
Elementary Number Theory - Exercise 6a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Determine the quadratic residues modulo 11.

Solution 1. We know that half of the elements in (Z/11Z)∗ are quadratic residues, i.e. there
are precisely 5, and to find them we just need to compute the squares 12, 22, . . .

(
11−1

2

)2

modulo 11. Hence the quadratic residues modulo 11 are given by 1, 4, 9, 5, 3.

Problem 2. Let p be an odd prime. Show that(−1
p

)
= (−1)

p−1
2 =

{
1, if p ≡ 1 (mod 4),
−1, if p ≡ 3 (mod 4).

Solution 2. By Euler’s criterion we have(−1
p

)
≡ (−1)

p−1
2 (mod p),

and since both sides are either 1 or −1, we obtain the stated identity.

Problem 3. Let p be an odd prime and gcd(p, ab) = 1. Show that(
ab

p

)
=
(

a

p

)(
b

p

)
.

Solution 3. By Euler’s criterion we have(
ab

p

)
≡ (ab)

p−1
2 ≡ a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p),

and since both sides are either 1 or −1, we obtain the claimed identity.

Problem 4. Compute the following Legendre symbols.(14
11

)
;
(2

5

)
;
(256

17

)
;
(18

19

)
;
( 10

1009

)
.

Solution 4. Since the Legendre symbol depends on the numerator modulo p, we have
(

14
11

)
=(

3
11

)
. We have seen above that 3 is a square mod 11 (62 ≡ 3 (mod 11)), so

(
14
11

)
= 1.

We have 12 ≡ 1 (mod 5) and 22 ≡ 4 (mod 5), so the quadratic residues modulo 5 are 1
and 4 (which equals −1 modulo 5). Hence 2 is a non-residue, and

(
2
5

)
= −1.

Since the Legendre symbol is multiplicative and valued in {±1}, we have(256
17

)
=
(

28

17

)
=
( 2

17

)8
= 1.
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Note that 18 ≡ −1 (mod 19). By Euler’s criterion we have(18
19

)
≡
(−1

19

)
≡ (−1)

19−1
2 ≡ −1 (mod 19),

which implies
(

18
19

)
= −1.

We can multiply the numerator of the Legendre symbol by a square without changing its
value (if the square is coprime to p). Hence,( 10

1009

)
=
(

10 · 102

1009

)
=
(1000

1009

)
=
( −9

1009

)
=
( −1

1009

)
.

Using Euler’s criterion, we have
(
−1

1009

)
= (−1)

1009−1
2 = 1, so

(
10

1009

)
= 1.

Problem 5. Let p be an odd prime and gcd(a, p) = 1. Show that(
a−1

p

)
=
(

a

p

)
,

where a−1 denotes the inverse of a modulo p.

Solution 5. If x solves x2 ≡ a (mod p), then y = x−1 solves y2 = a−1 (mod p), and vice
versa. In particular, x2 ≡ a (mod p) is solvable if and only if y2 ≡ a−1 (mod p) is solvable,
which means that

(
a−1

p

)
=
(
a
p

)
.

Another way to prove this is to use that the Legendre symbol is multiplicative, and only
depends on the numerator modulo p, so(

a−1

p

)
·
(

a

p

)
=
(

a−1a

p

)
=
(1

p

)
= 1.

Since
(
a−1

p

)
and

(
a
p

)
are both either +1 or −1, and their product is 1, they agree.

Problem 6. Let p be an odd prime. For n ∈ Z we define the Gauss sum

Gp(n) =
∑

a∈(Z/pZ)∗

(
a

p

)
e2πian/p,

where the sum runs over an arbitrary system of representatives for (Z/pZ)∗.

1. Check that the sum is well-defined, that is, independent of the chosen system of repre-
sentatives for (Z/pZ)∗.

2. Show that

Gp(n) =


(
n
p

)
Gp(1), if p - n,

0, if p | n.
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3. Show that
Gp(1)2 =

(−1
p

)
p.

Deduce that Gp(1) = ±√p if p ≡ 1 (mod 4) and Gp(1) = ±i
√

p if p ≡ 3 (mod 4).
Hint: The sum

∑p−1
a=0 e2πina/p vanishes unless p | n.

Solution 6. 1. Changing the system of representatives means changing each a to a + kp

for some k ∈ Z (that may depend on a). But
(
a+kp
p

)
=
(
a
p

)
and e2πi(a+kp)/p = e2πia/p,

so the sum is well-defined.

2. If p | n, then
Gp(n) =

∑
a∈(Z/pZ)∗

(
a

p

)
e2πian/p =

∑
a∈(Z/pZ)∗

(
a

p

)
= 0,

since precisely half of the elements of (Z/pZ)∗ are quadratic residues, and the other half
are non-residues.
Let p - n. If a runs through a system of representatives for (Z/pZ)∗, then so does an.
Hence, if we write b = an, then

Gp(n) =
∑

a∈(Z/pZ)∗

(
a

p

)
e2πian/p =

∑
b∈(Z/pZ)∗

(
bn−1

p

)
e2πib/p =

(
n−1

p

)
G1(p) =

(
n

p

)
G1(p),

where we used that the Legendre symbol is multiplicative, and
(
n−1

p

)
=
(
n
p

)
.

3. We compute

Gp(1)2 = Gp(1)Gp(1)

=
∑

a∈(Z/pZ)∗

(
a

p

)
e2πia/p ∑

b∈(Z/pZ)∗

(
b

p

)
e2πib/p

=
∑

a∈(Z/pZ)∗

∑
b∈(Z/pZ)∗

(
ab

p

)
e2πi(a+b)/p.

As in the last item, we can replace a with ab, to write

Gp(1)2 =
∑

a∈(Z/pZ)∗

∑
b∈(Z/pZ)∗

(
ab2

p

)
e2πi(ab+b)/p

=
∑

a∈(Z/pZ)∗

(
a

p

) ∑
b∈(Z/pZ)∗

e2πib(a+1)/p

The inner sum can be computed explicitly as

∑
b∈(Z/pZ)∗

e2πib(a+1)/p =
p−1∑
b=0

e2πib(a+1)/p − 1 =
{

p− 1, a ≡ −1 (mod p),
−1 else.

Hence we find
Gp(1)2 =

(−1
p

)
(p− 1)−

∑
a∈(Z/pZ)∗

a6=−1 (mod p)

(
a

p

)
.
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Recall that precisely half of the elemements in (Z/pZ)∗ are quadratic residues, and the
other half are quadratic non-residues, which implies

∑
a∈(Z/pZ)∗

(
a
p

)
= 0. Hence

∑
a∈(Z/pZ)∗

a6=−1 (mod p)

(
a

p

)
=

∑
a∈(Z/pZ)∗

(
a

p

)
−
(−1

p

)
= −

(−1
p

)
.

In total, we obtain

Gp(1)2 =
(−1

p

)
(p− 1)−

(
−
(−1

p

))
=
(−1

p

)
p.

Problem 7 (sage). 1. Write a program that computes the Legendre symbol
(
a
p

)
by “brute

force”, that is, by checking if x2 ≡ a (mod p) has a solution. We will see a more efficient
method in the next lecture.

2. We have seen above that Gp(1) = ±√p or Gp(1) = ±i
√

p, depending on whether p ≡ 1
(mod 4) or p ≡ 3 (mod 4). Compute the Gauss sum Gp(1) for several values of p and
come up with a conjecture what the sign should be (the correct sign was determined by
Gauss).
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