Elementary Number Theory - Exercise 9b ETH Zürich - Dr. Markus Schwagenscheidt - Spring Term 2023

Problem 1. Show that the inverse of a primitive form [a, b, c] in the class group is given by

$$[a, b, c]^{-1} = [a, -b, c].$$

Solution 1. Note that $[a, -b, c] \circ S = [c, b, a]$. Moreover, the forms [a, b, c] and [c, b, a] are united since [a, b, c] is primitive, and the two forms are already of the shape $[a_1, B, a_2C]$ and $[a_2, B, a_1C]$, with $a_1 = a, a_2 = c, B = b$, and C = 1. Hence, the Gauss composition of [a, b, c] and [c, b, a] is defined by

$$[a, b, c] * [c, b, a] = [ac, b, 1].$$

Since the form on the right represents 1, it is equivalent to the principal form, which is the identity in the class group CL(D).

Problem 2. Let $Q_1 = [a_1, b_1, c_1]$ and $Q_2 = [a_2, b_2, c_2]$ be united, and let $Q_1 \sim [a_1, B, a_2C]$ and $Q_2 \sim [a_2, B, a_1C]$. We defined the Gauss composion

$$Q_1 * Q_2 = [a_1 a_2, B, C].$$

Show that we have

$$(a_1x^2 + Bxy + a_2Cy^2)(a_2z^2 + Bzw + a_1Cw^2) = a_1a_2X^2 + BXY + CY^2,$$

where X = xz - Cyw and $Y = a_1xw + a_2yz + Byw$. In particular, deduce that the Gauss composition $Q_1 * Q_2$ represents all products of numbers represented by Q_1 and Q_2 .

Solution 2. This can be proved by multiplying out both sides. We omit the details of the computation.

Note that the identity can be rewritten as

$$[a_1, B, a_2C](x, y) \cdot [a_2, B, a_1C](z, w) = (Q_1 * Q_2)(X, Y),$$

so $Q_1 * Q_2$ represents all the products of numbers represented by $[a_1, B, a_2C]$ and $[a_2, B, a_1C]$. Since equivalent forms represent the same numbers, $Q_1 * Q_2$ represents all the products of numbers represented by Q_1 and Q_2 .

Problem 3. Show that the Gauss composition of [2, 1, 3] with itself is given by [2, -1, 3].

Solution 3. Note that [2, 1, 3] has discriminant D = -23 and is primitive. Since $gcd(2, 2, \frac{1+1}{2}) = 1$, the "two" forms [2, 1, 3] and [2, 1, 3] are united. We need to find B such that $B \equiv b_1 \pmod{2a_1}$, $B \equiv b_2 \pmod{2a_2}$, and $B^2 \equiv D \pmod{4a_1a_2}$, which in our case means

$$B \equiv 1 \pmod{4},$$
$$B^2 \equiv -23 \equiv 9 \pmod{16}.$$

A suitable choice would be B = -3, hence $C = \frac{B^2 - D}{4a_1 a_2} = 2$ and indeed we have

 $[2,1,3]\sim [2,-3,4]=[2,B,2C],$

via the matrix T^{-2} . The composition is now given by

$$[2,1,3] * [2,1,3] = [2, B, 2C] * [2, B, 2C] = [4, B, C] = [4, -3, 2].$$

Applying S and then T^{-1} we see that

$$[4, -3, 2] \sim [2, 3, 4] \sim [2, -1, 3].$$

Problem 4. Construct a group isomorphism from Cl(-23) to $\mathbb{Z}/3\mathbb{Z}$.

Solution 4. We first determine the reduced forms of discriminant -23. The possible integers a > 0 with $a \le \sqrt{-D/3} = \sqrt{23/3} < 3$ are given by a = 1 and a = 2. For a = 1 the possible b with $|b| \le a$ are b = 0 and $b = \pm 1$. Now b = 0 has the wrong parity, but $b = \pm 1$ leads to the forms $[1, \pm 1, 6]$, of which only

[1, 1, 6]

is reduced. For a = 2 we can take $b = 0, \pm 1, \pm 2$, which leads to the two reduced form $[2, \pm 1, 3]$. In total, we obtain the three reduced forms

$$[1, 1, 6], [2, 1, 3], [2, -1, 3].$$

Hence, the class group $\operatorname{Cl}(-23)$ has order 3. It follows from a general result of basic group theory that $\operatorname{Cl}(-23)$ is isomorphic to $\mathbb{Z}/3\mathbb{Z}$, but in this case we can make this more explicit. We know that [1, 1, 6] is the identity with respect to Gauss composition, and [2, -1, 3] is the inverse of [2, 1, 3]. Moreover, we have seen above that

$$[2, 1, 3] * [2, 1, 3] = [2, -1, 3].$$

Hence we see that the map

$$[1, 1, 6] \mapsto 0, [2, 1, 3] \mapsto 1, 2, -1, 3] \mapsto 2,$$

is an isomorphism from Cl(-23) to $\mathbb{Z}/3\mathbb{Z}$.

Problem 5. Show that a primitive, positive definite, reduced form Q = [a, b, c] has order ≤ 2 in the class group Cl(D) if and only if b = 0, a = b, or a = c.

Solution 5. Let Q' = [a, -b, c] be the inverse of Q with respect to Gauss composition. Then Q has order ≤ 2 in the class group if and only if Q is equivalent to Q'. We distinguish two cases:

• |b| < a < c. Then Q' is also reduced, so $Q' \sim Q$ is equivalent to Q' = Q, which means b = 0.

- a = b: In this case Q' = [a, -b, c] = [a, -a, c] is equivalent to Q = [a, b, c] via $Q = Q' \circ T$.
- a = c. In this case Q' = [a, -b, c] = [a, -b, a] is equivalent to Q = [a, b, c] via $Q = Q' \circ S$.

Problem 6 (Homework). Show that Cl(-39) has order 4. Is it isomorphic to $\mathbb{Z}/4\mathbb{Z}$ or to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$?

Solution 6. Going through the reduction algorithm, we obtain the four reduced forms

$$[1, 1, 10], [2, 1, 5], [2, -1, 5], [3, 3, 4],$$

of discriminant -39, so we have class number h(-39) = 4. Every abelian group of order 4 is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$. However, since [2, 1, 5] is the inverse of [2, -1, 5] (i.e. it is not its own inverse), [2, 1, 5] must have order 4 (since the order of an element in a finite group divides the order of the group). Hence Cl(-39) is cyclic of order 4, and thus isomorphic to $\mathbb{Z}/4\mathbb{Z}$.

Alternatively, we can use that in $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ every element has order ≤ 2 , but by the last problem, only [1, 1, 10] and [3, 3, 4] have order ≤ 2 in Cl(-39), so the two groups cannot be isomorphic.

One can also use Gauss composition to show directly that

 $[2,1,5]*[2,1,5] = [3,3,4], \quad [2,1,5]*[3,3,4] = [2,-1,5], \quad [2,1,5]*[2,-1,5] = [1,1,10] = 1_{\mathrm{Cl}(-39)},$

so mapping [2, 1, 5] to $1 \in \mathbb{Z}/4\mathbb{Z}$ gives an explicit isomorphism.

Problem 7 (sage). Write a program which computes (the reduced representative of) the Gauss composition of two positive definite united forms.