
Elementary Number Theory - Exercise 6b
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Use Gauss’ Lemma to show that the quadratic congruence x2 ≡ 3 (mod 31)
has no solutions.

Solution 1. We want to compute
(

3
31

)
using Gauss’ Lemma, so we need to count the number

of least residues of 3, 6, 9, . . . , p−1
2 · 3 = 15 · 3 modulo p = 31 which are larger than p−1

2 = 15.
The least residues are given by

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 2, 5, 8, 11, 14,

of which precisely 5 are larger than 15. Hence, by Gauss’ Lemma, we have( 3
31

)
= (−1)5 = −1,

so the congruence x2 ≡ 3 (mod 31) has no solutions.

Problem 2. Let p be an odd prime. Show that
(2

p

)
= (−1)

p2−1
8 =

{
1, if p ≡ ±1 (mod 8),
−1, if p ≡ ±3 (mod 8).

Hint: Gauss’ Lemma.

Solution 2. Applying Gauss’ Lemma, we consider the elements 2, 4, 6, . . . , 2p−1
2 = p− 1 and

count the number s of least residues that exceed p/2. In this case, the numbers are already
the least residues, so we only have to count how many of the numbers 2, 4, 6, . . . , p − 1 are
larger than p/2. A number of the form 2n is smaller than p/2 if and only if n ≤ bp/4c. Hence,
the number of elements of the form 2n which are larger than p/2 is

s = (p− 1)/2− bp/4c.

If p ≡ 1 (mod 8), that is, p = 8k + 1, then s = 4k − b2k + 1/4c = 4k − 2k = 2k is even, so
(−1)s = 1. The other three cases for p modulo 8 are analogous.

Problem 3. Let p > 7 be a prime.

1. Determine
(

5
p

)
in terms of the class of p modulo 5.

2. Determine
(

7
p

)
in terms of the class of p modulo 28.

Hint: Use quadratic reciprocity.
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Solution 3. 1. By quadratic reciprocity we have(5
p

)
= (−1)

5−1
2 · p−1

2

(
p

5

)
=
(

p

5

)
.

The quadratic residues modulo 5 are 1 and 4, so we find
(5

p

)
=
{

1, p ≡ 1, 4 (mod 5),
−1, p ≡ 2, 3 (mod 5).

2. Again, by quadratic reciprocity we have(7
p

)
= (−1)

7−1
2 · p−1

2

(
p

7

)
= (−1)

p−1
2

(
p

7

)
.

The quadratic residues modulo 7 are 1, 2, 4 and the nonresidues are 3, 5, 6. The sign
(−1)

p−1
2 is given by

(−1)
p−1

2 =
{

1, p ≡ 1 (mod 4)
−1, p ≡ 3 (mod 4).

Hence the Legendre symbol equals
(

7
p

)
equals 1 if p ≡ 1 (mod 4) and p ≡ 1, 2, 4

(mod 7), or if p ≡ 3 (mod 4) and p ≡ 3, 5, 6 (mod 7). Otherwise, the Legendre symbol
equals −1. Going through all values modulo 28, we find

(7
p

)
=
{

1, 1, 3, 9, 19, 25, 27 (mod 28)
−1, 5, 11, 13, 15, 17, 23 (mod 28).

Problem 4. Compute
(

83
137

)
using the Jacobi symbol (without completely factoring the

numerator).

Solution 4. We compute, using quadratic reciprocity and the rule for
(

2
m

)
,

( 83
137

)
= (−1)

83−1
2 · 137−1

2

(137
83

)
=
(54

83

)
=
( 2

83

)(27
83

)
= (−1) · (−1)

27−1
2 · 83−1

2

(83
27

)
=
( 2

27

)
= −1.

Problem 5. 1. Show that a prime p > 3 is either 1 or −1 modulo 6.
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2. Let p > 3 be a prime. Prove that(−3
p

)
=
{

1, p ≡ 1 (mod 6),
−1, p ≡ −1 (mod 6).

3. Show that there are infinitely many primes p ≡ 1 (mod 6).
Hint: Consider m = 12(p1 · · · pk)2 + 1, where p1, . . . , pk are the primes ≡ 1 (mod 6).

Solution 5. 1. The least residues modulo 6 are 0, 1, 2, 3, 4, 5. A prime p > 3 cannot be
0, 2, 3, or 4 mod 6, since then it would be divisible by 6, 2, 3, or 2, respectively. Hence,
a prime p > 3 is congruent to 1 or 5 ≡ −1 modulo 6.

2. Using quadratic reciprocity, we find(−3
p

)
=
(−1

p

)(3
p

)
= (−1)

p−1
2 (−1)

3−1
2 · p−1

2

(
p

3

)
=
(

p

3

)
.

Each prime p > 3 satisfies p ≡ ±1 (mod 6). If p ≡ 1 (mod 6) then p ≡ 1 (mod 3) and
hence

(p
3
)

=
(

1
3

)
= 1. If p ≡ −1 (mod 6), then p ≡ −1 (mod 3), so

(p
3
)

=
(

−1
3

)
= −1.

3. Assume that there are only finitely many primes p1, . . . , pk equivalent to 1 (mod 6).
Consider m = 12(p1 · · · pk)2 + 1, and let p be a prime dividing m (which exists since
m > 1). Then p cannot be 2, 3, or one of the primes p1, . . . , pk, so we must have p ≡ −1
(mod 6). Since p divides m, we have

−1 ≡ 12(p1 · · · pk)2 (mod p).

Mutliplying by 3, we find

−3 ≡ 36(p1 · · · pk)2 ≡ (6p1 · · · pk)2 (mod p),

so −3 is a square modulo p, contradicting the first item.

Problem 6. Let p 6= q be odd primes, and put p∗ =
(

−1
p

)
p. Show that the quadratic

reciprocity law can equivalently be written as(
p∗

q

)
=
(

q

p

)
.

Solution 6. The quadratic reciprocity law states that(
p

q

)
= (−1)

p−1
2 · q−1

2

(
q

p

)
.

If p ≡ 1 (mod 4), then
(

−1
p

)
= 1 and p∗ = p, and (−1)

p−1
2 · q−1

2 = 1, so the quadratic

reciprocity law is equivalent to
(

p∗

q

)
=
(

q
p

)
in this case.

If p ≡ 3 (mod 4), then
(

−1
p

)
= −1 and p∗ = −p, and (−1)

p−1
2 · q−1

2 = (−1)
q−1

2 . Then we
have (

p∗

q

)
=
(−p

q

)
=
(−1

q

)(
p

q

)
= (−1)

q−1
2

(
p

q

)
.

We see that the quadratic reciprocity law is again equivalent to
(

p∗

q

)
=
(

q
p

)
.

Problem 7 (sage). Write a program that computes the Jacobi symbol, using the method
from the lecture (that is, without factoring the numerator).
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