
Elementary Number Theory - Exercise 7b
ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. 1. Choose two 4-digit primes p and q and generate your own public and
private RSA keys1.

2. Exchange your public keys with another student and send each other a (very) short
encrypted message2. Use the following encoding for the letters:

a b c d e f g h i j k l m

01 02 03 04 05 06 07 08 09 10 11 12 13

n o p q r s t u v w x y z

14 15 16 17 18 19 20 21 22 23 24 25 26

Keep in mind that long messages have to be split into blocks of size less than N .

3. Figure out the private key of your RSA partner.

Solution 1. We pick the primes p = 1129 and q = 7681 and form the RSA modulus

N = pq = 8671849.

We also compute Euler’s totient function

ϕ(N) = (p− 1)(q − 1) = 8663040.

For the public key we randomly choose

e = 127

and check that we indeed have gcd(e, ϕ(N)) = 1. Inverting e modulo ϕ(N) gives the private
key

d = 7094143.

Now let us use these keys to encrypt and decrypt the message “numbertheory”. It is encoded
as

m = 14 21 13 02 05 18 20 08 05 15 18 25

Since m is larger than N , and N is a 7-digit number, it will be convenient to split m into
blocks of length 6, so we need to encode

m1 = 142113
m2 = 020518
m3 = 200805
m4 = 151825

1You could ask Wolframalpha for random 4-digit primes.
2Use Wolframalpha for the necessary computations.
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Note that we can omit the leading 0 in m2 = 020518, since the receiver will see after decrypting
m2 that the number of digits is odd, and hence a leading 0 is missing. Computing md

i

(mod N), we obtain the encrypted messages

c1 = 1666533
c2 = 7025487
c3 = 8543101
c4 = 1002246

One can check that we indeed have cd
i ≡ mi (mod N), so the messages ci can be decrypted

again.
In order to figure out the private key d from the public key e and the modulus N , in

this small example we can just factorize N = pq (e.g. in Wolframalpha), then compute
ϕ(N) = (p− 1)(q − 1), and then invert e modulo ϕ(N) to obtain d.

Problem 2. Let N = pq be a product of two odd primes, and ϕ(N) = (p− 1)(q − 1). Show
that p and q can quickly be computed if N and ϕ(N) are known.

For example, given N = 7261 and ϕ(N) = 7072, compute p and q.

Solution 2. Suppose that we know N = pq and ϕ(N) = (p−1)(q−1). Then we can compute

N − ϕ(N) + 1 = pq − (p− 1)(q − 1) + 1 = p + q.

If we know the product pq and the sum p + q, then p and q can be recovered as the solutions
of a quadratic equation (this is known as Vieta’s rule). Indeed, we have

(x− p)(x− q) = x2 − (p + q)x + pq = x2 − (N − ϕ(N) + 1)x + N,

so p and q are given by the formula

p, q = (N − ϕ(N) + 1)±
√

(N − ϕ(N) + 1)2 − 4N

2
For example, for N = 7261 and ϕ(N) = 7072 we have

N − ϕ(N) + 1 = 190,

so p and q are given by

190±
√

1902 − 4 · 7261
2 = 190± 84

2 = 53 and 137.

Problem 3. Let N = pq be a product of two odd primes. If p and q are too close, then
N can quickly be factored, using Fermat’s factorization method: the idea is to find a, b with
N = a2− b2, since then N = (a− b)(a + b) = pq is a factorization of N . If p, q are close, then
b will be relatively small, so a will roughly be equal to

√
N . Here’s the algorithm:

Compute a = d
√

Ne, d
√

Ne + 1, d
√

Ne + 2, . . . until a2 − N = b2 is a square. Then
N = (a− b)(a + b) is a factorization of N .
Show that Fermat’s method will always find a factorization of N = pq, and use it to factor

N = 5959.
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Solution 3. If N = pq, then we can write

N = pq =
(

p + q

2

)2
−
(

p− q

2

)2
=: a2 − b2.

Note that a must be at least d
√

Ne, since otherwise N = a2− b2 would be impossible. Hence,
Fermat’s factoring algorithm will find a and b after finitely many steps.

We apply the algorithm to N = 5959.

1. a = d
√

Ne = 78. Then a2 −N = 782 − 5959 = 125 is not a square.

2. a = d
√

Ne+ 1 = 79. Then a2 −N = 792 − 5959 = 282 is not a square.

3. a = d
√

Ne+ 2 = 80. Then a2 −N = 802 − 5959 = 441 = 212 is a square. We find

N = 5959 = 802 − 212 = (80− 21)(80 + 21) = 59 · 101.

Problem 4. Let N = pq, where p is an odd prime, but q is a Carmichael number with
gcd(p, q) = 1. Show that the RSA encryption and decryption still works on messages m with
gcd(m, N) = 1.

Solution 4. We have to be careful to distinguish between ϕ(N) and (p−1)(q−1), since these
numbers will in general not be the same if q is a Carmichael number. The key generation uses
(p− 1)(q− 1). Let 1 < e, d < (p− 1)(q− 1) be coprime to (p− 1)(q− 1) and such that ed ≡ 1
(mod (p − 1)(q − 1)). A message m with 1 ≤ m ≤ N with gcd(m, N) = 1 will be encrypted
as

c = me (mod N),

and encrypted as
cd ≡ (me)d ≡ med ≡ m1+k(p−1)(q−1) (mod N)

so we need to show that
m(p−1)(q−1) ≡ 1 (mod N).

Since gcd(p, q) = 1, by the Chinese Remainder Theorem it suffices to show that

m(p−1)(q−1) ≡ 1 (mod p), and m(p−1)(q−1) ≡ 1 (mod q).

The first identity follows from Fermat’s little theorem, and the second identity follows since
q is a Carmichael number (here we used that gcd(m, N) = 1). Summarizing, we find

cd ≡ m (mod N),

so the RSA decryption still works.

Problem 5. In cryptographic applications, it is often important to keep computation costs
low. Hence, it is common to use rather small public keys e to speed up the RSA encryption.
A typical choice is e = 3, since the encryption then takes only 2 multiplications. Here we
discuss two attacks on RSA with e = 3.
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1. Bob uses the public key e = 3 and the modulus N = 126589. Alice sends the encrypted
message c = 3375 to Bob. Can you decrypt the message (without factoring N)?

2. Bob, Charles, and Dora all use the same public key e = 3, but with different moduli
NB, NC , ND. Let us assume that NB, NC , ND are pairwise coprime3. Alice sends the
same message m to Bob, Charles, and Dora, encrypted as cB, cC , cD with their respective
public keys and moduli. Use the Chinese Remainder Theorem to explain how m can be
decrypted, without factoring any of the moduli.

Solution 5. 1. We know that c = m3 (mod N). Since c = 3375 is a cube in the integers,
3375 = 153, the original message was m = 15. To avoid this problem, one can use
padding: make the message m longer by adding random extra stuff at the end of the
message, such that m3 is larger than N .

2. By the Chinese Remainder Theorem, there is a unique x with 1 ≤ x ≤ NBNCND such
that

x ≡ cB (mod NB),
x ≡ cC (mod NC),
x ≡ cD (mod ND).

Since m3 is another solution of this system, and 1 ≤ m3 ≤ NBNCND, we must have
x = m3. Hence, we can recover m by taking the third root of x.

Problem 6 (sage). 1. Implement the RSA key generation and encryption/decryption.
You could ask the user for primes p and q, or offer random primes.

2. Implement Fermat’s factorization method, and factor N = 105327569.

3Bonus question: how can we break RSA if NB , NC , ND are not pairwise coprime?
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