Elementary Number Theory - Exercise 6b

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Use Gauss' Lemma to show that the quadratic congruence $x^{2} \equiv 3(\bmod 31)$ has no solutions.

Solution 1. We want to compute $\left(\frac{3}{31}\right)$ using Gauss' Lemma, so we need to count the number of least residues of $3,6,9, \ldots, \frac{p-1}{2} \cdot 3=15 \cdot 3$ modulo $p=31$ which are larger than $\frac{p-1}{2}=15$. The least residues are given by

$$
3,6,9,12,15,18,21,24,27,30,2,5,8,11,14
$$

of which precisely 5 are larger than 15 . Hence, by Gauss' Lemma, we have

$$
\left(\frac{3}{31}\right)=(-1)^{5}=-1
$$

so the congruence $x^{2} \equiv 3(\bmod 31)$ has no solutions.

Problem 2. Let p be an odd prime. Show that

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}= \begin{cases}1, & \text { if } p \equiv \pm 1 \quad(\bmod 8) \\ -1, & \text { if } p \equiv \pm 3 \quad(\bmod 8)\end{cases}
$$

Hint: Gauss' Lemma.
Solution 2. Applying Gauss' Lemma, we consider the elements $2,4,6, \ldots, 2 \frac{p-1}{2}=p-1$ and count the number s of least residues that exceed $p / 2$. In this case, the numbers are already the least residues, so we only have to count how many of the numbers $2,4,6, \ldots, p-1$ are larger than $p / 2$. A number of the form $2 n$ is smaller than $p / 2$ if and only if $n \leq\lfloor p / 4\rfloor$. Hence, the number of elements of the form $2 n$ which are larger than $p / 2$ is

$$
s=(p-1) / 2-\lfloor p / 4\rfloor .
$$

If $p \equiv 1(\bmod 8)$, that is, $p=8 k+1$, then $s=4 k-\lfloor 2 k+1 / 4\rfloor=4 k-2 k=2 k$ is even, so $(-1)^{s}=1$. The other three cases for p modulo 8 are analogous.

Problem 3. Let $p>7$ be a prime.

1. Determine $\left(\frac{5}{p}\right)$ in terms of the class of p modulo 5 .
2. Determine $\left(\frac{7}{p}\right)$ in terms of the class of p modulo 28.

Hint: Use quadratic reciprocity.

Solution 3. 1. By quadratic reciprocity we have

$$
\left(\frac{5}{p}\right)=(-1)^{\frac{5-1}{2} \cdot \frac{p-1}{2}}\left(\frac{p}{5}\right)=\left(\frac{p}{5}\right) .
$$

The quadratic residues modulo 5 are 1 and 4 , so we find

$$
\left(\frac{5}{p}\right)=\left\{\begin{array}{lll}
1, & p \equiv 1,4 & (\bmod 5) \\
-1, & p \equiv 2,3 & (\bmod 5)
\end{array}\right.
$$

2. Again, by quadratic reciprocity we have

$$
\left(\frac{7}{p}\right)=(-1)^{\frac{7-1}{2} \cdot \frac{p-1}{2}}\left(\frac{p}{7}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{7}\right) .
$$

The quadratic residues modulo 7 are $1,2,4$ and the nonresidues are $3,5,6$. The sign $(-1)^{\frac{p-1}{2}}$ is given by

$$
(-1)^{\frac{p-1}{2}}=\left\{\begin{array}{lll}
1, & p \equiv 1 & (\bmod 4) \\
-1, & p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Hence the Legendre symbol equals $\left(\frac{7}{p}\right)$ equals 1 if $p \equiv 1(\bmod 4)$ and $p \equiv 1,2,4$ $(\bmod 7)$, or if $p \equiv 3(\bmod 4)$ and $p \equiv 3,5,6(\bmod 7)$. Otherwise, the Legendre symbol equals -1 . Going through all values modulo 28 , we find

$$
\left(\frac{7}{p}\right)=\left\{\begin{array}{ll}
1, & 1,3,9,19,25,27 \quad(\bmod 28) \\
-1, & 5,11,13,15,17,23
\end{array} \quad(\bmod 28) .\right.
$$

Problem 4. Compute $\left(\frac{83}{137}\right)$ using the Jacobi symbol (without completely factoring the numerator).
Solution 4. We compute, using quadratic reciprocity and the rule for $\left(\frac{2}{m}\right)$,

$$
\begin{aligned}
\left(\frac{83}{137}\right) & =(-1)^{\frac{83-1}{2} \cdot \frac{137-1}{2}}\left(\frac{137}{83}\right) \\
& =\left(\frac{54}{83}\right) \\
& =\left(\frac{2}{83}\right)\left(\frac{27}{83}\right) \\
& =(-1) \cdot(-1)^{\frac{27-1}{2} \cdot \frac{83-1}{2}}\left(\frac{83}{27}\right) \\
& =\left(\frac{2}{27}\right) \\
& =-1 .
\end{aligned}
$$

Problem 5. 1. Show that a prime $p>3$ is either 1 or -1 modulo 6 .
2. Let $p>3$ be a prime. Prove that

$$
\left(\frac{-3}{p}\right)= \begin{cases}1, & p \equiv 1 \quad(\bmod 6) \\ -1, & p \equiv-1 \quad(\bmod 6)\end{cases}
$$

3. Show that there are infinitely many primes $p \equiv 1(\bmod 6)$.

Hint: Consider $m=12\left(p_{1} \cdots p_{k}\right)^{2}+1$, where p_{1}, \ldots, p_{k} are the primes $\equiv 1(\bmod 6)$.
Solution 5. 1. The least residues modulo 6 are $0,1,2,3,4,5$. A prime $p>3$ cannot be $0,2,3$, or $4 \bmod 6$, since then it would be divisible by $6,2,3$, or 2 , respectively. Hence, a prime $p>3$ is congruent to 1 or $5 \equiv-1$ modulo 6 .
2. Using quadratic reciprocity, we find

$$
\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}(-1)^{\frac{3-1}{2} \cdot \frac{p-1}{2}}\left(\frac{p}{3}\right)=\left(\frac{p}{3}\right) .
$$

Each prime $p>3$ satisfies $p \equiv \pm 1(\bmod 6)$. If $p \equiv 1(\bmod 6)$ then $p \equiv 1(\bmod 3)$ and hence $\left(\frac{p}{3}\right)=\left(\frac{1}{3}\right)=1$. If $p \equiv-1(\bmod 6)$, then $p \equiv-1(\bmod 3)$, so $\left(\frac{p}{3}\right)=\left(\frac{-1}{3}\right)=-1$.
3. Assume that there are only finitely many primes p_{1}, \ldots, p_{k} equivalent to $1(\bmod 6)$. Consider $m=12\left(p_{1} \cdots p_{k}\right)^{2}+1$, and let p be a prime dividing m (which exists since $m>1$). Then p cannot be 2,3 , or one of the primes p_{1}, \ldots, p_{k}, so we must have $p \equiv-1$ $(\bmod 6)$. Since p divides m, we have

$$
-1 \equiv 12\left(p_{1} \cdots p_{k}\right)^{2} \quad(\bmod p)
$$

Mutliplying by 3, we find

$$
-3 \equiv 36\left(p_{1} \cdots p_{k}\right)^{2} \equiv\left(6 p_{1} \cdots p_{k}\right)^{2} \quad(\bmod p)
$$

so -3 is a square modulo p, contradicting the first item.
Problem 6. Let $p \neq q$ be odd primes, and put $p^{*}=\left(\frac{-1}{p}\right) p$. Show that the quadratic reciprocity law can equivalently be written as

$$
\left(\frac{p^{*}}{q}\right)=\left(\frac{q}{p}\right) .
$$

Solution 6. The quadratic reciprocity law states that

$$
\left(\frac{p}{q}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}\left(\frac{q}{p}\right) .
$$

If $p \equiv 1(\bmod 4)$, then $\left(\frac{-1}{p}\right)=1$ and $p^{*}=p$, and $(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}=1$, so the quadratic reciprocity law is equivalent to $\left(\frac{p^{*}}{q}\right)=\left(\frac{q}{p}\right)$ in this case.

If $p \equiv 3(\bmod 4)$, then $\left(\frac{-1}{p}\right)=-1$ and $p^{*}=-p$, and $(-1)^{\frac{p-1}{2} \cdot \frac{q-1}{2}}=(-1)^{\frac{q-1}{2}}$. Then we have

$$
\left(\frac{p^{*}}{q}\right)=\left(\frac{-p}{q}\right)=\left(\frac{-1}{q}\right)\left(\frac{p}{q}\right)=(-1)^{\frac{q-1}{2}}\left(\frac{p}{q}\right) .
$$

We see that the quadratic reciprocity law is again equivalent to $\left(\frac{p^{*}}{q}\right)=\left(\frac{q}{p}\right)$.
Problem 7 (sage). Write a program that computes the Jacobi symbol, using the method from the lecture (that is, without factoring the numerator).

