Elementary Number Theory - Exercise 8a<br>ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. For each $n=1,2, \ldots, 15$, check if $n$ is a sum of two or three squares.
Solution 1. If we want to check whether a given $n$ is a sum of two squares, $n=x^{2}+y^{2}$, it suffices to check $x, y \in\{0, \ldots, \sqrt{n}\}$. Indeed, we do not need to check negative values for $x, y$, since replacing $x$ with $-x$ or $y$ with $-y$ does not change $x^{2}+y^{2}$, and if $x$ or $y$ is larger than $\sqrt{n}$, then $x^{2}+y^{2}$ is already larger than $n$.

We can now make a little table:

| $n$ | $n=x^{2}+y^{2}$ | $n=x^{2}+y^{2}+z^{2}$ |
| :---: | :---: | :---: |
| 1 | $(1,0)$ | $(1,0,0)$ |
| 2 | $(1,1)$ | $(1,1,0)$ |
| 3 | $\times$ | $(1,1,1)$ |
| 4 | $(2,0)$ | $(2,0,0)$ |
| 5 | $(2,1)$ | $(2,1,0)$ |
| 6 | $\times$ | $(2,1,1)$ |
| 7 | $\times$ | $\times$ |
| 8 | $(2,2)$ | $(2,2,0)$ |
| 9 | $(3,0)$ | $(3,0,0)$ |
| 10 | $(3,1)$ | $(3,1,0)$ |
| 11 | $\times$ | $(3,1,1)$ |
| 12 | $\times$ | $(2,2,2)$ |
| 13 | $(3,2)$ | $(3,2,0)$ |
| 14 | $\times$ | $(3,2,1)$ |
| 15 | $\times$ | $\times$ |

Problem 2. Write 45 and 585 as sums of two squares.
Hint: Diophantus' two squares identity.
Solution 2. Since $45=5 \cdot 9$ and $5=2^{2}+1^{2}$ and 9 is a square, we find

$$
45=\left(2^{2}+1^{2}\right) \cdot 3^{2}=6^{2}+3^{2}
$$

We have $225=45 \cdot 13$, and since both factors are sums of squares, $45=6^{2}+3^{2}$ and $13=3^{2}+2^{2}$, we obtain from Diophantus' identity that

$$
585=45 \cdot 13=\left(6^{2}+3^{2}\right)\left(3^{2}+2^{2}\right)=(6 \cdot 3+3 \cdot 2)^{2}+(6 \cdot 2-3 \cdot 3)^{2}=24^{2}+3^{2}
$$

Problem 3. Show that, if $n$ can be written as a sum of three squares, then $n$ cannot be of the form $4^{a}(8 b+7)$ with non-negative integers $a, b$.

Solution 3. Let us suppose that $n=x^{2}+y^{2}+z^{2}$ is a sum of three squares and of the form $4^{a}(8 b+7)$. We distinguish the cases that $n$ is odd or even.

- Suppose that $n$ is odd, that is,

$$
n=8 b+7=x^{2}+y^{2}+z^{2} .
$$

Reducing modulo 8 gives

$$
x^{2}+y^{2}+z^{2} \equiv 7 \quad(\bmod 8),
$$

and we want to show that this is not possible: first note that if $x$ is even, then $x^{2} \equiv 0$ $(\bmod 8)$ or $x^{2} \equiv 4(\bmod 8)$, and if $x$ is odd, then $x^{2} \equiv 1(\bmod 8)$. From this it is easy to see that the possible values of $x^{2}+y^{2}+z^{2}(\bmod 8)$ are given by $0,1,2,3,4,5,6$, but 7 is impossible.

- Suppose that $n$ is even. Since $n$ is of the form $n=4^{a}(8 b+7)$, it is divisible by 4 . This implies that $x, y, z$ are all even. Indeed, since $n$ is even, the only other possibility would be that one of them is even and the other two are odd, say $x=2 x_{0}$ and $y=1+2 y_{0}$ and $z=1+2 z_{0}$, but then

$$
n=x^{2}+y^{2}+z^{2}=4 x_{0}^{2}+1+4 y_{0}+4 y_{0}^{2}+1+4 z_{0}+4 z_{0}^{2} \equiv 2 \quad(\bmod 4)
$$

would not be divisible by 4 . Hence we can write

$$
\frac{n}{4}=\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{2}\right)^{2}+\left(\frac{z}{2}\right)^{2}
$$

and $\frac{n}{4}$ would again be of the form $4^{a}(8 b+7)$. We can repeat this argument until we obtain an odd number of the form $8 b+7$ which is the sum of three squares, contradicting the first item.

Problem 4. We let

$$
r_{4}(n)=\#\left\{(a, b, c, d) \in \mathbb{Z}^{2}: n=a^{2}+b^{2}+c^{2}+d^{2}\right\}
$$

be the number of ways to write $n$ as sum of four squares. Show that $r_{4}(n)$ is divisible by 8 .
Solution 4. We show that every solution $n=a^{2}+b^{2}+c^{2}+d^{2}$ yields at least 8 different solutions.

- If $a, b, c, d$ are all non-zero, then we obtain (at least) the 16 different solutions

$$
( \pm a, \pm b, \pm c, \pm d) .
$$

By permuting $a, b, c, d$ we may get even more solutions, but if for example $a=b$, permuting $a$ and $b$ does not give new solutions.

- If precisely three of $a, b, c, d$ are non-zero, say $a, b, c$ are non-zero and $d=0$, we obtain the 8 different solutions

$$
( \pm a, \pm b, \pm c, 0)
$$

Note that we can also permute $a, b, c, d$, and there are 4 possible positions for $d$, so we in fact get at least 32 different solutions.

- If precisely two of $a, b, c, d$ are non-zero, say $a, b$ are non-zero and $c=d=0$, then obtain the 8 different solutions

$$
( \pm a, \pm b, 0,0), \quad(0,0, \pm a, \pm b)
$$

Again, by permuting $a, b, c, d$ we might get even more solutions.

- If only one of $a, b, c, d$ is non-zero, say $a$ is non-zero and $b=c=d=0$, then we get the 8 solutions

$$
( \pm a, 0,0,0), \quad(0, \pm a, 0,0), \quad(0,0, \pm a, 0), \quad(0,0,0, \pm a) .
$$

This case also shows that $r_{4}(n)$ cannot always be higher power of 2 that 8 . For example, we have $r_{4}(1)=8$.

Problem 5. Show that every natural number can be written as a sum of five integer cubes. To this end, show that $n^{3} \equiv n(\bmod 6)$, hence $n^{3}-n=6 k$, and check that

$$
n=n^{3}+k^{3}+k^{3}+(-k-1)^{3}+(1-k)^{3} .
$$

Write $n=7$ as a sum of five cubes. However, convince yourself that 7 cannot be written as a sum of five cubes of non-negative integers.

Solution 5. It suffices to show $n^{3} \equiv n(\bmod 6)$ for some system of residues modulo 6 , e.g. for $n \in\{0,1, \ldots, 5\}$. In this case, it is more convenient to use $n \in\{-2,-1,0,1,2,3\}$.

Since $n^{3}=n(\bmod 6)$, we can write $n^{3}-n=6 k$ for some $k \in \mathbb{Z}$. A direct computation then shows that

$$
n=n^{3}+k^{3}+k^{3}+(-k-1)^{3}+(1-k)^{3},
$$

so $n$ is a sum of three cubes.
We apply this to $n=7$. We have $7^{3}=343$, so

$$
n^{3}-n=6 \cdot 56,
$$

hence $k=56$. We find

$$
7=7^{3}+56^{3}+56^{3}+(-57)^{3}+(-55)^{3} .
$$

Problem 6. Show that, if an odd prime $p$ can be written in the form $p=x^{2}+2 y^{2}$, then -2 is a square modulo $p$.

Solution 6. If $p=x^{2}+2 y^{2}$, then $x$ and $y$ must be coprime to $p$, since otherwise $p$ would need to both $x$ and $y$, and then the right-hand side would be divisible by $p^{2}$. Writing $-2 y^{2}=x^{2}-p$, we obtain from the properties of the Legendre symbol that

$$
\left(\frac{-2}{p}\right)=\left(\frac{-2 y^{2}}{p}\right)=\left(\frac{x^{2}-p}{p}\right)=\left(\frac{x^{2}}{p}\right)=1,
$$

so -2 is a square modulo $p$. Here it is important that $x$ and $y$ are coprime to $p$.

Problem 7. Which integers $n$ can be written in the form $n=x^{2}-y^{2}$ ?

Solution 7. We claim that every odd integer $n$ and every even integer $n$ with $4 \mid n$ can be written in the form $n=x^{2}-y^{2}$.

We first check that an even integer of the form $n=x^{2}-y^{2}$ must be divisible by 4 . If $n$ is even, then $x$ and $y$ must either be both even or both odd. In any case, writing $n=x^{2}-y^{2}=(x-y)(x+y)$ we see that $x-y$ and $x+y$ are even, so $n$ must be divisible by 4 .

Next, we show that every odd integer $n$ and every even integer $n$ with $4 \mid n$ can be written in this form.

- If $n$ is odd, we choose $x=\frac{n+1}{2}$ and $y=\frac{1-n}{2}$.
- If $n$ is even and divisible by 4 , we write $n=4 k$ and choose $x=k+1$ and $y=k-1$.

Problem 8 (sage).

1. Write a program to find representations of an odd prime $p$ as $p=x^{2}+2 y^{2}$, and use it to numerically verify that $p$ can be written in this way if and only if -2 is a square modulo $p$.
2. Write a program that counts $r_{4}(n)$. Use it to numerically verify Jacobi's formula

$$
r_{4}(n)=8 \sum_{\substack{d \mid n \\ 4 \nmid d}} d
$$

