Elementary Number Theory - Exercise 9b

ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that the inverse of a primitive form $[a, b, c]$ in the class group is given by

$$
[a, b, c]^{-1}=[a,-b, c] .
$$

Solution 1. Note that $[a,-b, c] \circ S=[c, b, a]$. Moreover, the forms $[a, b, c]$ and $[c, b, a]$ are united since $[a, b, c]$ is primitive, and the two forms are already of the shape $\left[a_{1}, B, a_{2} C\right]$ and [$\left.a_{2}, B, a_{1} C\right]$, with $a_{1}=a, a_{2}=c, B=b$, and $C=1$. Hence, the Gauss composition of $[a, b, c]$ and $[c, b, a]$ is defined by

$$
[a, b, c] *[c, b, a]=[a c, b, 1] .
$$

Since the form on the right represents 1 , it is equivalent to the principal form, which is the identity in the class group $\mathrm{CL}(D)$.

Problem 2. Let $Q_{1}=\left[a_{1}, b_{1}, c_{1}\right]$ and $Q_{2}=\left[a_{2}, b_{2}, c_{2}\right]$ be united, and let $Q_{1} \sim\left[a_{1}, B, a_{2} C\right]$ and $Q_{2} \sim\left[a_{2}, B, a_{1} C\right]$. We defined the Gauss composion

$$
Q_{1} * Q_{2}=\left[a_{1} a_{2}, B, C\right] .
$$

Show that we have

$$
\left(a_{1} x^{2}+B x y+a_{2} C y^{2}\right)\left(a_{2} z^{2}+B z w+a_{1} C w^{2}\right)=a_{1} a_{2} X^{2}+B X Y+C Y^{2},
$$

where $X=x z-C y w$ and $Y=a_{1} x w+a_{2} y z+B y w$. In particular, deduce that the Gauss composition $Q_{1} * Q_{2}$ represents all products of numbers represented by Q_{1} and Q_{2}.

Solution 2. This can be proved by multiplying out both sides. We omit the details of the computation.

Note that the identity can be rewritten as

$$
\left[a_{1}, B, a_{2} C\right](x, y) \cdot\left[a_{2}, B, a_{1} C\right](z, w)=\left(Q_{1} * Q_{2}\right)(X, Y),
$$

so $Q_{1} * Q_{2}$ represents all the products of numbers represented by $\left[a_{1}, B, a_{2} C\right]$ and $\left[a_{2}, B, a_{1} C\right]$. Since equivalent forms represent the same numbers, $Q_{1} * Q_{2}$ represents all the products of numbers represented by Q_{1} and Q_{2}.

Problem 3. Show that the Gauss composition of $[2,1,3]$ with itself is given by $[2,-1,3]$.
Solution 3. Note that $[2,1,3]$ has discriminant $D=-23$ and is primitive. Since $\operatorname{gcd}\left(2,2, \frac{1+1}{2}\right)=$ 1, the "two" forms $[2,1,3]$ and $[2,1,3]$ are united. We need to find B such that $B \equiv b_{1}$ $\left(\bmod 2 a_{1}\right), B \equiv b_{2}\left(\bmod 2 a_{2}\right)$, and $B^{2} \equiv D\left(\bmod 4 a_{1} a_{2}\right)$, which in our case means

$$
\begin{array}{r}
B \equiv 1 \quad(\bmod 4), \\
B^{2} \equiv-23 \equiv 9 \quad(\bmod 16) .
\end{array}
$$

A suitable choice would be $B=-3$, hence $C=\frac{B^{2}-D}{4 a_{1} a_{2}}=2$ and indeed we have

$$
[2,1,3] \sim[2,-3,4]=[2, B, 2 C],
$$

via the matrix T^{-2}. The composition is now given by

$$
[2,1,3] *[2,1,3]=[2, B, 2 C] *[2, B, 2 C]=[4, B, C]=[4,-3,2] .
$$

Applying S and then T^{-1} we see that

$$
[4,-3,2] \sim[2,3,4] \sim[2,-1,3]
$$

Problem 4. Construct a group isomorphism from $\mathrm{Cl}(-23)$ to $\mathbb{Z} / 3 \mathbb{Z}$.
Solution 4. We first determine the reduced forms of discriminant -23 . The possible integers $a>0$ with $a \leq \sqrt{-D / 3}=\sqrt{23 / 3}<3$ are given by $a=1$ and $a=2$. For $a=1$ the possible b with $|b| \leq a$ are $b=0$ and $b= \pm 1$. Now $b=0$ has the wrong parity, but $b= \pm 1$ leads to the forms $[1, \pm 1,6]$, of which only

$$
[1,1,6]
$$

is reduced. For $a=2$ we can take $b=0, \pm 1, \pm 2$, which leads to the two reduced form $[2, \pm 1,3]$. In total, we obtain the three reduced forms

$$
[1,1,6], \quad[2,1,3], \quad[2,-1,3] .
$$

Hence, the class group $\mathrm{Cl}(-23)$ has order 3. It follows from a general result of basic group theory that $\mathrm{Cl}(-23)$ is isomorphic to $\mathbb{Z} / 3 \mathbb{Z}$, but in this case we can make this more explicit. We know that $[1,1,6]$ is the identity with respect to Gauss composition, and $[2,-1,3]$ is the inverse of $[2,1,3]$. Moreover, we have seen above that

$$
[2,1,3] *[2,1,3]=[2,-1,3] .
$$

Hence we see that the map

$$
\begin{aligned}
{[1,1,6] } & \mapsto 0, \\
{[2,1,3] } & \mapsto 1, \\
{[2,-1,3] } & \mapsto 2,
\end{aligned}
$$

is an isomorphism from $\mathrm{Cl}(-23)$ to $\mathbb{Z} / 3 \mathbb{Z}$.

Problem 5. Show that a primitive, positive definite, reduced form $Q=[a, b, c]$ has order ≤ 2 in the class group $\mathrm{Cl}(D)$ if and only if $b=0, a=b$, or $a=c$.

Solution 5. Let $Q^{\prime}=[a,-b, c]$ be the inverse of Q with respect to Gauss composition. Then Q has order ≤ 2 in the class group if and only if Q is equivalent to Q^{\prime}. We distinguish two cases:

- $|b|<a<c$. Then Q^{\prime} is also reduced, so $Q^{\prime} \sim Q$ is equivalent to $Q^{\prime}=Q$, which means $b=0$.
- $a=b$: In this case $Q^{\prime}=[a,-b, c]=[a,-a, c]$ is equivalent to $Q=[a, b, c]$ via $Q=Q^{\prime} \circ T$.
- $a=c$. In this case $Q^{\prime}=[a,-b, c]=[a,-b, a]$ is equivalent to $Q=[a, b, c]$ via $Q=Q^{\prime} \circ S$.

Problem 6 (Homework). Show that $\mathrm{Cl}(-39)$ has order 4. Is it isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ or to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$?

Solution 6. Going through the reduction algorithm, we obtain the four reduced forms

$$
[1,1,10], \quad[2,1,5], \quad[2,-1,5], \quad[3,3,4],
$$

of discriminant -39 , so we have class number $h(-39)=4$. Every abelian group of order 4 is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$. However, since $[2,1,5]$ is the inverse of $[2,-1,5]$ (i.e. it is not its own inverse), $[2,1,5]$ must have order 4 (since the order of an element in a finite group divides the order of the group). Hence $\mathrm{Cl}(-39)$ is cyclic of order 4, and thus isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$.

Alternatively, we can use that in $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ every element has order ≤ 2, but by the last problem, only $[1,1,10]$ and $[3,3,4]$ have order ≤ 2 in $\mathrm{Cl}(-39)$, so the two groups cannot be isomorphic.

One can also use Gauss composition to show directly that

$$
[2,1,5] *[2,1,5]=[3,3,4], \quad[2,1,5] *[3,3,4]=[2,-1,5], \quad[2,1,5] *[2,-1,5]=[1,1,10]=1_{\mathrm{Cl}(-39)},
$$ so mapping $[2,1,5]$ to $1 \in \mathbb{Z} / 4 \mathbb{Z}$ gives an explicit isomorphism.

Problem 7 (sage). Write a program which computes (the reduced representative of) the Gauss composition of two positive definite united forms.

