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Primes and Divisibility
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Euclid: There are infinitely many primes.

Fundamental Theorem of Arithmetic. Every natural number
n > 1 has a prime factorization

n=pi-pr,

which is unique up to order.

Division with remainder: a = gb + r with 0 < r < |b|.

Bézout’s Lemma: There exist a, b € Z with gecd(a, b) = ax + by.
Euclidean Algorithm: Computes gcd(a, b), as well as x, y € Z with
ged(a, b) = ax + by.

Bertrand’s Postulate: There's always a prime between n and 2n.

Prime Number Theorem: 7(x) ~ foaG for large x.



Number-theoretic functions

v

vV vvyYyyVvYyy

Important examples: e(n), 1(n), ok(n),o(n), 7(n),(n), u(n).
Basic properties of multiplicative functions: f(1) =1, f- g is
multiplicative.

Summatory function F(n) =3_,, f(d)
Examples: 3_;,¢(d) = nand 3°,, u(d) = {é: :tgejwils?e.
Theorem. f multiplicative < F multiplicative.

Dirichlet convolution (f x g)(n) = -, f(d)g(n/d).
Proposition. f with f(1) # 0 has an inverse w.r.t. convolution.
Moebius inversion formula: F =fx1 < f = F x p.

Important application: Proof that ¢ is multiplicative.

. . . _ 1
Explicit formula: o(n) = n[],, (1 - 5).



Perfect and amicable numbers
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Definition. n is perfect if it is equal to the sum of its proper
divisors, i.e. o(n) = 2n.

Theorem (Euclid, Euler): An even n is perfect iff it is of the form
n=2""12m—-1) and 27 —1is prime

for some m € N.

First few are 6, 28,496, 8128.

Lemma. If 2™ — 1 is prime, then m must be prime.
Definition. M, = 2P — 1 the p-th Mersenne number.

Definition. m, n are amicable if m is the sum of the proper divisors
of n, and vice versa. Smallest pair is (220, 284).

Thabit’s Rule: If
Te=3-2kx—1, T,;=3-2kx1-1, R, =9-221_1

are all prime, then m = 2K T Ty and n = 2KR, are amicable.



Modular arithmetic

> Proposition. a has an inverse modulo m iff ged(a, m) = 1.

» Chinese Remainder Theorem. If my,..., my, are pairwise coprime,
then the system

x=a (modm), ..., x=a (mod my)

has a unique solution modulo m = [ m;.
» Euler-Fermat. If gcd(a, m) =1 then

a?(M =1 (mod m).
» Fermat’s Little Theorem. If gcd(a, p) = 1 then
> 1=1 (mod p).

> Applications:

1. Computing inverse modulo m.
2. Computing powers modulo m.



Lagrange, Wilson, and Wolstenholme

> Lagrange A polynomial f € Z[x] whose coefficients are not all
divisible by p has at most deg(f) roots modulo p.

» Wilson n > 1is prime iff (n —1)! = —1 (mod n).
» Wolstenholme For p > 3 the numerator of

R
2 3 p—1
is divisible by p2.
» Proof idea: Consider the polynomials

gx)=x"1—1,  h(x)=(x-1)(x=2)-(x=(p—1))

and use Fermat's Little Theorem and Lagrange to deduce
g(x) — h(x) =0 (mod p). Then look at the constant and linear
coefficient in g(x) — h(x).



Quadratic residues

1 if a is a quadratic residue mod p,
» Definition. (%) =< —1 if ais a quadratic nonresidue mod p,
0, ifp]la

» Theorem. Half of the elements in (Z /p7Z)* are quadratic residues.
> Euler’s criterion. 2"z = (%) (mod p) if ged(a, p) = 1.
» Theorem. Legendre symbol is completely multiplicative.

1) _ {1, if p=1 (mod 4),

» First supplement. (‘7 1 i 3 (mod 4)
— Itp= mo .

1, ifp=+1 (mod 8),
» Second supplement. (%) _{ "p (mod 8)

—1 if p=+£3 (mod 8).

» Quadratic reciprocity. (§> (g) = (—1)%%.

» Algorithm. Computation of the Jacobi symbol using quadratic
reciprocity, but without factoring.



Primality testing

> Fermat test: Choose a and check if 27! =1 (mod n).

» Carmichael number: n composite such that a"~! =1 (mod n)
whenever gcd(a, n) = 1. Example: 561

» Korselt’s criterion: n is Carmichael iff n square-free and
(p—=1)| (n—1) for every prime p | n.

> Solovay-Strassen test: Choose a and check 2"z = (2) (mod n).

» Theorem. There are no analogs of Carmichael numbers that can
fool the Solovay-Strassen test.



The RSA cryptosystem
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Key generation:

1.
2.
3.
4.
5.

Choose two large primes p, q.

Compute RSA modulus N = pq.

Compute ¢(N) = (p —1)(q — 1).

Choose public key e with 1 < e < ¢(N) and ged(e, p(N)) = 1.
Compute private key d with 1 < d < p(N) and ed =1 (mod ¢(N)).

Encode a message m as a natural number.

Encryption: ¢ = m® (mod N).

Decryption: m = c? (mod N).
Proof that this works: Euler-Fermat, at least if gcd(m, N) = 1.
Important: Long message m > N has to be split into blocks < /.



Sums of squares

» Fermat: An odd prime p is a sum of two squares iff p =1 (mod 4).

> Legendre: A number nis a sum of three squares iff it is not of the
form 42(8b+ 7).
» Lagrange: Every natural number is a sum of four squares.
> Proof ingredients:
1. Euler's four square identity, so we can reduce to primes p.
2. Show that mp = x? + x3 + x2 + xZ for some m.
3. Method of infinite descent: If m > 1, construct a new solution such

that y2 + y3 + y2 + y2 = rp with r < m.
4. Continue until m = 1.



Binary quadratic forms
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Q(x,y) = ax? + bxy + cy?, discriminant D = b? — 4ac.

Lemma. @ positive definite iff D < 0 and a > 0.

SLy(Z) acts on quadratic forms by Q o M = M*QM.

Equivalent forms have the same discriminant and represent the same
numbers.

Theorem. For fixed D, there are finitely many SLy(Z)-classes of
quadratic forms of discriminant D.

Proof using weakly reduced forms,

b < la] <[c|

and reduction algorithm.

Definition. For D < 0, the class number h(D) is the number of
SLy(Z)-classes of primitive positive definite quadratic forms of
discriminant D.

Algorithm to compute the class number: list all reduced forms of
discriminant D.

Gauss composition turns the set of egivalence classes into a finite
abelian group (GAUSS COMPOTISITION WILL NOT BE ASKED
IN THE EXAM).



Pell's equation

Pell’s equation x? — dy? = 1 with d > 0 non-square.
Trivial solutions (x,y) = (£1,0).
Fundamental solution (x1,y1) € N? with minimal x > 1.

Lagrange: Every solution with x > 1 is of the form (x,, y,) where
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Xn + )/n\/g = (Xl + yl\/g)n'

> Solutions (x, y) yield rational approximation to Vd with




Continued fractions
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T -
al+az+...

Continued fraction [ag, ..., a,] = ap +

Algorithm to compute the expansion of a rational number.
Quadratic irrational w satisfies aw? + bw + ¢ = 0 with a, b, c € Z.
Theorem. w quadratic irrational iff w has a periodic CFE.

Algorithm to compute expansion of quadratic irrational, e.g. 1+2‘/§.

Theorem. v/d has CFE of the form

\/g: [30731,...,(91,7_17230]7 dp = L\/EJ

Main Theorem. Let n be minimal in v/d above.
1. If nis even, put £ = [ag, ..., an—1].
2. If nis odd, put f = [ao, ..., a2n—1].

Then (x, y) is the fundamental solution to x? — dy? = 1.



Pythagorean Triples

> Pythagorean triple: (a, b, c) € N> with a® + b? = 2.
» Theorem. Every primitive Pythagorean triple with odd a is of the
form
(m? — n?,2mn, m* 4 n?)

for unique coprime m > n of different parity.



Congruent numbers

» Congruent number n: area of a right-angled triangle with rational

side lengths.
» Example: n =6 is congruent, the triangle has sides (3,4,5).
> Lemma. n is congruent iff dn is congruent for every d € Q\{0}.
> Fermat: 1,2, 3 are not congruent numbers.
» Corollary: x* + y* = z* has no non-trivial integer solutions.
» Tunnell: Let n be square-free, and put

=#{(x,y,z VAR 2x% + y* 4 82° = n},

A(n) (x,y,2)

B(n) = #{(x,y,z) € Z* : 2x* + y? + 322% = n},

C(n) = #{(x,y,z) € Z* : 8x* 4+ 2y? + 162> = n},
(n) (x,y,2)

=#{(x,y,z e’ : 8x% +2y% + 642> = n}.

Then:

1. If nis an odd congruent number, then A(n) = 2B(n).
2. If nis an even congruent number, then C(n) = 2D(n).

» Example 10 is not a congruent number.



Partitions - WILL NOT BE ASKED IN THE EXAM

> p(n) counts the number of partitions of n.

» Example: p(4) =5 since
4=3+1=2+4+2=2+1+1=1+1+1+1

» Generating function:

o0 oo 1
;p(n)X"=nH:11_Xn-

» Euler’s Pentagonal Number Theorem:

H(]‘ _ Xn) _ Z (71)ka(3k71)/2'
n=1 k=—o00

» Recursions:

» p(n) =3 \_, p(n k) and p(n, k) = p(n— 1,k — 1) + p(n — k, k).
> p(n) = 7 3%y p(n — K)o (k) where o (k) = 3=, d.

> p(n) = 52, (-1 [p (n— KR 4 p (n - )]



