Elementary Number Theory - Exercise 5a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that the linear congruence

$$
a x \equiv b \quad(\bmod m)
$$

is solvable if and only if $\operatorname{gcd}(a, m)$ divides b, in which case there are precisely $\operatorname{gcd}(a, m)$ different solutions modulo m.

Solution 1. If $a x \equiv b(\bmod m)$ has a solution $x \in \mathbb{Z}$, then there is some $k \in \mathbb{Z}$ with $a x+k m=b$. Since $\operatorname{gcd}(a, m)$ divides the left-hand side, it must also divide b. In particular, if $\operatorname{gcd}(a, m) \nmid b$, then t he equation is not solvable.

We first show that for $\operatorname{gcd}(a, m)=1$ the equation $a x \equiv b$ has a unique solution modulo m. By Bézout's Lemma, there exist $u, v \in \mathbb{Z}$ with $a u+m v=1$. Then $x=u b$ is a solution, since

$$
a x \equiv a(u b) \equiv(a u) b \equiv(1-m v) b \equiv b \quad(\bmod m)
$$

If there is a second solution x^{\prime}, then $a x \equiv b(\bmod m)$ and $a x^{\prime} \equiv b(\bmod m)$ together imply $a\left(x-x^{\prime}\right) \equiv 0(\bmod m)$, so there is some $k \in \mathbb{Z}$ such that $a\left(x-x^{\prime}\right)=m k$. Since $\operatorname{gcd}(a, m)=1$, this implies $x \equiv x^{\prime}(\bmod m)$, so x is unique modulo m.

Now if $d:=\operatorname{gcd}(a, m)$ divides b, then we can divide both sides by d to obtain the equation

$$
(a / d) x \equiv(b / d) \quad(\bmod m / d)
$$

Since $\operatorname{gcd}(a / d, m / d)=1$, this equation has a unique solution x_{0} modulo m / d. Since x_{0} is unique modulo m / d, each solution of $a x \equiv b \bmod m$ must be of the form $x=x_{0}+k m / d$ for some $k \in \mathbb{N}$, and since $d \mid a$, these are indeed all solutions:

$$
a\left(x_{0}+k m / d\right)=a x_{0}+k m(a / d) \equiv a x_{0} \equiv b \quad(\bmod m)
$$

It is now clear that the d incongruent solutions are given by $x_{0}+k m / d$ where $k \in\{0, \ldots, d-1\}$.

Problem 2. Determine all solutions of the following congruences (if there are any).

$$
5 x \equiv 9 \quad(\bmod 11) ; \quad 4 x \equiv 8 \quad(\bmod 12) ; \quad 3 x \equiv 7 \quad(\bmod 6)
$$

Solution 2. Since $\operatorname{gcd}(5,11)=1$, the first equation has a unique solution modulo 11. By trying all values $x=1,2,3, \ldots, 11$, we find that $x=4$ satisfies $5 x=20 \equiv 9(\bmod 11)$.

Since $\operatorname{gcd}(4,12)=4$ divides $b=8$, the equation has 4 solutions modulo 12. Dividing by 4 , we obtain the equation $x \equiv 2(\bmod 3)$, which has the solution $x_{0}=2$. All solutions are given by $x_{0}+3 k, k=0,1,2,3$, that is $x \in\{2,5,8,11\}$.

Since $\operatorname{gcd}(3,6)=3$ does not divide $b=7$, the equation has no solutions.

Problem 3. Compute $15^{10235}(\bmod 7), 120^{13}(\bmod 11), 3^{2023}(\bmod 7), 3^{-1}(\bmod 28)$, and $5^{12345678}(\bmod 11)$.

Solution 3. Since $15 \equiv 1(\bmod 7)$, we have $15^{10235} \equiv 1^{10235} \equiv 1(\bmod 7)$.
Since $120=121-1 \equiv-1(\bmod 11)$, we have $120^{13} \equiv(-1)^{13}=-1 \equiv 10(\bmod 11)$.
One can compute $3^{2023}(\bmod 7)$ using that that $3^{\varphi(7)}=3^{6} \equiv 1(\bmod 7)$, so

$$
3^{2023} \equiv 3 \cdot 3^{2022} \equiv 3 \cdot\left(3^{6}\right)^{337} \equiv 3 \cdot 1^{337} \equiv 3 \quad(\bmod 7)
$$

We have $\varphi(28)=28\left(1-\frac{1}{2}\right)\left(1-\frac{1}{7}\right)=12$, so the inverse of 3 modulo 28 is given by 3^{11} $(\bmod 28)$. Since $3^{3}=27 \equiv-1(\bmod 28)$, we have

$$
3^{-1} \equiv 3^{11}=\left(3^{3}\right)^{3} \cdot 3^{2} \equiv(-1)^{3} \cdot 9 \equiv-9 \equiv 19 \quad(\bmod 28)
$$

Since $\varphi(11)=10$, we have

$$
5^{12345678} \equiv 5^{12345678(\bmod 10)} \equiv 5^{8} \quad(\bmod 11)
$$

Now

$$
5^{8} \equiv 25^{4} \equiv 3^{4} \equiv 81 \equiv 4 \quad(\bmod 11)
$$

Problem 4. Solve the following system of linear congruences.

$$
\begin{aligned}
& x \equiv 2 \quad(\bmod 3), \\
& x \equiv 4 \quad(\bmod 5), \\
& x \equiv 3 \quad(\bmod 7) .
\end{aligned}
$$

Solution 4. Let us write a_{m}^{-1} for the inverse of a modulo m. A solution is given by

$$
x=2 \cdot(5 \cdot 7) \cdot(5 \cdot 7)_{3}^{-1}+4 \cdot(3 \cdot 7) \cdot(3 \cdot 7)_{5}^{-1}+3 \cdot(3 \cdot 5) \cdot(3 \cdot 5)_{7}^{-1} .
$$

We have

$$
\begin{aligned}
& (5 \cdot 7)_{3}^{-1} \equiv(2 \cdot 1)_{3}^{-1} \equiv 2_{3}^{-1} \equiv 2 \quad(\bmod 3) \\
& (3 \cdot 7)_{5}^{-1} \equiv(3 \cdot 2)_{5}^{-1} \equiv 1_{5}^{-1} \equiv 1 \quad(\bmod 5) \\
& (3 \cdot 5)_{7}^{-1} \equiv 15_{7}^{-1} \equiv 1 \quad(\bmod 7)
\end{aligned}
$$

so we find the solution modulo $3 \cdot 5 \cdot 7=105$,

$$
x=2 \cdot(5 \cdot 7) \cdot 2+4 \cdot(3 \cdot 7)+3 \cdot(3 \cdot 5)=140+84+45=296 \equiv 59 \quad(\bmod 105)
$$

Indeed, we have $59 \equiv 2(\bmod 3), 59 \equiv 4(\bmod 5)$, and $59 \equiv 3(\bmod 7)$.

Problem 5. Fermat's Little Theorem can be stated as

$$
a^{p} \equiv a \quad(\bmod p)
$$

for every $a \in \mathbb{Z}$, and prime p. Show that $(a+1)^{p} \equiv a^{p}+1(\bmod p)$ for any $a \in \mathbb{Z}$ and use this to prove Fermat's Little Theorem by induction.

Solution 5. By the Binomial Theorem, we have

$$
(a+1)^{p}=\sum_{n=0}^{p}\binom{p}{n} a^{n}=1+\sum_{n=1}^{p-1}\binom{p}{n} a^{n}+a^{p}
$$

where we used that $\binom{p}{0}=\binom{p}{p}=1$. Now p divides the binomial coefficient $\binom{p}{n}$ for $1 \leq n \leq p-1$ (since p divides the numerator $p!$, but not the denominator $n!(p-n)!$), so reducing modulo p we obtain

$$
(a+1)^{p} \equiv a^{p}+1
$$

It is easy to see that it suffices to prove Fermat's Little Theorem for $a \in \mathbb{N}$ (for $a=0$ it is trivially true, and for $a<0$ replace a with $-a$). Hence we can prove the theorem by induction on $a \in \mathbb{N}$. For $a=1$ we have $1^{p} \equiv 1(\bmod p)$, which is true. Now, if $a^{p} \equiv a(\bmod p)$ for some fixed a, then

$$
(a+1)^{p} \equiv a^{p}+1 \equiv a+1 \quad(\bmod p)
$$

which concludes the induction.

Problem 6 (Homework). Let n be a natural number. Show that

1. n is divisible by 3 if and only if the sum of its digits is divisible by 3 .
2. n is divisible by 7 if and only if twice the last digit of n minus the rest of n is divisible by 7 .
3. n is divisible by 11 if the alternating sum of its digits is divisible by 11 .

Check whether 27797 is divisible by 3,7 , or 11 .
Solution 6. 1. Write $n=\sum_{j=0}^{k} a_{j} 10^{j}$ with digits $a_{j} \in\{0, \ldots, 9\}$. The sum of digits is given by

$$
n^{\prime}=\sum_{j=0}^{k} a_{j} .
$$

We claim that $n \equiv n^{\prime}(\bmod 3)$. Indeed, since $10 \equiv 1(\bmod 3)$, we have $10^{j} \equiv 1^{j} \equiv 1$ $(\bmod 3)$ for any j, hence

$$
n-n^{\prime}=\sum_{j=0}^{k} a_{j}\left(10^{j}-1\right) \equiv \sum_{j=0}^{k} a_{j}(1-1) \equiv 0 \quad(\bmod 3)
$$

This shows that n is divisible by 3 if and only if n^{\prime} (the sum of the digits of n) is divisible by 3 .
2. Write $n=10 a+b$ with $a \in \mathbb{N}_{0}$ and $b \in\{0,1, \ldots, 9\}$, i.e. b is the last digit of n, and a is the rest. We want to show that $10 a+b$ is divisible by 7 if and only if $a-2 b$ is divisible by 7 . Subtracting $21 b$ from $n=10 a+b$ gives

$$
n-21 b=10 a-20 b=10(a-2 b)
$$

Since 10 is coprime to 7 , and 21 is divisible by 7 , we see that n is divisible by 7 if and only if $a-2 b$ is divisible by 7 , which proves the claim.
3. Write $n=\sum_{j=0}^{k} a_{j} 10^{j}$ with digits $a_{j} \in\{0, \ldots, 9\}$. The alternating sum of digits is given by

$$
n^{\prime}=\sum_{j=0}^{k}(-1)^{j} a_{j}
$$

We claim that $n \equiv n^{\prime}(\bmod 11)$. Indeed, since $-1 \equiv 10(\bmod 11)$, we have $(-1)^{j} \equiv 10^{j}$ $(\bmod 11)$ for any j, hence

$$
n-n^{\prime}=\sum_{j=0}^{k} a_{j}\left(10^{j}-(-1)^{j}\right) \equiv \sum_{j=0}^{k} a_{j}\left(10^{j}-10^{j}\right) \equiv 0 \quad(\bmod 11)
$$

Now we check whether 27797 is divisible by 3,7 , or 11 . The sum of its digits is

$$
2+7+7+9+7=32
$$

which is not divisible by 3 , so 27797 is not divisible by 3 . Next, we repeatedy substract twice the last digit from the rest, and get

$$
\begin{aligned}
2779-2 \cdot 7 & =2765 \\
276-2 \cdot 5 & =266 \\
26-2 \cdot 6 & =14
\end{aligned}
$$

and since 14 is divisible by 7 , the original number 27797 is also divisible by 7 . Finally, the alternating sum of the digits is

$$
2-7+7-9+7=0
$$

which is divisible by 11 , so 27797 is divisible by 11 .

Problem 7 (Homework). In order to compute $a^{n}(\bmod m)$ for large exponents n, one can use the method of repeated squaring: For example, consider $3^{23}(\bmod 7)$. Write the exponent 23 to base 2 , that is, $23=2^{4}+2^{2}+2^{1}+2^{0}$. Then

$$
3^{23}=3^{2^{4}} \cdot 3^{2^{2}} \cdot 3^{2} \cdot 3=\left(\left(\left(3^{2}\right)^{2}\right)^{2}\right)^{2} \cdot\left(3^{2}\right)^{2} \cdot 3^{2} \cdot 3
$$

Now repeatedly compute the square, using the result from the previous squaring, e.g.

$$
\begin{aligned}
3^{2} & \equiv 2 \quad(\bmod 7) \\
\left(3^{2}\right)^{2} & \equiv 2^{2} \equiv 4 \quad(\bmod 7) \\
\left(\left(3^{2}\right)^{2}\right)^{2} & \equiv 4^{2} \equiv 2 \quad(\bmod 7) \\
\left(\left(\left(3^{2}\right)^{2}\right)^{2}\right)^{2} & \equiv 2^{2} \equiv 4 \quad(\bmod 7)
\end{aligned}
$$

We finally obtain $3^{23} \equiv 4 \cdot 4 \cdot 2 \cdot 3 \equiv 5(\bmod 7)$.
Compute $3^{189}(\bmod 11)$ using the method of repeated squaring ${ }^{1}$.

[^0]Problem 8 (sage). Implement the following functions in sage:

1. Compute the inverse of a modulo m if $\operatorname{gcd}(a, m)=1$.
2. Find all solutions for linear congruences $a x \equiv b(\bmod m)$.
3. Solve systems of linear congruences $x \equiv b_{j}\left(\bmod m_{j}\right)$ using the Chinese Remainder Theorem.
4. Compute $a^{n}(\bmod m)$, using repeated squaring.

[^0]: ${ }^{1}$ One can further optimize the computation, see https://en.wikipedia.org/wiki/Exponentiation_by_ squaring

