Elementary Number Theory - Exercise 11a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that, in a primitive Pythagorean triple $(a, b, c), a, b, c$ are pairwise coprime, a and b have different parity, and c is odd.
Solution 1. We have $a^{2}+b^{2}=c^{2}$ and $\operatorname{gcd}(a, b, c)=1$. If p is a prime dividing $\operatorname{gcd}(a, b)$, then p must divide c^{2}, and hence c, which contradicts $\operatorname{gcd}(a, b, c)=1$. We can argue in the same for $\operatorname{gcd}(a, c)$ and $\operatorname{gcd}(b, c)$. Hence a, b, c must be pairwise coprime.

If a, b are both even, then $a^{2}+b^{2}$ is even, so c would be even, and the triple would not be primitive. If a, b are both odd, then $a^{2} \equiv b^{2} \equiv 1(\bmod 4)$, but c^{2} is even, so $c^{2} \equiv 0(\bmod 4)$, which yields the contradiction $2 \equiv 0(\bmod 4)$. This shows that a and b have different parity, and consequently c is odd.

Problem 2. Find all Pythagorean triples (a, b, c) with $c \leq 25$.
Solution 2. We know that the primitive triples with odd a are given by

$$
a=m^{2}-n^{2}, \quad b=2 m n, \quad c=m^{2}+n^{2},
$$

where $m>n$ are coprime natural numbers of different parity. Since $c \leq 25$, we must have $n<m \leq \sqrt{25}=5$. Checking if $c=m^{2}+n^{2}$ for all $1<n<m \leq 25$ which are coprime and have different parity, we find the tuples

$$
(m, n) \in\{(2,1),(4,1),(3,2),(4,3)\}
$$

which give the 4 Pythagorean triples

$$
[3,4,5], \quad[15,8,17], \quad[5,12,13], \quad[7,24,25] .
$$

These are the primitive ones with odd a. By rescaling the first one with $k=1,2,3,4,5$, and replacing a with b in all solutions, we obtain 16 Pythagorean triples.

Problem 3. We have seen in the lecture that every primitive Pythagorean triple (a, b, c) with odd a is given by

$$
a=m^{2}-n^{2}, \quad b=2 m n, \quad c=m^{2}+n^{2},
$$

for some coprime $m>n$ of different parity. Show that m, n are uniquely determined by (a, b, c).

Solution 3. Suppose that we have coprime $m>n$ of different parity, and coprime $M>N$ of different parity, such that

$$
m^{2}-n^{2}=M^{2}-N^{2}, \quad 2 m n=2 M N, \quad m^{2}+n^{2}=M^{2}+N^{2} .
$$

Adding and subtracting the first and the third identity we obtain

$$
m^{2}=M^{2}, \quad n^{2}=N^{2} .
$$

Since m, n, M, N are positive integers, this implies $m=M$ and $n=N$.

Problem 4. A Pythagorean triple (a, b, c) is called almost isosceles if $|a-b|=1$.

1. Show that every almost isosceles Pythagorean triple is, up to switching a and b, of the form

$$
\left(\frac{x-1}{2}, \frac{x+1}{2}, y\right)
$$

where $(x, y) \in \mathbb{N}^{2}$ solves the negative Pell equation $x^{2}-2 y^{2}=-1$, and $x \geq 3$.
2. Show that every solution $(x, y) \in \mathbb{N}^{2}$ of $x^{2}-2 y^{2}=-1$ is of the form $\left(x_{n}, y_{n}\right)$ where

$$
x_{n}+\sqrt{2} y_{n}=(1+\sqrt{2})^{2 n+1} .
$$

3. Determine the first three almost isosceles Pythagorean triples.

Solution 4. 1. By interchanging a and b we can assume that $a<b$, i.e. $b=a+1$. If we put $x=2 a+1$ and $y=c$, then $a=\frac{x-1}{2}$ and $b=a+1=\frac{x+1}{2}$, so (a, b, c) is of the form

$$
\left(\frac{x-1}{2}, \frac{x+1}{2}, y\right) .
$$

Since this is a Pythogorean triple, we have

$$
\left(\frac{x-1}{2}\right)^{2}+\left(\frac{x+1}{2}\right)^{2}=y^{2}
$$

Multiplying out yields $x^{2}-2 y^{2}=-1$. Since $a \geq 1$, we have $x=2 a+1 \geq 3$.
2. Every solution $(x, y) \in \mathbb{N}^{2}$ of the negative Pell equation $x^{2}-2 y^{2}=-1$ yields a solution of positive Pell equation $z^{2}-2 w^{2}=1$ via

$$
z+\sqrt{2} w=(x+\sqrt{2} w)(\sqrt{2}-1)=(2 w-x)+\sqrt{2}(x-w) .
$$

Indeed, we have

$$
\begin{aligned}
z^{2}-2 w^{2} & =(z+\sqrt{2} w)(z-\sqrt{2} w)=(x+\sqrt{2} w)(\sqrt{2}-1)(x-\sqrt{2} w)(-\sqrt{2}-1) \\
& =(x+\sqrt{2} w)(x-\sqrt{2} w)(\sqrt{2}-1)(-\sqrt{2}-1)=-\left(x^{2}-2 y^{2}\right)=1 .
\end{aligned}
$$

Here we used that $(\sqrt{2}+1)(\sqrt{2}-1)=1$. In fact, this gives a bijection between the solutions in \mathbb{N}^{2} of the negative and the positive Pell equation.
The fundamental solution of $z^{2}-2 w^{2}=1$ is given by $\left(z_{1}, w_{1}\right)=(3,2)$, and we know from Lagrange's Theorem that every solution $(z, w) \in \mathbb{N}^{2}$ of $z^{2}-2 w^{2}=1$ is of the form $\left(z_{n}, w_{n}\right)$ where

$$
z_{n}+\sqrt{2} w_{n}=\left(z_{1}+\sqrt{2} w_{1}\right)^{n}=(3+2 \sqrt{2})^{n} .
$$

On the other hand, we have

$$
3+2 \sqrt{2}=(1+\sqrt{2})^{2},
$$

so

$$
z_{n}+\sqrt{2} w_{n}=(1+\sqrt{2})^{2 n} .
$$

Hence, any solution (x, y) of $x^{2}-2 w^{2}=-1$ is given by $\left(x_{n}, y_{n}\right)$ satisfying

$$
\left(x_{n}+\sqrt{2} y_{n}\right)(\sqrt{2}-1)=(1+\sqrt{2})^{2 n} .
$$

Multiplying by $1+\sqrt{2}$ and using $(1+\sqrt{2})(1-\sqrt{2})=1$ gives

$$
x_{n}+\sqrt{2} y_{n}=(1+\sqrt{2})^{2 n+1} .
$$

3. We use that $(1+\sqrt{2})^{2}=(3+2 \sqrt{2})$ and compute

$$
\begin{aligned}
& x_{1}+\sqrt{2} y_{1}=1+\sqrt{2} \\
& x_{2}+\sqrt{2} y_{2}=(1+\sqrt{2})(3+2 \sqrt{2})=7+5 \sqrt{2} \\
& x_{3}+\sqrt{2} y_{3}=(7+5 \sqrt{2})(3+2 \sqrt{2})=41+29 \sqrt{2} \\
& x_{4}+\sqrt{2} y_{4}=(41+29 \sqrt{2})(3+2 \sqrt{2})=239+169 \sqrt{2}
\end{aligned}
$$

The fundamental solution $\left(x_{1}, y_{1}\right)=(1,1)$ does not give a Pythagorean triple since $x<3$, but the other three solutions give the first three almost isosceles Pythagorean triples

$$
(3,4,5), \quad(20,21,29), \quad(119,120,169) .
$$

Problem 5. Fermat's Last Theorem states that for $n \geq 3$ the equation $a^{n}+b^{n}=c^{n}$ has no integer solution with a, b, c all different from 0 . Show that it suffices to prove Fermat's Last Theorem for prime exponents $n=p \geq 3$.

Solution 5. Suppose we had proved Fermat's Theorem for each prime exponent $p \geq 3$. Now suppose that there would be a counter-example for some $n \geq 3$, that is, an integer solution of $a^{n}+b^{n}=c^{n}$ with $a, b, c \neq 0$. Let p be a prime factor of n. Then we have

$$
\left(a^{n / p}\right)^{p}+\left(b^{n / p}\right)^{p}=\left(c^{n / p}\right)^{p},
$$

and $a^{n / p}, b^{n / p}, c^{n / p}$ are non-zero integer solutions of $a^{p}+b^{p}=c^{p}$, which is a contradiction.

Problem 6. Show that, for each $n \in \mathbb{N}$, the numbers

$$
\left(2 n+1,2 n^{2}+2 n, 2 n^{2}+2 n+1\right)
$$

form a primitive Pythagorean triple. Compute them for $n=10^{m}$ for $m=1,2,3,4,5$ and admire the beautiful pattern that you get.

Solution 6. We just need to check that

$$
(2 n+1)^{2}+\left(2 n^{2}+2 n\right)^{2}=\left(2 n^{2}+2 n+1\right)^{2}
$$

which is easy to do. For $n=10^{m}$ and $m=1,2,3,4,5$ we get the triples
(21, 220, 221)
(201, 20200, 20201)
(2001, 2002000, 2002001)
(20001, 200020000, 200020001)
(200001, 20000200000, 20000200001).

Problem 7 (sage). Write a program which lists all Pythagorean triples (a, b, c) with $c \leq N$ for a given N.

