
Elementary Number Theory - Exercise 5a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that the linear congruence

ax ≡ b (mod m)

is solvable if and only if gcd(a, m) divides b, in which case there are precisely gcd(a, m)
different solutions modulo m.

Solution 1. If ax ≡ b (mod m) has a solution x ∈ Z, then there is some k ∈ Z with
ax + km = b. Since gcd(a, m) divides the left-hand side, it must also divide b. In particular,
if gcd(a, m) - b, then t he equation is not solvable.

We first show that for gcd(a, m) = 1 the equation ax ≡ b has a unique solution modulo m.
By Bézout’s Lemma, there exist u, v ∈ Z with au + mv = 1. Then x = ub is a solution, since

ax ≡ a(ub) ≡ (au)b ≡ (1−mv)b ≡ b (mod m).

If there is a second solution x′, then ax ≡ b (mod m) and ax′ ≡ b (mod m) together imply
a(x−x′) ≡ 0 (mod m), so there is some k ∈ Z such that a(x−x′) = mk. Since gcd(a, m) = 1,
this implies x ≡ x′ (mod m), so x is unique modulo m.

Now if d := gcd(a, m) divides b, then we can divide both sides by d to obtain the equation

(a/d)x ≡ (b/d) (mod m/d).

Since gcd(a/d, m/d) = 1, this equation has a unique solution x0 modulo m/d. Since x0 is
unique modulo m/d, each solution of ax ≡ b mod m must be of the form x = x0 + km/d for
some k ∈ N, and since d | a, these are indeed all solutions:

a(x0 + km/d) = ax0 + km(a/d) ≡ ax0 ≡ b (mod m).

It is now clear that the d incongruent solutions are given by x0+km/d where k ∈ {0, . . . , d−1}.

Problem 2. Determine all solutions of the following congruences (if there are any).

5x ≡ 9 (mod 11); 4x ≡ 8 (mod 12); 3x ≡ 7 (mod 6).

Solution 2. Since gcd(5, 11) = 1, the first equation has a unique solution modulo 11. By
trying all values x = 1, 2, 3, . . . , 11, we find that x = 4 satisfies 5x = 20 ≡ 9 (mod 11).
Since gcd(4, 12) = 4 divides b = 8, the equation has 4 solutions modulo 12. Dividing by 4,

we obtain the equation x ≡ 2 (mod 3), which has the solution x0 = 2. All solutions are given
by x0 + 3k, k = 0, 1, 2, 3, that is x ∈ {2, 5, 8, 11}.
Since gcd(3, 6) = 3 does not divide b = 7, the equation has no solutions.

Problem 3. Compute 1510235 (mod 7), 12013 (mod 11), 32023 (mod 7), 3−1 (mod 28), and
512345678 (mod 11).
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Solution 3. Since 15 ≡ 1 (mod 7), we have 1510235 ≡ 110235 ≡ 1 (mod 7).
Since 120 = 121− 1 ≡ −1 (mod 11), we have 12013 ≡ (−1)13 = −1 ≡ 10 (mod 11).
One can compute 32023 (mod 7) using that that 3ϕ(7) = 36 ≡ 1 (mod 7), so

32023 ≡ 3 · 32022 ≡ 3 · (36)337 ≡ 3 · 1337 ≡ 3 (mod 7).

We have ϕ(28) = 28(1 − 1
2)(1 − 1

7) = 12, so the inverse of 3 modulo 28 is given by 311

(mod 28). Since 33 = 27 ≡ −1 (mod 28), we have

3−1 ≡ 311 = (33)3 · 32 ≡ (−1)3 · 9 ≡ −9 ≡ 19 (mod 28).

Since ϕ(11) = 10, we have

512345678 ≡ 512345678 (mod 10) ≡ 58 (mod 11).

Now
58 ≡ 254 ≡ 34 ≡ 81 ≡ 4 (mod 11).

Problem 4. Solve the following system of linear congruences.

x ≡ 2 (mod 3),
x ≡ 4 (mod 5),
x ≡ 3 (mod 7).

Solution 4. Let us write a−1
m for the inverse of a modulo m. A solution is given by

x = 2 · (5 · 7) · (5 · 7)−1
3 + 4 · (3 · 7) · (3 · 7)−1

5 + 3 · (3 · 5) · (3 · 5)−1
7 .

We have

(5 · 7)−1
3 ≡ (2 · 1)−1

3 ≡ 2−1
3 ≡ 2 (mod 3),

(3 · 7)−1
5 ≡ (3 · 2)−1

5 ≡ 1−1
5 ≡ 1 (mod 5),

(3 · 5)−1
7 ≡ 15−1

7 ≡ 1 (mod 7),

so we find the solution modulo 3 · 5 · 7 = 105,

x = 2 · (5 · 7) · 2 + 4 · (3 · 7) + 3 · (3 · 5) = 140 + 84 + 45 = 296 ≡ 59 (mod 105).

Indeed, we have 59 ≡ 2 (mod 3), 59 ≡ 4 (mod 5), and 59 ≡ 3 (mod 7).

Problem 5. Fermat’s Little Theorem can be stated as

ap ≡ a (mod p)

for every a ∈ Z, and prime p. Show that (a + 1)p ≡ ap + 1 (mod p) for any a ∈ Z and use
this to prove Fermat’s Little Theorem by induction.
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Solution 5. By the Binomial Theorem, we have

(a + 1)p =
p∑

n=0

(
p

n

)
an = 1 +

p−1∑
n=1

(
p

n

)
an + ap,

where we used that
(p

0
)

=
(p

p

)
= 1. Now p divides the binomial coefficient

(p
n

)
for 1 ≤ n ≤ p−1

(since p divides the numerator p!, but not the denominator n!(p−n)!), so reducing modulo p
we obtain

(a + 1)p ≡ ap + 1.

It is easy to see that it suffices to prove Fermat’s Little Theorem for a ∈ N (for a = 0 it is
trivially true, and for a < 0 replace a with −a). Hence we can prove the theorem by induction
on a ∈ N. For a = 1 we have 1p ≡ 1 (mod p), which is true. Now, if ap ≡ a (mod p) for some
fixed a, then

(a + 1)p ≡ ap + 1 ≡ a + 1 (mod p),

which concludes the induction.

Problem 6 (Homework). Let n be a natural number. Show that

1. n is divisible by 3 if and only if the sum of its digits is divisible by 3.

2. n is divisible by 7 if and only if twice the last digit of n minus the rest of n is divisible
by 7.

3. n is divisible by 11 if the alternating sum of its digits is divisible by 11.

Check whether 27797 is divisible by 3, 7, or 11.

Solution 6. 1. Write n =
∑k

j=0 aj10j with digits aj ∈ {0, . . . , 9}. The sum of digits is
given by

n′ =
k∑

j=0
aj .

We claim that n ≡ n′ (mod 3). Indeed, since 10 ≡ 1 (mod 3), we have 10j ≡ 1j ≡ 1
(mod 3) for any j, hence

n− n′ =
k∑

j=0
aj(10j − 1) ≡

k∑
j=0

aj(1− 1) ≡ 0 (mod 3).

This shows that n is divisible by 3 if and only if n′ (the sum of the digits of n) is divisible
by 3.

2. Write n = 10a + b with a ∈ N0 and b ∈ {0, 1, . . . , 9}, i.e. b is the last digit of n, and a is
the rest. We want to show that 10a + b is divisible by 7 if and only if a− 2b is divisible
by 7. Subtracting 21b from n = 10a + b gives

n− 21b = 10a− 20b = 10(a− 2b).

Since 10 is coprime to 7, and 21 is divisible by 7, we see that n is divisible by 7 if and
only if a− 2b is divisible by 7, which proves the claim.
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3. Write n =
∑k

j=0 aj10j with digits aj ∈ {0, . . . , 9}. The alternating sum of digits is given
by

n′ =
k∑

j=0
(−1)jaj .

We claim that n ≡ n′ (mod 11). Indeed, since −1 ≡ 10 (mod 11), we have (−1)j ≡ 10j

(mod 11) for any j, hence

n− n′ =
k∑

j=0
aj(10j − (−1)j) ≡

k∑
j=0

aj(10j − 10j) ≡ 0 (mod 11).

Now we check whether 27797 is divisible by 3, 7, or 11. The sum of its digits is

2 + 7 + 7 + 9 + 7 = 32

which is not divisible by 3, so 27797 is not divisible by 3. Next, we repeatedy substract twice
the last digit from the rest, and get

2779− 2 · 7 = 2765
276− 2 · 5 = 266
26− 2 · 6 = 14,

and since 14 is divisible by 7, the original number 27797 is also divisible by 7. Finally, the
alternating sum of the digits is

2− 7 + 7− 9 + 7 = 0,

which is divisible by 11, so 27797 is divisible by 11.

Problem 7 (Homework). In order to compute an (mod m) for large exponents n, one can
use the method of repeated squaring: For example, consider 323 (mod 7). Write the exponent
23 to base 2, that is, 23 = 24 + 22 + 21 + 20. Then

323 = 324 · 322 · 32 · 3 = (((32)2)2)2 · (32)2 · 32 · 3.

Now repeatedly compute the square, using the result from the previous squaring, e.g.

32 ≡ 2 (mod 7),
(32)2 ≡ 22 ≡ 4 (mod 7),

((32)2)2 ≡ 42 ≡ 2 (mod 7),
(((32)2)2)2 ≡ 22 ≡ 4 (mod 7).

We finally obtain 323 ≡ 4 · 4 · 2 · 3 ≡ 5 (mod 7).
Compute 3189 (mod 11) using the method of repeated squaring1.

1One can further optimize the computation, see https://en.wikipedia.org/wiki/Exponentiation_by_
squaring
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Problem 8 (sage). Implement the following functions in sage:

1. Compute the inverse of a modulo m if gcd(a, m) = 1.

2. Find all solutions for linear congruences ax ≡ b (mod m).

3. Solve systems of linear congruences x ≡ bj (mod mj) using the Chinese Remainder
Theorem.

4. Compute an (mod m), using repeated squaring.
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