Elementary Number Theory - Exercise 11a
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Problem 1. Show that, in a primitive Pythagorean triple (a, b, ¢), a, b, ¢ are pairwise coprime,
a and b have different parity, and c is odd.

Solution 1. We have a? 4+ b? = ¢? and gcd(a, b, ¢) = 1. If p is a prime dividing ged(a, b), then
p must divide ¢?, and hence ¢, which contradicts ged(a,b,c) = 1. We can argue in the same
for ged(a, ¢) and ged(b, ¢). Hence a, b, ¢ must be pairwise coprime.

If a,b are both even, then a? + b? is even, so ¢ would be even, and the triple would not be
primitive. If a,b are both odd, then a? = b?> =1 (mod 4), but ¢? is even, so ¢ =0 (mod 4),
which yields the contradiction 2 =0 (mod 4). This shows that a and b have different parity,
and consequently c is odd.

Problem 2. Find all Pythagorean triples (a, b, ¢) with ¢ < 25.

Solution 2. We know that the primitive triples with odd a are given by

a=m?—n% b=2mn, c=m?+n?

where m > n are coprime natural numbers of different parity. Since ¢ < 25, we must have
n <m < V25 = 5. Checking if ¢ = m? 4+ n? for all 1 < n < m < 25 which are coprime and
have different parity, we find the tuples

(m,n) € {(2,1),(4,1),(3,2),(4,3)},
which give the 4 Pythagorean triples
3,4,5,  [15,817,  [5,12,13],  [7,24,25].

These are the primitive ones with odd a. By rescaling the first one with £ =1,2,3,4,5, and
replacing a with b in all solutions, we obtain 16 Pythagorean triples.

Problem 3. We have seen in the lecture that every primitive Pythagorean triple (a, b, ¢) with

odd a is given by

a=m?—-n% b=2mn, c=m?+n?

for some coprime m > n of different parity. Show that m,n are uniquely determined by

(a,b,c).

Solution 3. Suppose that we have coprime m > n of different parity, and coprime M > N
of different parity, such that

m? —n?=M?—-N? 2mn=2MN, m?+n?=M?+ N>
Adding and subtracting the first and the third identity we obtain
m? = M2, n? = N2.

Since m,n, M, N are positive integers, this implies m = M and n = N.



Problem 4. A Pythagorean triple (a, b, c) is called almost isosceles if |a — b| = 1.

1. Show that every almost isosceles Pythagorean triple is, up to switching a and b, of the

form
(:c—l r+1 )
2 ) 2 7y

where (z,y) € N? solves the negative Pell equation x?> — 2y*> = —1, and = > 3.
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2. Show that every solution (x,%) € N? of 22 — 2y? = —1 is of the form (x,,y,) where

Tn + V2yn = (1+V2)>"

3. Determine the first three almost isosceles Pythagorean triples.

Solution 4. 1. By interchanging a and b we can assume that a < b, i.e. b=a+ 1. If we

put x =2a+1and y = ¢, thena:xT_landb:a—i—l:%, so (a, b, c) is of the form

(x—l r+1 >
9 772 Y |-

Since this is a Pythogorean triple, we have

(m—1)2+(9€+1)2_ )
2 2 -y

Multiplying out yields z? — 2y> = —1. Since a > 1, we have z = 2a + 1 > 3.
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2. Every solution (z,y) € N? of the negative Pell equation x? — 2y? = —1 yields a solution

of positive Pell equation z? — 2w? = 1 via
24+ V2w = (z +V2w) (V2 - 1) = (2w — z) + V2(z — w).
Indeed, we have
220 = (24 V3u) (2 — V3w) = (2 + V2w)(V2 - 1)z — VEw)(—V3 — 1)
= (z+V2w)(z - V2w)(V2 - 1)(-V2 - 1) = —(=* - 2°) = 1.
Here we used that (v/2 +1)(v/2 — 1) = 1. In fact, this gives a bijection between the

solutions in N? of the negative and the positive Pell equation.

The fundamental solution of z? — 2w? = 1 is given by (z1,w1) = (3,2), and we know
from Lagrange’s Theorem that every solution (z,w) € N? of 22 — 2w? = 1 is of the form
(2n, wy,) where

Zn + V2w, = (21 + V2w1)" = (34 2V2)™.

On the other hand, we have

34+2v2=(1+2)

SO

20+ V2w, = (1+V2)*"

Hence, any solution (z,y) of 22 — 2w? = —1 is given by (z,,,yn) satisfying
(o0 + V) (V3 — 1) = (1 + VO
Multiplying by 1+ v/2 and using (1 + v/2)(1 — v/2) = 1 gives
Tn +V2yn = (1+V2)2



3. We use that (1 ++/2)? = (3 4+ 2v/2) and compute

T+ V2 = 14 V2,

T2 +V2ys = (1 +V2)(3 +2V2) =7+ 5V?2,

234+ V2y3 = (7T + 5V2)(3 4 2v/2) = 41 + 29v/2,
x4+ V2ys = (41 + 29v2)(3 + 2v/2) = 239 + 169v/2.

The fundamental solution (z1,y1) = (1,1) does not give a Pythagorean triple since
x < 3, but the other three solutions give the first three almost isosceles Pythagorean
triples

(3,4,5),  (20,21,29),  (119,120,169).

Problem 5. Fermat’s Last Theorem states that for n > 3 the equation a™ + b"™ = ¢ has no
integer solution with a, b, ¢ all different from 0. Show that it suffices to prove Fermat’s Last
Theorem for prime exponents n = p > 3.

Solution 5. Suppose we had proved Fermat’s Theorem for each prime exponent p > 3. Now
suppose that there would be a counter-example for some n > 3, that is, an integer solution
of a™ + b = ¢" with a,b,c # 0. Let p be a prime factor of n. Then we have

(a™P)P + (BVP)P = (VPP

and a/?,b"/P, /P are non-zero integer solutions of a? + b = P, which is a contradiction.

Problem 6. Show that, for each n € N, the numbers
(2n + 1, 2n® + 2n, 2n® + 2n + 1)

form a primitive Pythagorean triple. Compute them for n = 10™ for m = 1,2,3,4,5 and
admire the beautiful pattern that you get.

Solution 6. We just need to check that
(2n 4+ 1)? + (20 + 2n)? = (2n% 4 2n + 1),
which is easy to do. For n = 10™ and m = 1,2, 3,4,5 we get the triples

(21,220, 221)

(201, 20200, 20201)

(2001, 2002000, 2002001)

(20001, 200020000, 200020001)
(200001, 20000200000, 20000200001).

Problem 7 (sage). Write a program which lists all Pythagorean triples (a, b, c) with ¢ < N
for a given N.



