Problem 1. Show that 2023 is a congruent number.

Solution 1. We have $2023 = 7 \cdot 17^2$, and 7 is a congruent number using the triangle (24/5, 35/12, 337/60), so 2023 is also a congruent number.

Problem 2. In this problem, we show that 13, 14, 15 are congruent numbers, using different approaches.

1. Show that 13 is a congruent number, using the triangle with side lengths

(104329, 23400, 106921).

- 2. Show that 14 is a congruent number, using that (x, y) = (18, 48) is a rational point on the elliptic curve $y^2 = x^3 14^2x$.
- 3. Show that 15 is a congruent number by finding a Pythagorean triple (a, b, c) with area ab/2 = 60.

Solution 2. 1. We have

$$104329^2 + 23400^2 = 106921^2$$

and

$$104329 \cdot 23400 = 1220649300 = 13 \cdot 9690^2$$
,

so 13 is a congruent number.

2. We indeed have

$$48^2 = 18^3 - 14^2 \cdot 18,$$

so the given point really lies on the elliptic curve. We have seen in the lecture that we have a bijection between rational point (x, y) on $y^2 = x^3 - n^2 x$ with y > 0 and the rational right triangles with area n. The rational right triangle corresponding to (112, 1176) is given by

$$(a,b,c) = \left(\frac{18^2 - 14^2}{48}, \frac{2 \cdot 14 \cdot 18}{48}, \frac{18^2 + 14^2}{48}\right) = \left(\frac{8}{3}, \frac{21}{2}, \frac{65}{6}\right).$$

Indeed, we have $\left(\frac{21}{2}\right)^2 + \left(\frac{8}{3}\right)^2 = \left(\frac{65}{6}\right)^2$ and area $\frac{1}{2} \cdot \frac{21}{2} \cdot \frac{8}{3} = 14$.

3. In the last exercise we found all Pythagorean triples with $c \leq 25$, and one of them was (15, 8, 17). The corresponding right triangle has area $15 \cdot 8/2 = 60 = 4 \cdot 15$. Hence 60 is a congruent number. Since 4 is a square, 15 = 60/4 is also a congruent number.

Problem 3. Use Tunnell's Theorem to determine the congruent numbers ≤ 15 .

Solution 3. Fermat has shown that 1, 2, 3 and all their square multiples are not congruent. Hence 1, 2, 3, 4, 8, 9, 12 are not congruent. We have seen rational right triangles for 5, 6, 7 in the lecture, and we have seen above that 13, 14, 15 are congruent. It remains to check 10 and 11.

We have

$$C(10) = D(10) = 4,$$

 $A(11) = 12, B(11) = 4.$

Hence, Tunnell's Theorem tells us that 10 and 11 are not congruent. In total, the congruent numbers ≤ 15 are given by

Problem 4. Show that, if the converse of Tunnell's Theorem can be proved to be true (e.g. if the weak BSD conjecture is true), then every natural number $n \equiv 5, 6, 7 \pmod{8}$ is a congruent number.

Solution 4. If $n \equiv 5,7 \pmod{8}$, then *n* is odd, so we need to check that A(n) = 2B(n) in Tunnell's Theorem. In fact, we have A(n) = 0 and B(n) = 0. Indeed, any solution of the quadratic equations $x^2 + 2y^2 + 8z^2 = n$ or $x^2 + 2y^2 + 32z^2 = n$ would give a solution to $x^2 + 2y^2 \equiv 5,7 \pmod{8}$, which is not possible. Hence A(n) = 0 = 2B(n), so if the converse of Tunnell's Theorem is true, then it tells us that *n* is a congruent number.

Similarly, if $n \equiv 6 \pmod{8}$, then *n* is even, so we need to check C(n) = 2D(n). Again, we even have C(n) = 0 and D(n) = 0. Any solution of $8x^2 + 2y^2 + 16z^2 = n$ or $8x^2 + 2y^2 + 64z^2 = n$ would give a solution to $2x^2 \equiv 6 \pmod{8}$, hence $x^2 \equiv 3 \pmod{4}$, which is impossible.

Problem 5 (sage). Using Tunnell's Theorem, determine the congruent numbers ≤ 100 . For each of the numbers which might be congruent, find a suitable rational right triangle to verify that they are indeed congruent.