
Elementary Number Theory - Exercise 12b
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Express p(5) and p(6) in terms of p(0) and p(1) using Euler’s recursion. Then,
compute p(7) from p(6), p(5), . . . , p(0).

Solution 1. We have

p(6) = p(5) + p(4)− p(1)
= (p(4) + p(3)− p(0)) + (p(3) + p(2))− p(1)
= ([p(3) + p(2)] + [p(2) + p(1)]− p(0)) + ([p(2) + p(1)] + [p(1) + p(0)])− p(1)
= ([[p(2) + p(1)] + [p(1) + p(0)]] + [[p(1) + p(0)] + p(1)]− p(0))

+ ([[p(1) + p(0)] + p(1)] + [p(1) + p(0)])− p(1)
= 7p(1) + 4p(0).

From this, we also get

p(5) = ([[p(2) + p(1)] + [p(1) + p(0)]] + [[p(1) + p(0)] + p(1)]− p(0)) = 5p(1) + 2p(0).

Using p(1) = p(0) = 1, we get p(6) = 11 and p(5) = 7.
We have

p(7) = p(6) + p(5)− p(2)− p(0) = 11 + 7− 2− 1 = 15.

Problem 2. Let pd(n) be the number of partitions of n into distinct parts, and podd(n) the
number of partitions of n into odd parts1. Prove Euler’s partition identity

pd(n) = podd(n),

by showing the generating function identities
∞∑

n=0
pd(n)xn =

∞∏
n=1

(1 + xn),

∞∑
n=0

podd(n)xn =
∞∏

n=1

1
1− x2n−1 .

Solution 2. We multiply out,
∞∏

n=1
(1 + xn) = (1 + x)(1 + x2)(1 + x3)(1 + x4) · · ·

to see that the coefficient at xn gets a contribution +1 from each product of monomials of
the form xd1xd2 · · ·xdk where d1 +d2 + · · ·+dk = n and 0 < d1 < d2 < · · · < dk. The possible

1As usual, we put pd(0) = podd(0) = 1.
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tuples (d1, . . . , dk) represent the partitions of n into distinct parts, so the coefficient at xn

equals pd(n).
Using the geometric series, we have

∞∏
n=1

1
1− x2n−1 =

∞∏
n=1

( ∞∑
k=0

xk(2n−1)
)

= (1 + x1·1 + x2·1 + x3·1 + . . . )(1 + x1·3 + x2·3 + . . . )(1 + x1·5 + x2·5 + . . . ) · · · .

Hence, we get a contribtion +1 to xn from products of the form xk1·1xk3·3xk5·5 · · ·xk2j−1·(2j−1)

where
k1 · 1 + k3 · 3 + k5 · 5 + · · ·+ k2j−1 · (2j − 1) = n.

Such a tuple (k1, k3, k5, . . . ) corresponds to the partition of n into odd parts

n = 1 + · · ·+ 1︸ ︷︷ ︸
k1 times

+ 3 + · · ·+ 3︸ ︷︷ ︸
k3 times

+ . . .

Hence, the coefficient at xn equals podd(n).
We can now compute

∞∑
n=0

pd(n)xn =
∞∏

n=1
(1 + xn)

=
∞∏

n=1

1− x2n

1− xn

=
∞∏

n=1

1
1− x2n−1

=
∞∑

n=0
podd(n)xn,

which implies pd(n) = podd(n).

Problem 3. Let σ(n) =
∑

d|n d be the sum of the divisors of n. Show that its generating
function is given by

∞∑
n=1

σ(n)xn =
∞∑

n=1

nxn

1− xn
.
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Solution 3. We compute
∞∑

n=1
σ(n)xn =

∞∑
n=1

∑
d|n

dxn

=
∞∑

a=1

∞∑
d=1

dxad (a = n/d)

=
∞∑

d=1
d

( ∞∑
a=1

(xd)a

)

=
∞∑

d=1
d ·
( 1

1− xd
− 1

)

=
∞∑

d=1
d · xd

1− xd
.

This finishes the proof.

Problem 4. The Fibonacci numbers Fm are defined recursively by

F0 = 0, F1 = 1, Fm = Fm−1 + Fm−2.

For each n ∈ {1, . . . , 15}, count the number of partitions of n into distinct non-consecutive
Fibonacci numbers. Make a conjecture based on your results2.

Solution 4. The first few Fibonacci numbers are given by 1, 1, 2, 3, 5, 8, 13, 21. We make a
table with the partitions of n into distinct non-consecutive Fibonacci numbers.

n partitions
1 1
2 2
3 3
4 3 + 1
5 5
6 5 + 1
7 5 + 2
8 8
9 8 + 1
10 8 + 2
11 8 + 3
12 8 + 3 + 1
13 13
14 13 + 1
15 13 + 2

In each case, the number of partitions is precisely 1, so one might conjecture that this is
always the case. Indeed, Zeckendorf’s Theorem states that every natural number n can be
written in a unique way as a sum of distinct, non-consecutive Fibonacci numbers.

2Look up Zeckendorf’s Theorem to validate your conjecture.
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Problem 5 (sage). Write a program that computes p(n) using Euler’s recursion. Use it to
compute p(100).
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