Elementary Number Theory - Exercise 8b

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Consider the quadratic forms

$$
Q_{1}=[1,2,3], \quad Q_{2}=[2,4,3], \quad Q_{3}=[1,3,1] .
$$

1. Write down the Gram matrices of Q_{1}, Q_{2} and Q_{3}.
2. Compute the discriminants of Q_{1}, Q_{2}, and Q_{3}.
3. Which of these forms is positive definite or indefinite?
4. Show that Q_{1} is equivalent to Q_{2} via

$$
Q_{2}=Q_{1} \circ\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right) .
$$

5. For each of the three forms, find three different integers that they represent.

Solution 1. 1. The Gram matrices are given by

$$
Q_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right), \quad Q_{2}=\left(\begin{array}{ll}
2 & 2 \\
2 & 3
\end{array}\right), \quad Q_{3}=\left(\begin{array}{cc}
1 & 3 / 2 \\
3 / 2 & 1
\end{array}\right) .
$$

2. The discriminants of Q_{1}, Q_{2}, and Q_{3} are given by $-8,-8$, and 5 , respectively.
3. Q_{1} and Q_{2} have negative discriminants and positive a entry, so they are positive definite. Q_{3} has positive discriminant, hence it is indefinite.
4. A direct computation gives

$$
Q_{1} \circ\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & -1 \\
2 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right)\left(\begin{array}{cc}
1 & 2 \\
-1 & -1
\end{array}\right)=\left(\begin{array}{ll}
2 & 2 \\
2 & 3
\end{array}\right)=Q_{2},
$$

so Q_{1} and Q_{2} are equivalent.
5. We can just plug in some values for x, y. For example, we have

$$
Q_{1}(1,0)=1, \quad Q_{1}(0,1)=3, \quad Q_{1}(1,1)=1+2+3=6 .
$$

Analogously we can find numbers represented by Q_{2} and Q_{3}.

Problem 2. Show that $Q=[a, b, c]$ properly represents a, c, and $a+b+c$.
Solution 2. We have $Q(1,0)=a, Q(0,1)=c$, and $Q(1,1)=a+b+c$.

Problem 3. Let $Q=[a, b, c]$ be a quadratic form.

1. Let $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ and $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Show that $T^{n}=\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)$ and compute

$$
Q \circ T^{n}=\left[a, b+2 a n, a n^{2}+b n+c\right], \quad Q \circ S=[c,-b, a] .
$$

2. Let $M=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, and write

$$
Q \circ M=M^{t} Q M=\left(\begin{array}{cc}
a^{\prime} & b^{\prime} / 2 \\
b^{\prime} / 2 & c^{\prime}
\end{array}\right) .
$$

Show that $a^{\prime}, b^{\prime}, c^{\prime}$ are explicitly given by

$$
\begin{aligned}
a^{\prime} & =a \alpha^{2}+b \alpha \gamma+c \gamma^{2} \\
b^{\prime} & =2 a \alpha \beta+b(\alpha \delta+\beta \gamma)+2 c \gamma \delta \\
c^{\prime} & =a \beta^{2}+b \beta \delta+c \delta^{2} .
\end{aligned}
$$

Solution 3. 1. We compute

$$
Q \circ T^{n}=\left(\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right)\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
a & (b+2 a n) / 2 \\
(b+2 a n) / 2 & a n^{2}+b n+c
\end{array}\right)
$$

and

$$
Q \circ S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
c & -b / 2 \\
-b / 2 & a
\end{array}\right) .
$$

2. We compute

$$
\begin{aligned}
Q \circ M & =M^{t} Q M=\left(\begin{array}{ll}
\alpha & \gamma \\
\beta & \delta
\end{array}\right)\left(\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \\
& =\left(\begin{array}{cc}
a \alpha^{2}+b \alpha \gamma+c \gamma^{2} & (2 a \alpha \beta+b(\alpha \delta+\beta \gamma)+2 c \gamma \delta) / 2 \\
(2 a \alpha \beta+b(\alpha \delta+\beta \gamma)+2 c \gamma \delta) / 2 & a \beta^{2}+b \beta \delta+c \delta^{2}
\end{array}\right),
\end{aligned}
$$

so we obtain

$$
\begin{aligned}
a^{\prime} & =a \alpha^{2}+b \alpha \gamma+c \gamma^{2} \\
b^{\prime} & =2 a \alpha \beta+b(\alpha \delta+\beta \gamma)+2 c \gamma \delta \\
c^{\prime} & =a \beta^{2}+b \beta \delta+c \delta^{2} .
\end{aligned}
$$

Problem 4. Let $Q=[a, b, c]$ and $Q^{\prime}=\left[a^{\prime}, b^{\prime}, c^{\prime}\right]$ be equivalent. Show that

1. Q and Q^{\prime} (properly) represent the same integers.
2. Q and Q^{\prime} have the same discriminant.
3. Q is positive definite (resp. indefinite) if and only if Q^{\prime} is positive definite (resp. indefinite).
4. Q is primitive if and only if Q^{\prime} is primitive.

Solution 4. If Q and Q^{\prime} are equivalent, there is some $M \in \mathrm{SL}_{2}(\mathbb{Z})$ with

$$
Q^{\prime}=Q \circ M=M^{t} Q M
$$

1. Let n be represented by Q, that is, there are $x, y \in \mathbb{Z}$ with

$$
n=\left(\begin{array}{ll}
x & y
\end{array}\right) Q\binom{x}{y} .
$$

If we let

$$
\binom{x^{\prime}}{y^{\prime}}=M^{-1}\binom{x}{y}
$$

then we have

$$
\begin{aligned}
n & =\left(\begin{array}{ll}
x & y
\end{array}\right) Q\binom{x}{y} \\
& =\left(\begin{array}{ll}
x & y
\end{array}\right) M^{-t} M^{t} Q M M^{-1}\binom{x}{y} \\
& =\left(\begin{array}{ll}
x^{\prime} & y^{\prime}
\end{array}\right) Q^{\prime}\binom{x^{\prime}}{y^{\prime}} .
\end{aligned}
$$

Hence Q and Q^{\prime} represent the same integers. Moreover, if $\operatorname{gcd}(x, y)=1$, then $\operatorname{gcd}\left(x^{\prime}, y^{\prime}\right)=$ 1 since M has determinant 1 , so Q and Q^{\prime} properly represent the same integers.
2. The discriminant of Q is given by $-4 \operatorname{det}(Q)$, and since $\operatorname{det}(M)=\operatorname{det}\left(M^{t}\right)=1$ we can compute
$\operatorname{disc}\left(Q^{\prime}\right)=-4 \operatorname{det}\left(Q^{\prime}\right)=-4 \operatorname{det}\left(M^{t} Q M\right)=-4 \operatorname{det}\left(M^{t}\right) \operatorname{det}(Q) \operatorname{det}(M)=-4 \operatorname{det}(Q)=\operatorname{disc}(Q)$.
3. We have seen above that $Q(x, y)=Q^{\prime}\left(x^{\prime}, y^{\prime}\right)$, so Q represents only positive (resp. negative) values if and only if Q^{\prime} represents only positive (resp. negative) values. This means that Q is positive (resp.) negative definite if and only if Q^{\prime} is positive (resp.) negative definite.
Alternatively, we can use the characterization of positive definite quadratic forms in terms of the discriminant, together with the fact that Q and Q^{\prime} have the same discriminant.
4. From the equations

$$
Q^{\prime}=M^{t} Q M, \quad Q=M^{-t} Q^{\prime} M^{-1}
$$

it is clear that any common divisor of a, b, c would also be a common divisor of $a^{\prime}, b^{\prime}, c^{\prime}$, and vice versa. Hence Q is primitive if and only if Q^{\prime} is primitive.

Problem 5. Show that a quadratic form properly represents an integer n if and only if it is equivalent to a form of the shape $\left[n, b^{\prime}, c^{\prime}\right]$ for some $b^{\prime}, c^{\prime} \in \mathbb{Z}$.
Hint: Use the explicit formula for the coefficients of $Q \circ M$ derived above.

Solution 5. Let $Q=[a, b, c]$. Suppose that Q properly represents n. By definition, this means that there are coprime $x, y \in \mathbb{Z}$ with $Q(x, y)=a x^{2}+b x y+c y^{2}=n$. We are looking for a matrix $M=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $Q \circ M=\left[n, b^{\prime}, c^{\prime}\right]$. From the explicit formula for the action $Q \circ M$ derived in an earlier exercise, we see that the a^{\prime} entry of $Q \circ M$ is given by $a \alpha^{2}+b \alpha \gamma+c \gamma^{2}$, so it might be a good idea to choose $\alpha=x$ and $\gamma=y$. Indeed, since x, y are coprime, by Bézout's Lemma we can choose $\beta, \delta \in \mathbb{Z}$ with $x \delta-y \beta=1$, so M lies in $\operatorname{SL}_{2}(\mathbb{Z})$. Then we have $Q \circ M=\left[n, b^{\prime}, c^{\prime}\right]$ as desired.

Conversely, suppose that Q is equivalent to $\left[n, b^{\prime}, c^{\prime}\right]$, that is, $Q \circ M=\left[n, b^{\prime}, c^{\prime}\right]$ for some $M=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. By the explicit formula for the action of M on Q, the a^{\prime} entry of $Q \circ M$ is given by $a \alpha^{2}+b \alpha \gamma+c \gamma^{2}$, so we have $n=a \alpha^{2}+b \alpha \gamma+c \gamma^{2}$. In other words, Q represents n. Since $M \in \mathrm{SL}_{2}(\mathbb{Z})$ we have $\operatorname{gcd}(\alpha, \gamma)=1$, so the representation is proper.

Problem 6 (sage). A quadratic form can be represented in sage as an array $Q=[a, b, c]$. Write programs that

1. compute the discriminant of Q,
2. check whether Q is positive (resp. negative) definite or indefinite,
3. check whether Q is primitive,
4. compute $Q \circ M$ for $M \in \mathrm{SL}_{2}(\mathbb{Z})$.
