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Problem 1. Show that the linear congruence
ar =b (mod m)

is solvable if and only if ged(a,m) divides b, in which case there are precisely ged(a,m)
different solutions modulo m.

Solution 1. If az = b (mod m) has a solution z € Z, then there is some k € Z with
azx + km = b. Since ged(a, m) divides the left-hand side, it must also divide b. In particular,
if gcd(a, m) 1 b, then t he equation is not solvable.

We first show that for ged(a,m) = 1 the equation ax = b has a unique solution modulo m.
By Bézout’s Lemma, there exist u,v € Z with au +mv = 1. Then x = ub is a solution, since

ax = a(ub) = (au)b= (1 —mv)b=0>b (mod m).

If there is a second solution 2/, then ax = b (mod m) and az’ = b (mod m) together imply
a(x—2") =0 (mod m), so there is some k € Z such that a(z—2') = mk. Since ged(a,m) = 1,
this implies x = 2/ (mod m), so x is unique modulo m.

Now if d := ged(a, m) divides b, then we can divide both sides by d to obtain the equation

(a/d)x = (b/d) (mod m/d).

Since ged(a/d, m/d) = 1, this equation has a unique solution xzy modulo m/d. Since z¢ is
unique modulo m/d, each solution of az = b mod m must be of the form = = x4+ km/d for
some k € N, and since d | a, these are indeed all solutions:

a(xg + km/d) = axg + km(a/d) = azg =b (mod m).

It is now clear that the d incongruent solutions are given by xo+km/d where k € {0,...,d—1}.

Problem 2. Determine all solutions of the following congruences (if there are any).
52=9 (mod 11); 4r =8 (mod 12); 3r =7 (mod 6).

Solution 2. Since ged(5,11) = 1, the first equation has a unique solution modulo 11. By
trying all values x = 1,2,3,...,11, we find that = 4 satisfies 5z =20 =9 (mod 11).

Since ged(4,12) = 4 divides b = 8, the equation has 4 solutions modulo 12. Dividing by 4,
we obtain the equation z = 2 (mod 3), which has the solution 2y = 2. All solutions are given
by xo + 3k, k =0,1,2,3, that is z € {2,5,8,11}.

Since ged(3,6) = 3 does not divide b = 7, the equation has no solutions.

Problem 3. Compute 1510235 (mod 7), 120" (mod 11), 3223 (mod 7), 37! (mod 28), and
512345678 (Il’lOd 11)



Solution 3. Since 15 =1 (mod 7), we have 1510235 = 110235 = 1 (mod 7).
Since 120 = 121 — 1 = —1 (mod 11), we have 120" = (-=1)!* = =1 =10 (mod 11).
One can compute 3292 (mod 7) using that that 3¥(") =36 =1 (mod 7), so

32023 = 3 . 32022 = 3 . (36)337 = 3 . 1337 = 3 (mOd 7)

We have ¢(28) = 28(1 — 1)(1 — 1) = 12, so the inverse of 3 modulo 28 is given by 3!
(mod 28). Since 33 =27 = —1 (mod 28), we have

371 =31 =(3%3.32=(-1)>.9=-9=19 (mod 28).

Since ¢(11) = 10, we have

512345678 = 512345678 (mod 10) = 58 (mod 11)‘

Now
585=251=3"=81=4 (mod 11).

Problem 4. Solve the following system of linear congruences.

r=2 (mod 3),
r=4 (mod5),
r=3 (mod 7).

Solution 4. Let us write a.,! for the inverse of @ modulo m. A solution is given by

2=2-(5-7)-(5-7)3" ' +4-(3-7)-(3-7);'+3-(3-5)-(3-5)7".

We have
G-73'=2-1)3'=23'=2 (mod 3),
B3-7:'=B-2:'=1'=1 (mod 5),
(3-5)7;'=15-1=1 (mod 7),

so we find the solution modulo 3-5-7 = 105,
x=2-(5-7)-24+4-3-7)+3-(3:-5)=140+84+45=296 =59 (mod 105).

Indeed, we have 59 = 2 (mod 3), 59 =4 (mod 5), and 59 = 3 (mod 7).

Problem 5. Fermat’s Little Theorem can be stated as
a’? =a (mod p)

for every a € Z, and prime p. Show that (a + 1)? = a” + 1 (mod p) for any a € Z and use
this to prove Fermat’s Little Theorem by induction.



Solution 5. By the Binomial Theorem, we have

P p—1
(a+1)P = Z <z>a” =1+ Z (Z)a”+ap,
n=1

n=0

where we used that (5) = (Z) = 1. Now p divides the binomial coefficient (?) for 1 <n <p—1
(since p divides the numerator p!, but not the denominator n!(p —n)!), so reducing modulo p
we obtain

(a+1)P =a’ +1.

It is easy to see that it suffices to prove Fermat’s Little Theorem for a € N (for a = 0 it is
trivially true, and for a < 0 replace a with —a). Hence we can prove the theorem by induction
on a € N. For a =1 we have 1?7 = 1 (mod p), which is true. Now, if a”? = a (mod p) for some
fixed a, then

(a+1)f=d’+1=a+1 (mod p),

which concludes the induction.

Problem 6 (Homework). Let n be a natural number. Show that
1. n is divisible by 3 if and only if the sum of its digits is divisible by 3.

2. n is divisible by 7 if and only if twice the last digit of n minus the rest of n is divisible
by 7.

3. n is divisible by 11 if the alternating sum of its digits is divisible by 11.
Check whether 27797 is divisible by 3,7, or 11.

Solution 6. 1. Write n = Z?:o a;107 with digits a; € {0,...,9}. The sum of digits is
given by

k
n' = Z Qj.
7=0

We claim that n = n/ (mod 3). Indeed, since 10 = 1 (mod 3), we have 10/ = 17 = 1
(mod 3) for any j, hence

k

k
n—n'= Zaj(l()j —-1)= Zaj(l —1)=0 (mod 3).
j=0 J=0

This shows that n is divisible by 3 if and only if n/ (the sum of the digits of n) is divisible
by 3.

2. Write n = 10a+ b with a € Ny and b € {0,1,...,9}, i.e. b is the last digit of n, and a is
the rest. We want to show that 10a + b is divisible by 7 if and only if @ — 2b is divisible
by 7. Subtracting 21b from n = 10a + b gives

n —21b = 10a — 20b = 10(a — 2b).

Since 10 is coprime to 7, and 21 is divisible by 7, we see that n is divisible by 7 if and
only if a — 2b is divisible by 7, which proves the claim.



3. Writen = Z?:o a; 107 with digits a;j € {0,...,9}. The alternating sum of digits is given
by

k
j=0
We claim that n =7/ (mod 11). Indeed, since —1 = 10 (mod 11), we have (—1)7 = 10/
(mod 11) for any j, hence
k k
n—n'=> a;(10/ - ;2: (10’ = 10°) =0 (mod 11).
J=0 J=0

Now we check whether 27797 is divisible by 3, 7, or 11. The sum of its digits is
247T+74+947=32

which is not divisible by 3, so 27797 is not divisible by 3. Next, we repeatedy substract twice
the last digit from the rest, and get

2779 — 2.7 = 2765
276 — 2 - 5 = 266
26—2-6=14,

and since 14 is divisible by 7, the original number 27797 is also divisible by 7. Finally, the
alternating sum of the digits is

2—T+T7T—-94+7=0,

which is divisible by 11, so 27797 is divisible by 11.

Problem 7 (Homework). In order to compute a” (mod m) for large exponents n, one can
use the method of repeated squaring: For example, consider 323 (mod 7). Write the exponent
23 to base 2, that is, 23 = 22 + 22 + 2! + 20, Then

323 _ 324 .32% 32 .3 _ (((32)2)2)2 . (32)2 .32.3

Now repeatedly compute the square, using the result from the previous squaring, e.g.

32=2 (mod 7),
(33)?=22=4 (mod 7),
((3°))2=4>=2 (mod 7),
((3°)%H%)?%?=22=4 (mod 7)

We finally obtain 323 =4-4-2-3=5 (mod 7).
Compute 3! (mod 11) using the method of repeated squarin@

'!One can further optimize the computation, see https://en.wikipedia.org/wiki/Exponentiation_by_
squaring


https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Exponentiation_by_squaring

Problem 8 (sage). Implement the following functions in sage:
1. Compute the inverse of a modulo m if ged(a,m) = 1.
2. Find all solutions for linear congruences ax = b (mod m).

3. Solve systems of linear congruences = b; (mod m;) using the Chinese Remainder
Theorem.

4. Compute a™ (mod m), using repeated squaring.



