
Elementary Number Theory - Exercise 7a
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Apply the Fermat and Solovay-Strassen primality tests to n = 15 with a = 4
and a = 7.

Solution 1. We first apply Fermat: we need to compute a14 (mod 15). For a = 4 we compute

414 ≡ 167 ≡ 17 ≡ 1 (mod 15).

In particular, the Fermat test would output “15 is probably prime” with this choice of a. For
a = 7 we compute

714 ≡ 497 ≡ 47 ≡ 4 · 46 ≡ 4 · 163 ≡ 4 · 13 ≡ 4 (mod 15),

so the Fermat test will recognize that 15 is composite with this choice of a.
For the Solovay-Strassen test, we only consider a = 4, since we have seen for a = 7 we

don’t even have an−1 ≡ 1 (mod n), so we cannot have a
n−1

2 ≡ ±1 (mod n). Now we need to
compute a

n−1
2 (mod n). For a = 4 we compute

47 ≡ 46 · 4 ≡ (16)3 · 4 ≡ 4 (mod 15),

so the Solovay-Strassen test recognized that 15 is composite also on a = 4.

Problem 2. Show that 1105 is a Carmichael number.

Solution 2. We apply Korselt’s criterion. The prime factorization is 1105 = 5 · 13 · 17, so
1105 is square-free. Moreover, 4, 12, and 16 all divide 1104 = 16 · 3 · 23. Hence 1105 is a
Carmichael number.

Problem 3. Let n be a Carmichael number. Show the following results.

1. n must be odd. Hint: Find a suitable a violating Fermat’s Little Theorem.

2. Each prime factor of n is smaller than
√

n. Hint: Show that (p− 1) | (n
p − 1).

3. n must have at least three different prime factors.

4. For primes p, q dividing n, we have p 6≡ 1 (mod q).

Solution 3. 1. If n > 2 is even, then (−1)n−1 = −1 6= 1 (mod n), so n is not a Carmichael
number.

2. Let p be a prime factor of n. By Korselt’s criterion, we also have (p−1) | (n−1). Then

n− 1
p− 1 =

(p · n
p − 1)

p− 1 =
(p− 1)n

p + n
p − 1

p− 1 = n

p
+

n
p − 1
p− 1 ,

so (p− 1) | (n
p − 1). In particular p ≤ n

p . Since equality could only occur if n = p2, but
Carmichael numbers are square-free, we find p < n

p , so p <
√

n.
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3. If n had only two prime factors, n = pq (recall that Carmichael numbers are composite
and square-free), then by the last item we would have n = pq <

√
n
√

n = n, which is a
contradiction.

4. Let p, q be prime factors of n and assume that p ≡ 1 (mod q). Then q | (p− 1) | (n− 1)
by Korselt’s criterion, which is impossible since q | n.

Problem 4. Prove the following rule due to Chernick, and use it to produce at least one
Carmichael number:

If the three numbers 6k + 1, 12k + 1, 18k + 1 are prime, then their product

n = (6k + 1)(12k + 1)(18k + 1)

is a Carmichael number.

Solution 4. We apply Korselt’s criterion. By assumption, n is a product of three different
primes p1 = 6k + 1, p2 = 12k + 1, p3 = 18k + 1. In particular, n is composite and square-free.
We need to show that 6k, 12k, 18k divide n− 1. Modulo 12k, we have

n ≡ (6k + 1)(12k + 1)(18k + 1) ≡ (6k + 1)(6k + 1) ≡ 36k2 + 12k + 1 ≡ 12k,

which implies that 6k and 12k divide n− 1. Modulo 18k we have

n ≡ (6k + 1)(12k + 1)(18k + 1) ≡ (6k + 1)(12k + 1) = 72k2 + 18k + 1 ≡ 1 ≡ 18k,

which implies that 18k divides n− 1. By Koreslt’s criterion, n is a Carmichael number.
For example, for k = 1 we obtain the three primes 7, 13, 19, and their product

n = 7 · 13 · 19 = 1729

is a Carmichael number. For k ≤ 10 the only other case in which all three numbers are prime
is k = 6, in which case we get the Carmichael number

n = 37 · 73 · 109 = 294409.

Problem 5. Let G be a finite abelian group, with multiplication · and identity element 1.
We define the order ord(g) of an element g ∈ G as the smallest natural number m such that
gm = 1.

1. Show that, if g` = 1 for some ` ∈ Z, then ord(g) | `.
Hint: Division with remainder.

2. G is called cyclic if there exists a g ∈ G such that every element in G can be written
as gm for some m ∈ Z. Each such g is called a generator of G. Show that G is cyclic if
and only if it contains an element g of order ord(g) = |G|.

Solution 5. 1. Suppose that g` = 1. We divide ` by ord(g) with remainder,

` = qord(g) + r, 0 ≤ r < ord(g),

to find
gr = g`−qord(g) = 1.

Since r < ord(g) and ord(g) is the smallest positive number with gm = 1, we must have
r = 0. Hence, ` = qord(g), so ` is divisible by ord(g).
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2. For any g ∈ G, the set of powers of g,

〈g〉 = {gm : m ∈ Z},

that is, the subgroup generated by g, contains precisely ord(g) elements, namely

〈g〉 = {g, g2, g3, . . . , gord(g) = 1}.

This can also be checked rigorously using division with remainder as in the last item.
In particular, if ord(g) < |G| for every g ∈ G, then 〈g〉 contains less elements than
G, so we cannot write every element in the form gm, and G is not cyclic. However, if
ord(g) = |G| for some g ∈ G, then 〈g〉 is a subset (even a subgroup) of G with the same
number of elements, so 〈g〉 = G, which means that G is cyclic.

Problem 6. Show that there exists a number a ∈ Z such that ord(a) = p− 1 in (Z/pZ)∗. In
particular, deduce that (Z/pZ)∗ is cyclic.
Hint: Let ` be the smallest positive number such that a` ≡ 1 (mod p) for all a with gcd(a, p) =
1, and show that ` = p− 1, using Fermat and Lagrange.

Solution 6. Let ` be the smallest positive number such that a` ≡ 1 (mod p) for all a with
gcd(a, p) = 1. We want to show that ` = p − 1. Fermat’s Little Theorem implies that
` ≤ p − 1. On the other hand, by the choice of `, the polynomial x` − 1 has p − 1 roots in
Z/pZ, so by Lagrange’s Theorem, its degree ` must be at least p − 1, i.e. ` ≥ p − 1. This
shows ` = p − 1. Hence, there exists some a with a` 6= 1 (mod p) for all ` < p − 1, which
means that ord(a) = p− 1.

Problem 7 (sage). 1. Implement the Fermat and Solovay-Strassen primality tests and
apply them to 561.

2. Write a program that lists Carmichael numbers, and use it to find all Carmichael num-
bers ≤ 1.000.000.
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