Elementary Number Theory - Exercise 6a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Determine the quadratic residues modulo 11.
Solution 1. We know that half of the elements in $(\mathbb{Z} / 11 \mathbb{Z})^{*}$ are quadratic residues, i.e. there are precisely 5 , and to find them we just need to compute the squares $1^{2}, 2^{2}, \ldots\left(\frac{11-1}{2}\right)^{2}$ modulo 11 . Hence the quadratic residues modulo 11 are given by $1,4,9,5,3$.

Problem 2. Let p be an odd prime. Show that

$$
\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}=\left\{\begin{array}{lll}
1, & \text { if } p \equiv 1 & (\bmod 4) \\
-1, & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Solution 2. By Euler's criterion we have

$$
\left(\frac{-1}{p}\right) \equiv(-1)^{\frac{p-1}{2}} \quad(\bmod p)
$$

and since both sides are either 1 or -1 , we obtain the stated identity.

Problem 3. Let p be an odd prime and $\operatorname{gcd}(p, a b)=1$. Show that

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)
$$

Solution 3. By Euler's criterion we have

$$
\left(\frac{a b}{p}\right) \equiv(a b)^{\frac{p-1}{2}} \equiv a^{\frac{p-1}{2}} b^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \quad(\bmod p)
$$

and since both sides are either 1 or -1 , we obtain the claimed identity.

Problem 4. Compute the following Legendre symbols.

$$
\left(\frac{14}{11}\right) ; \quad\left(\frac{2}{5}\right) ; \quad\left(\frac{256}{17}\right) ; \quad\left(\frac{18}{19}\right) ; \quad\left(\frac{10}{1009}\right) .
$$

Solution 4. Since the Legendre symbol depends on the numerator modulo p, we have $\left(\frac{14}{11}\right)=$ $\left(\frac{3}{11}\right)$. We have seen above that 3 is a square $\bmod 11\left(6^{2} \equiv 3(\bmod 11)\right)$, so $\left(\frac{14}{11}\right)=1$.

We have $1^{2} \equiv 1(\bmod 5)$ and $2^{2} \equiv 4(\bmod 5)$, so the quadratic residues modulo 5 are 1 and 4 (which equals -1 modulo 5). Hence 2 is a non-residue, and $\left(\frac{2}{5}\right)=-1$.

Since the Legendre symbol is multiplicative and valued in $\{ \pm 1\}$, we have

$$
\left(\frac{256}{17}\right)=\left(\frac{2^{8}}{17}\right)=\left(\frac{2}{17}\right)^{8}=1
$$

Note that $18 \equiv-1(\bmod 19)$. By Euler's criterion we have

$$
\left(\frac{18}{19}\right) \equiv\left(\frac{-1}{19}\right) \equiv(-1)^{\frac{19-1}{2}} \equiv-1 \quad(\bmod 19)
$$

which implies $\left(\frac{18}{19}\right)=-1$.
We can multiply the numerator of the Legendre symbol by a square without changing its value (if the square is coprime to p). Hence,

$$
\left(\frac{10}{1009}\right)=\left(\frac{10 \cdot 10^{2}}{1009}\right)=\left(\frac{1000}{1009}\right)=\left(\frac{-9}{1009}\right)=\left(\frac{-1}{1009}\right)
$$

Using Euler's criterion, we have $\left(\frac{-1}{1009}\right)=(-1)^{\frac{1009-1}{2}}=1$, so $\left(\frac{10}{1009}\right)=1$.

Problem 5. Let p be an odd prime and $\operatorname{gcd}(a, p)=1$. Show that

$$
\left(\frac{a^{-1}}{p}\right)=\left(\frac{a}{p}\right)
$$

where a^{-1} denotes the inverse of a modulo p.
Solution 5. If x solves $x^{2} \equiv a(\bmod p)$, then $y=x^{-1}$ solves $y^{2}=a^{-1}(\bmod p)$, and vice versa. In particular, $x^{2} \equiv a(\bmod p)$ is solvable if and only if $y^{2} \equiv a^{-1}(\bmod p)$ is solvable, which means that $\left(\frac{a^{-1}}{p}\right)=\left(\frac{a}{p}\right)$.

Another way to prove this is to use that the Legendre symbol is multiplicative, and only depends on the numerator modulo p, so

$$
\left(\frac{a^{-1}}{p}\right) \cdot\left(\frac{a}{p}\right)=\left(\frac{a^{-1} a}{p}\right)=\left(\frac{1}{p}\right)=1
$$

Since $\left(\frac{a^{-1}}{p}\right)$ and $\left(\frac{a}{p}\right)$ are both either +1 or -1 , and their product is 1 , they agree.

Problem 6. Let p be an odd prime. For $n \in \mathbb{Z}$ we define the Gauss sum

$$
G_{p}(n)=\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a}{p}\right) e^{2 \pi i a n / p}
$$

where the sum runs over an arbitrary system of representatives for $(\mathbb{Z} / p \mathbb{Z})^{*}$.

1. Check that the sum is well-defined, that is, independent of the chosen system of representatives for $(\mathbb{Z} / p \mathbb{Z})^{*}$.
2. Show that

$$
G_{p}(n)= \begin{cases}\left(\frac{n}{p}\right) G_{p}(1), & \text { if } p \nmid n \\ 0, & \text { if } p \mid n\end{cases}
$$

3. Show that

$$
G_{p}(1)^{2}=\left(\frac{-1}{p}\right) p
$$

Deduce that $G_{p}(1)= \pm \sqrt{p}$ if $p \equiv 1(\bmod 4)$ and $G_{p}(1)= \pm i \sqrt{p}$ if $p \equiv 3(\bmod 4)$.
Hint: The sum $\sum_{a=0}^{p-1} e^{2 \pi i n a / p}$ vanishes unless $p \mid n$.
Solution 6. 1. Changing the system of representatives means changing each a to $a+k p$ for some $k \in \mathbb{Z}$ (that may depend on a). But $\left(\frac{a+k p}{p}\right)=\left(\frac{a}{p}\right)$ and $e^{2 \pi i(a+k p) / p}=e^{2 \pi i a / p}$, so the sum is well-defined.
2. If $p \mid n$, then

$$
G_{p}(n)=\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a}{p}\right) e^{2 \pi i a n / p}=\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a}{p}\right)=0
$$

since precisely half of the elements of $(\mathbb{Z} / p \mathbb{Z})^{*}$ are quadratic residues, and the other half are non-residues.
Let $p \nmid n$. If a runs through a system of representatives for $(\mathbb{Z} / p \mathbb{Z})^{*}$, then so does $a n$. Hence, if we write $b=a n$, then
$G_{p}(n)=\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a}{p}\right) e^{2 \pi i a n / p}=\sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{b n^{-1}}{p}\right) e^{2 \pi i b / p}=\left(\frac{n^{-1}}{p}\right) G_{1}(p)=\left(\frac{n}{p}\right) G_{1}(p)$,
where we used that the Legendre symbol is multiplicative, and $\left(\frac{n^{-1}}{p}\right)=\left(\frac{n}{p}\right)$.
3. We compute

$$
\begin{aligned}
G_{p}(1)^{2} & =G_{p}(1) G_{p}(1) \\
& =\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a}{p}\right) e^{2 \pi i a / p} \sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{b}{p}\right) e^{2 \pi i b / p} \\
& =\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}} \sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a b}{p}\right) e^{2 \pi i(a+b) / p} .
\end{aligned}
$$

As in the last item, we can replace a with $a b$, to write

$$
\begin{aligned}
G_{p}(1)^{2} & =\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}} \sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a b^{2}}{p}\right) e^{2 \pi i(a b+b) / p} \\
& =\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a}{p}\right) \sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{*}} e^{2 \pi i b(a+1) / p}
\end{aligned}
$$

The inner sum can be computed explicitly as

$$
\sum_{b \in(\mathbb{Z} / p \mathbb{Z})^{*}} e^{2 \pi i b(a+1) / p}=\sum_{b=0}^{p-1} e^{2 \pi i b(a+1) / p}-1= \begin{cases}p-1, & a \equiv-1 \\ -1 & (\bmod p)\end{cases}
$$

Hence we find

$$
G_{p}(1)^{2}=\left(\frac{-1}{p}\right)(p-1)-\sum_{\substack{a \in(\mathbb{Z} / p \mathbb{Z})^{*} \\ a \neq-1 \\(\bmod p)}}\left(\frac{a}{p}\right)
$$

Recall that precisely half of the elemements in $(\mathbb{Z} / p \mathbb{Z})^{*}$ are quadratic residues, and the other half are quadratic non-residues, which implies $\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a}{p}\right)=0$. Hence

$$
\sum_{\substack{a \in(\mathbb{Z} / p \mathbb{Z})^{*} \\ a \neq-1 \\(\bmod p)}}\left(\frac{a}{p}\right)=\sum_{a \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(\frac{a}{p}\right)-\left(\frac{-1}{p}\right)=-\left(\frac{-1}{p}\right) .
$$

In total, we obtain

$$
G_{p}(1)^{2}=\left(\frac{-1}{p}\right)(p-1)-\left(-\left(\frac{-1}{p}\right)\right)=\left(\frac{-1}{p}\right) p
$$

Problem 7 (sage). 1. Write a program that computes the Legendre symbol ($\frac{a}{p}$) by "brute force", that is, by checking if $x^{2} \equiv a(\bmod p)$ has a solution. We will see a more efficient method in the next lecture.
2. We have seen above that $G_{p}(1)= \pm \sqrt{p}$ or $G_{p}(1)= \pm i \sqrt{p}$, depending on whether $p \equiv 1$ $(\bmod 4)$ or $p \equiv 3(\bmod 4)$. Compute the Gauss sum $G_{p}(1)$ for several values of p and come up with a conjecture what the sign should be (the correct sign was determined by Gauss).

