Elementary Number Theory - Exercise 12b

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Express $p(5)$ and $p(6)$ in terms of $p(0)$ and $p(1)$ using Euler's recursion. Then, compute $p(7)$ from $p(6), p(5), \ldots, p(0)$.

Solution 1. We have

$$
\begin{aligned}
p(6)= & p(5)+p(4)-p(1) \\
= & (p(4)+p(3)-p(0))+(p(3)+p(2))-p(1) \\
= & ([p(3)+p(2)]+[p(2)+p(1)]-p(0))+([p(2)+p(1)]+[p(1)+p(0)])-p(1) \\
= & ([[p(2)+p(1)]+[p(1)+p(0)]]+[[p(1)+p(0)]+p(1)]-p(0)) \\
& +([[p(1)+p(0)]+p(1)]+[p(1)+p(0)])-p(1) \\
= & 7 p(1)+4 p(0) .
\end{aligned}
$$

From this, we also get

$$
p(5)=([[p(2)+p(1)]+[p(1)+p(0)]]+[[p(1)+p(0)]+p(1)]-p(0))=5 p(1)+2 p(0)
$$

Using $p(1)=p(0)=1$, we get $p(6)=11$ and $p(5)=7$.
We have

$$
p(7)=p(6)+p(5)-p(2)-p(0)=11+7-2-1=15
$$

Problem 2. Let $p_{\mathrm{d}}(n)$ be the number of partitions of n into distinct parts, and $p_{\text {odd }}(n)$ the number of partitions of n into odd parts 1 . Prove Euler's partition identity

$$
p_{\mathrm{d}}(n)=p_{\text {odd }}(n)
$$

by showing the generating function identities

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{\mathrm{d}}(n) x^{n} & =\prod_{n=1}^{\infty}\left(1+x^{n}\right) \\
\sum_{n=0}^{\infty} p_{\text {odd }}(n) x^{n} & =\prod_{n=1}^{\infty} \frac{1}{1-x^{2 n-1}}
\end{aligned}
$$

Solution 2. We multiply out,

$$
\prod_{n=1}^{\infty}\left(1+x^{n}\right)=(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{4}\right) \cdots
$$

to see that the coefficient at x^{n} gets a contribution +1 from each product of monomials of the form $x^{d_{1}} x^{d_{2}} \cdots x^{d_{k}}$ where $d_{1}+d_{2}+\cdots+d_{k}=n$ and $0<d_{1}<d_{2}<\cdots<d_{k}$. The possible

[^0]tuples $\left(d_{1}, \ldots, d_{k}\right)$ represent the partitions of n into distinct parts, so the coefficient at x^{n} equals $p_{\mathrm{d}}(n)$.

Using the geometric series, we have

$$
\begin{aligned}
& \prod_{n=1}^{\infty} \frac{1}{1-x^{2 n-1}}=\prod_{n=1}^{\infty}\left(\sum_{k=0}^{\infty} x^{k(2 n-1)}\right) \\
& =\left(1+x^{1 \cdot 1}+x^{2 \cdot 1}+x^{3 \cdot 1}+\ldots\right)\left(1+x^{1 \cdot 3}+x^{2 \cdot 3}+\ldots\right)\left(1+x^{1 \cdot 5}+x^{2 \cdot 5}+\ldots\right) \cdots
\end{aligned}
$$

Hence, we get a contribtion +1 to x^{n} from products of the form $x^{k_{1} \cdot 1} x^{k_{3} \cdot 3} x^{k_{5} \cdot 5} \cdots x^{k_{2 j-1} \cdot(2 j-1)}$ where

$$
k_{1} \cdot 1+k_{3} \cdot 3+k_{5} \cdot 5+\cdots+k_{2 j-1} \cdot(2 j-1)=n .
$$

Such a tuple $\left(k_{1}, k_{3}, k_{5}, \ldots\right)$ corresponds to the partition of n into odd parts

$$
n=\underbrace{1+\cdots+1}_{k_{1} \text { times }}+\underbrace{3+\cdots+3}_{k_{3} \text { times }}+\ldots
$$

Hence, the coefficient at x^{n} equals $p_{\text {odd }}(n)$.
We can now compute

$$
\begin{aligned}
\sum_{n=0}^{\infty} p_{\mathrm{d}}(n) x^{n} & =\prod_{n=1}^{\infty}\left(1+x^{n}\right) \\
& =\prod_{n=1}^{\infty} \frac{1-x^{2 n}}{1-x^{n}} \\
& =\prod_{n=1}^{\infty} \frac{1}{1-x^{2 n-1}} \\
& =\sum_{n=0}^{\infty} p_{\text {odd }}(n) x^{n}
\end{aligned}
$$

which implies $p_{\mathrm{d}}(n)=p_{\text {odd }}(n)$.

Problem 3. Let $\sigma(n)=\sum_{d \mid n} d$ be the sum of the divisors of n. Show that its generating function is given by

$$
\sum_{n=1}^{\infty} \sigma(n) x^{n}=\sum_{n=1}^{\infty} \frac{n x^{n}}{1-x^{n}}
$$

Solution 3. We compute

$$
\begin{aligned}
\sum_{n=1}^{\infty} \sigma(n) x^{n} & =\sum_{n=1}^{\infty} \sum_{d \mid n} d x^{n} \\
& =\sum_{a=1}^{\infty} \sum_{d=1}^{\infty} d x^{a d} \quad(a=n / d) \\
& =\sum_{d=1}^{\infty} d\left(\sum_{a=1}^{\infty}\left(x^{d}\right)^{a}\right) \\
& =\sum_{d=1}^{\infty} d \cdot\left(\frac{1}{1-x^{d}}-1\right) \\
& =\sum_{d=1}^{\infty} d \cdot \frac{x^{d}}{1-x^{d}}
\end{aligned}
$$

This finishes the proof.

Problem 4. The Fibonacci numbers F_{m} are defined recursively by

$$
F_{0}=0, \quad F_{1}=1, \quad F_{m}=F_{m-1}+F_{m-2}
$$

For each $n \in\{1, \ldots, 15\}$, count the number of partitions of n into distinct non-consecutive Fibonacci numbers. Make a conjecture based on your results s^{2},

Solution 4. The first few Fibonacci numbers are given by $1,1,2,3,5,8,13,21$. We make a table with the partitions of n into distinct non-consecutive Fibonacci numbers.

n	partitions
1	1
2	2
3	3
4	$3+1$
5	5
6	$5+1$
7	$5+2$
8	8
9	$8+1$
10	$8+2$
11	$8+3$
12	$8+3+1$
13	13
14	$13+1$
15	$13+2$

In each case, the number of partitions is precisely 1, so one might conjecture that this is always the case. Indeed, Zeckendorf's Theorem states that every natural number n can be written in a unique way as a sum of distinct, non-consecutive Fibonacci numbers.

[^1]Problem 5 (sage). Write a program that computes $p(n)$ using Euler's recursion. Use it to compute $p(100)$.

[^0]: ${ }^{1}$ As usual, we put $p_{\mathrm{d}}(0)=p_{\text {odd }}(0)=1$.

[^1]: ${ }^{2}$ Look up Zeckendorf's Theorem to validate your conjecture.

