Problem 1. Compute the reduced representative of the form Q = [5, 6, 3].

Solution 1. We apply the reduction algorithm:

- (1a) $[5, 6, 3] \circ T^n = [5, 6 + 10n, 5n^2 + 6n + 3] = [5, -4, 2]$, for n = -1.
- (1b) $[5, -4, 2] \circ S = [2, 4, 5].$
- (2a) $[2,4,5] \circ T^n = [2,4+4n,2n^2+4n+5] = [2,0,3]$, for n = -1.
- (2b) Since [2, 0, 3] is reduced, we are done.

Problem 2. Compute the class number h(-8).

Solution 2. We need to find all reduced primitive positive definite form sof discriminant D = -8. They can be determined by going through all a > 0 with $a \le \sqrt{|D|/3}$, and then all $b \text{ with } |b| \le a \text{ such that } c = \frac{b^2 - D}{4a} \text{ is a positive integer.}$ We have $\lfloor \sqrt{8/3} \rfloor = 2$, so we can only have a = 1 or a = 2. For a = 1 we can take

 $b \in \{0, \pm 1\}$. For b = 0 we obtain c = 2, so we get the reduced form

[1, 0, 2],

but for $b = \pm 1$ we see that c is not an integer. For a = 2 we can take $b \in \{0, \pm 1, \pm 2\}$. For b=0 we obtain c=1, but the form [2,0,1] is not reduced. For $b=\pm 1,\pm 2$ we see that c is not an integer.

Hence there is precisely 1 reduced form of discriminant -8, namely [1,0,2], so the class number is h(-8) = 1.

Problem 3. Let p be an odd prime. Show that

$$p = x^2 + 2y^2 \quad \Leftrightarrow \quad p \equiv 1 \pmod{8} \text{ or } p \equiv 3 \pmod{8}.$$

Hint: Rewrite the condition on the right in terms of the Legendre symbol $\left(\frac{-2}{n}\right)$.

Solution 3. By the first and second supplements to the quadratic reciprocity law, we have

$$p \equiv 1 \pmod{8}$$
 or $p \equiv 3 \pmod{8}$ \Leftrightarrow $\left(\frac{-2}{p}\right) = 1$

We have seen in an earlier exercise problem that $p = x^2 + 2y^2$ implies $\left(\frac{-2}{p}\right) = 1$.

Conversely, assume that $\left(\frac{-2}{p}\right) = 1$. Then -2 is a square modulo p, so there exists some $m \in \mathbb{Z}$ such that $-2 = m^2 + pk$ for some $k \in \mathbb{Z}$. Now the binary quadratic form

$$[p, 2m, -k]$$

has discriminant $4m^2 + 4pk = -8$ and is positive definite (since D = -8 < 0 and p > 0). Since h(-8) = 1, this form is equivalent to $[1, 0, 2] = x^2 + 2y^2$. Moreover, the form [p, 2m, -k]represents p (plug in (1,0)), so [1,0,2] also represents p, so there are $x, y \in \mathbb{Z}$ with $x^2 + 2y^2 = p$. **Problem 4.** Show that the class number h(D) for D < 0 can become arbitrarily large. *Hint:* Choose $D = -4p_1 \cdots p_n$ with different primes p_j , and consider the forms [a, 0, c].

Solution 4. We let $D = -4p_1 \cdots p_n$ with different odd primes p_j . If we let a be the product of ℓ of these primes, and c the product of the remaining primes, we obtain 2^n different primitive quadratic forms [a, 0, c] of discriminant D. Moreover, [a, 0, c] is reduced if and only if a < c, so precisely half of these forms are reduced. This yields 2^{n-1} primitive reduced forms of discriminant D, so $h(D) \ge 2^{n-1}$, which becomes arbitrarily large as $n \to \infty$.

Problem 5. Let Q = [a, b, c] be positive definite of discriminant D < 0. Show that, if $a < \sqrt{-D/4}$ and $-a < b \le a$, then Q is already reduced.

Solution 5. Since we have $|b| \le a$ by assumption, it remains to show that $a \le c$, and that $b \ge 0$ if |b| = a or a = c. We estimate

$$c=\frac{b^2-D}{4a}\geq -\frac{D}{4a}>\frac{a^2}{a}=a,$$

so we indeed have $a \le c$. Since we even have a < c, the case a = c does not occur. If |b| = a, then we have b = a > 0 since the case b = -a is excluded by the assumption $-a < b \le b$. This shows that Q is reduced.

Problem 6. Show that, if Q represents 1, then Q is equivalent to the principal form. *Hint:* Use Problem 5 from exercise sheet 8b.

Solution 6. Suppose that Q represents 1. Then it represents 1 properly (since for any divisor d of both x and y we would have $d^2 \mid Q(x, y)$). We have seen in an earlier problem that then Q is equivalent to a form [1, b, c] for some $b, c \in \mathbb{Z}$. Applying T^n , we get an equivalent form

$$[1, b, c] \circ T^n = [1, b + 2n, c'].$$

Now we use that b has the same parity as the discriminant D of Q (which is also the discriminant of [1, b, c]). If D is even, then b is even, and we can choose b = -D/2 to obtain the equivalent form [1, 0, c'']. Since the c-entry of a quadratic form is determined from D, b, a via $c = \frac{b^2 - D}{2a}$, we find c'' = -D/4, so Q is equivalent to the principal form [1, 0, -D/4]. The case of odd D is analogous.

Problem 7 (sage). Write a program which, given a discriminant D < 0, computes the reduced forms of discriminant D and the class number h(D). Use it to list the class number h(D) for $0 > D \ge -100$.