Elementary Number Theory - Exercise 7a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Apply the Fermat and Solovay-Strassen primality tests to $n=15$ with $a=4$ and $a=7$.
Solution 1. We first apply Fermat: we need to compute $a^{14}(\bmod 15)$. For $a=4$ we compute

$$
4^{14} \equiv 16^{7} \equiv 1^{7} \equiv 1 \quad(\bmod 15)
$$

In particular, the Fermat test would output "15 is probably prime" with this choice of a. For $a=7$ we compute

$$
7^{14} \equiv 49^{7} \equiv 4^{7} \equiv 4 \cdot 4^{6} \equiv 4 \cdot 16^{3} \equiv 4 \cdot 1^{3} \equiv 4 \quad(\bmod 15)
$$

so the Fermat test will recognize that 15 is composite with this choice of a.
For the Solovay-Strassen test, we only consider $a=4$, since we have seen for $a=7$ we don't even have $a^{n-1} \equiv 1(\bmod n)$, so we cannot have $a^{\frac{n-1}{2}} \equiv \pm 1(\bmod n)$. Now we need to compute $a^{\frac{n-1}{2}}(\bmod n)$. For $a=4$ we compute

$$
4^{7} \equiv 4^{6} \cdot 4 \equiv(16)^{3} \cdot 4 \equiv 4 \quad(\bmod 15)
$$

so the Solovay-Strassen test recognized that 15 is composite also on $a=4$.

Problem 2. Show that 1105 is a Carmichael number.
Solution 2. We apply Korselt's criterion. The prime factorization is $1105=5 \cdot 13 \cdot 17$, so 1105 is square-free. Moreover, 4,12 , and 16 all divide $1104=16 \cdot 3 \cdot 23$. Hence 1105 is a Carmichael number.

Problem 3. Let n be a Carmichael number. Show the following results.

1. n must be odd. Hint: Find a suitable a violating Fermat's Little Theorem.
2. Each prime factor of n is smaller than \sqrt{n}. Hint: Show that $(p-1) \left\lvert\,\left(\frac{n}{p}-1\right)\right.$.
3. n must have at least three different prime factors.
4. For primes p, q dividing n, we have $p \not \equiv 1(\bmod q)$.

Solution 3. 1. If $n>2$ is even, then $(-1)^{n-1}=-1 \neq 1(\bmod n)$, so n is not a Carmichael number.
2. Let p be a prime factor of n. By Korselt's criterion, we also have $(p-1) \mid(n-1)$. Then

$$
\frac{n-1}{p-1}=\frac{\left(p \cdot \frac{n}{p}-1\right)}{p-1}=\frac{(p-1) \frac{n}{p}+\frac{n}{p}-1}{p-1}=\frac{n}{p}+\frac{\frac{n}{p}-1}{p-1}
$$

so $(p-1) \left\lvert\,\left(\frac{n}{p}-1\right)\right.$. In particular $p \leq \frac{n}{p}$. Since equality could only occur if $n=p^{2}$, but Carmichael numbers are square-free, we find $p<\frac{n}{p}$, so $p<\sqrt{n}$.
3. If n had only two prime factors, $n=p q$ (recall that Carmichael numbers are composite and square-free), then by the last item we would have $n=p q<\sqrt{n} \sqrt{n}=n$, which is a contradiction.
4. Let p, q be prime factors of n and assume that $p \equiv 1(\bmod q)$. Then $q|(p-1)|(n-1)$ by Korselt's criterion, which is impossible since $q \mid n$.

Problem 4. Prove the following rule due to Chernick, and use it to produce at least one Carmichael number:

If the three numbers $6 k+1,12 k+1,18 k+1$ are prime, then their product

$$
n=(6 k+1)(12 k+1)(18 k+1)
$$

is a Carmichael number.
Solution 4. We apply Korselt's criterion. By assumption, n is a product of three different primes $p_{1}=6 k+1, p_{2}=12 k+1, p_{3}=18 k+1$. In particular, n is composite and square-free. We need to show that $6 k, 12 k, 18 k$ divide $n-1$. Modulo $12 k$, we have

$$
n \equiv(6 k+1)(12 k+1)(18 k+1) \equiv(6 k+1)(6 k+1) \equiv 36 k^{2}+12 k+1 \equiv 12 k
$$

which implies that $6 k$ and $12 k$ divide $n-1$. Modulo $18 k$ we have

$$
n \equiv(6 k+1)(12 k+1)(18 k+1) \equiv(6 k+1)(12 k+1)=72 k^{2}+18 k+1 \equiv 1 \equiv 18 k
$$

which implies that $18 k$ divides $n-1$. By Koreslt's criterion, n is a Carmichael number.
For example, for $k=1$ we obtain the three primes $7,13,19$, and their product

$$
n=7 \cdot 13 \cdot 19=1729
$$

is a Carmichael number. For $k \leq 10$ the only other case in which all three numbers are prime is $k=6$, in which case we get the Carmichael number

$$
n=37 \cdot 73 \cdot 109=294409
$$

Problem 5. Let G be a finite abelian group, with multiplication • and identity element 1. We define the order $\operatorname{ord}(g)$ of an element $g \in G$ as the smallest natural number m such that $g^{m}=1$.

1. Show that, if $g^{\ell}=1$ for some $\ell \in \mathbb{Z}$, then $\operatorname{ord}(g) \mid \ell$.

Hint: Division with remainder.
2. G is called cyclic if there exists a $g \in G$ such that every element in G can be written as g^{m} for some $m \in \mathbb{Z}$. Each such g is called a generator of G. Show that G is cyclic if and only if it contains an element g of order $\operatorname{ord}(g)=|G|$.
Solution 5. 1. Suppose that $g^{\ell}=1$. We divide ℓ by $\operatorname{ord}(g)$ with remainder,

$$
\ell=q \operatorname{ord}(g)+r, \quad 0 \leq r<\operatorname{ord}(g)
$$

to find

$$
g^{r}=g^{\ell-q \operatorname{ord}(g)}=1
$$

Since $r<\operatorname{ord}(g)$ and $\operatorname{ord}(g)$ is the smallest positive number with $g^{m}=1$, we must have $r=0$. Hence, $\ell=q \operatorname{ord}(g)$, so ℓ is divisible by $\operatorname{ord}(g)$.
2. For any $g \in G$, the set of powers of g,

$$
\langle g\rangle=\left\{g^{m}: m \in \mathbb{Z}\right\}
$$

that is, the subgroup generated by g, contains precisely ord (g) elements, namely

$$
\langle g\rangle=\left\{g, g^{2}, g^{3}, \ldots, g^{\operatorname{ord}(g)}=1\right\}
$$

This can also be checked rigorously using division with remainder as in the last item. In particular, if $\operatorname{ord}(g)<|G|$ for every $g \in G$, then $\langle g\rangle$ contains less elements than G, so we cannot write every element in the form g^{m}, and G is not cyclic. However, if $\operatorname{ord}(g)=|G|$ for some $g \in G$, then $\langle g\rangle$ is a subset (even a subgroup) of G with the same number of elements, so $\langle g\rangle=G$, which means that G is cyclic.

Problem 6. Show that there exists a number $a \in \mathbb{Z}$ such that ord $(a)=p-1$ in $(\mathbb{Z} / p \mathbb{Z})^{*}$. In particular, deduce that $(\mathbb{Z} / p \mathbb{Z})^{*}$ is cyclic.
Hint: Let ℓ be the smallest positive number such that $a^{\ell} \equiv 1(\bmod p)$ for all a with $\operatorname{gcd}(a, p)=$ 1, and show that $\ell=p-1$, using Fermat and Lagrange.

Solution 6. Let ℓ be the smallest positive number such that $a^{\ell} \equiv 1(\bmod p)$ for all a with $\operatorname{gcd}(a, p)=1$. We want to show that $\ell=p-1$. Fermat's Little Theorem implies that $\ell \leq p-1$. On the other hand, by the choice of ℓ, the polynomial $x^{\ell}-1$ has $p-1$ roots in $\mathbb{Z} / p \mathbb{Z}$, so by Lagrange's Theorem, its degree ℓ must be at least $p-1$, i.e. $\ell \geq p-1$. This shows $\ell=p-1$. Hence, there exists some a with $a^{\ell} \neq 1(\bmod p)$ for all $\ell<p-1$, which means that $\operatorname{ord}(a)=p-1$.

Problem 7 (sage). 1. Implement the Fermat and Solovay-Strassen primality tests and apply them to 561 .
2. Write a program that lists Carmichael numbers, and use it to find all Carmichael numbers $\leq 1.000 .000$.

