = (z + \sqrt{2}w)(z - \sqrt{2}w) = (x + \sqrt{2}w)(\sqrt{2} - 1)(x - \sqrt{2}w)(-\sqrt{2} - 1)$$
$$= (x + \sqrt{2}w)(x - \sqrt{2}w)(\sqrt{2} - 1)(-\sqrt{2} - 1) = -(x^{2} - 2y^{2}) = 1.$$

Here we used that $(\sqrt{2}+1)(\sqrt{2}-1) = 1$. In fact, this gives a bijection between the solutions in \mathbb{N}^2 of the negative and the positive Pell equation.

The fundamental solution of $z^2 - 2w^2 = 1$ is given by $(z_1, w_1) = (3, 2)$, and we know from Lagrange's Theorem that every solution $(z, w) \in \mathbb{N}^2$ of $z^2 - 2w^2 = 1$ is of the form (z_n, w_n) where

$$z_n + \sqrt{2}w_n = (z_1 + \sqrt{2}w_1)^n = (3 + 2\sqrt{2})^n.$$

On the other hand, we have

$$3 + 2\sqrt{2} = (1 + \sqrt{2})^2,$$

 \mathbf{SO}

$$z_n + \sqrt{2}w_n = (1 + \sqrt{2})^{2n}$$

Hence, any solution (x, y) of $x^2 - 2w^2 = -1$ is given by (x_n, y_n) satisfying

$$(x_n + \sqrt{2}y_n)(\sqrt{2} - 1) = (1 + \sqrt{2})^{2n}$$

Multiplying by $1 + \sqrt{2}$ and using $(1 + \sqrt{2})(1 - \sqrt{2}) = 1$ gives

$$x_n + \sqrt{2}y_n = (1 + \sqrt{2})^{2n+1}$$

3. We use that $(1 + \sqrt{2})^2 = (3 + 2\sqrt{2})$ and compute

$$\begin{aligned} x_1 + \sqrt{2y_1} &= 1 + \sqrt{2}, \\ x_2 + \sqrt{2}y_2 &= (1 + \sqrt{2})(3 + 2\sqrt{2}) = 7 + 5\sqrt{2}, \\ x_3 + \sqrt{2}y_3 &= (7 + 5\sqrt{2})(3 + 2\sqrt{2}) = 41 + 29\sqrt{2}, \\ x_4 + \sqrt{2}y_4 &= (41 + 29\sqrt{2})(3 + 2\sqrt{2}) = 239 + 169\sqrt{2}. \end{aligned}$$

The fundamental solution $(x_1, y_1) = (1, 1)$ does not give a Pythagorean triple since x < 3, but the other three solutions give the first three almost isosceles Pythagorean triples

(3, 4, 5), (20, 21, 29), (119, 120, 169).

Problem 5. Fermat's Last Theorem states that for $n \ge 3$ the equation $a^n + b^n = c^n$ has no integer solution with a, b, c all different from 0. Show that it suffices to prove Fermat's Last Theorem for prime exponents $n = p \ge 3$.

Solution 5. Suppose we had proved Fermat's Theorem for each prime exponent $p \ge 3$. Now suppose that there would be a counter-example for some $n \ge 3$, that is, an integer solution of $a^n + b^n = c^n$ with $a, b, c \ne 0$. Let p be a prime factor of n. Then we have

$$(a^{n/p})^p + (b^{n/p})^p = (c^{n/p})^p,$$

and $a^{n/p}, b^{n/p}, c^{n/p}$ are non-zero integer solutions of $a^p + b^p = c^p$, which is a contradiction.

Problem 6. Show that, for each $n \in \mathbb{N}$, the numbers

$$(2n+1, 2n^2+2n, 2n^2+2n+1)$$

form a primitive Pythagorean triple. Compute them for $n = 10^m$ for m = 1, 2, 3, 4, 5 and admire the beautiful pattern that you get.

Solution 6. We just need to check that

$$(2n+1)^2 + (2n^2+2n)^2 = (2n^2+2n+1)^2$$

which is easy to do. For $n = 10^m$ and m = 1, 2, 3, 4, 5 we get the triples

Problem 7 (sage). Write a program which lists all Pythagorean triples (a, b, c) with $c \leq N$ for a given N.