Elementary Number Theory - Overview

Markus Schwagenscheidt ETH Zürich

Spring semester 2023

Primes and Divisibility

- Euclid: There are infinitely many primes.
- Fundamental Theorem of Arithmetic. Every natural number $n>1$ has a prime factorization

$$
n=p_{1} \cdots p_{r}
$$

which is unique up to order.

- Division with remainder: $a=q b+r$ with $0 \leq r<|b|$.
- Bézout's Lemma: There exist $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=a x+b y$.
- Euclidean Algorithm: Computes $\operatorname{gcd}(a, b)$, as well as $x, y \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=a x+b y$.
- Bertrand's Postulate: There's always a prime between n and $2 n$.
- Prime Number Theorem: $\pi(x) \sim \frac{x}{\log (x)}$ for large x.

Number-theoretic functions

- Important examples: $e(n), \mathbf{1}(n), \sigma_{k}(n), \sigma(n), \tau(n), \varphi(n), \mu(n)$.
- Basic properties of multiplicative functions: $f(1)=1, f \cdot g$ is multiplicative.
- Summatory function $F(n)=\sum_{d \mid n} f(d)$
- Examples: $\sum_{d \mid n} \varphi(d)=n$ and $\sum_{d \mid n} \mu(d)= \begin{cases}1, & \text { if } n=1, \\ 0, & \text { otherwise. }\end{cases}$
- Theorem. f multiplicative $\Leftrightarrow F$ multiplicative.
- Dirichlet convolution $(f * g)(n)=\sum_{d \mid n} f(d) g(n / d)$.
- Proposition. f with $f(1) \neq 0$ has an inverse w.r.t. convolution.
- Moebius inversion formula: $F=f * \mathbf{1} \Leftrightarrow f=F * \mu$.
- Important application: Proof that φ is multiplicative.
- Explicit formula: $\varphi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)$.

Perfect and amicable numbers

- Definition. n is perfect if it is equal to the sum of its proper divisors, i.e. $\sigma(n)=2 n$.
- Theorem (Euclid, Euler): An even n is perfect iff it is of the form

$$
n=2^{m-1}\left(2^{m}-1\right) \quad \text { and } \quad 2^{m}-1 \text { is prime }
$$

for some $m \in \mathbb{N}$.

- First few are $6,28,496,8128$.
- Lemma. If $2^{m}-1$ is prime, then m must be prime.
- Definition. $M_{p}=2^{p}-1$ the p-th Mersenne number.
- Definition. m, n are amicable if m is the sum of the proper divisors of n, and vice versa. Smallest pair is $(220,284)$.
- Thabit's Rule: If

$$
T_{k}=3 \cdot 2^{k}-1, \quad T_{k-1}=3 \cdot 2^{k-1}-1, \quad R_{k}=9 \cdot 2^{2 k-1}-1
$$

are all prime, then $m=2^{k} T_{k} T_{k-1}$ and $n=2^{k} R_{k}$ are amicable.

Modular arithmetic

- Proposition. a has an inverse modulo m iff $\operatorname{gcd}(a, m)=1$.
- Chinese Remainder Theorem. If m_{1}, \ldots, m_{k} are pairwise coprime, then the system

$$
x \equiv a_{1} \quad\left(\bmod m_{1}\right), \quad \ldots, \quad x \equiv a_{k} \quad\left(\bmod m_{k}\right)
$$

has a unique solution modulo $m=\prod m_{i}$.

- Euler-Fermat. If $\operatorname{gcd}(a, m)=1$ then

$$
a^{\varphi(m)} \equiv 1 \quad(\bmod m) .
$$

- Fermat's Little Theorem. If $\operatorname{gcd}(a, p)=1$ then

$$
a^{p-1} \equiv 1 \quad(\bmod p) .
$$

- Applications:

1. Computing inverse modulo m.
2. Computing powers modulo m.

Lagrange, Wilson, and Wolstenholme

- Lagrange A polynomial $f \in \mathbb{Z}[x]$ whose coefficients are not all divisible by p has at most $\operatorname{deg}(f)$ roots modulo p.
- Wilson $n>1$ is prime $\operatorname{iff}(n-1)!\equiv-1(\bmod n)$.
- Wolstenholme For $p>3$ the numerator of

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{p-1}
$$

is divisible by p^{2}.

- Proof idea: Consider the polynomials

$$
g(x)=x^{p-1}-1, \quad h(x)=(x-1)(x-2) \cdots(x-(p-1))
$$

and use Fermat's Little Theorem and Lagrange to deduce $g(x)-h(x) \equiv 0(\bmod p)$. Then look at the constant and linear coefficient in $g(x)-h(x)$.

Quadratic residues

- Definition. $\left(\frac{a}{p}\right)= \begin{cases}1 & \text { if } a \text { is a quadratic residue } \bmod p, \\ -1 & \text { if } a \text { is a quadratic nonresidue } \bmod p, \\ 0, & \text { if } p \mid a .\end{cases}$
- Theorem. Half of the elements in $(\mathbb{Z} / p \mathbb{Z})^{*}$ are quadratic residues.
- Euler's criterion. $a^{\frac{p-1}{2}} \equiv\left(\frac{a}{p}\right)(\bmod p)$ if $\operatorname{gcd}(a, p)=1$.
- Theorem. Legendre symbol is completely multiplicative.
- First supplement. $\left(\frac{-1}{p}\right)= \begin{cases}1, & \text { if } p \equiv 1(\bmod 4), \\ -1 & \text { if } p \equiv 3(\bmod 4) .\end{cases}$
- Second supplement. $\left(\frac{2}{p}\right)= \begin{cases}1, & \text { if } p \equiv \pm 1(\bmod 8), \\ -1 & \text { if } p \equiv \pm 3(\bmod 8) .\end{cases}$
- Quadratic reciprocity. $\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2} \frac{q-1}{2}}$.
- Algorithm. Computation of the Jacobi symbol using quadratic reciprocity, but without factoring.

Primality testing

- Fermat test: Choose a and check if $a^{n-1} \equiv 1(\bmod n)$.
- Carmichael number: n composite such that $a^{n-1} \equiv 1(\bmod n)$ whenever $\operatorname{gcd}(a, n)=1$. Example: 561
- Korselt's criterion: n is Carmichael iff n square-free and $(p-1) \mid(n-1)$ for every prime $p \mid n$.
- Solovay-Strassen test: Choose a and check $a^{\frac{n-1}{2}} \equiv\left(\frac{a}{n}\right)(\bmod n)$.
- Theorem. There are no analogs of Carmichael numbers that can fool the Solovay-Strassen test.

The RSA cryptosystem

- Key generation:

1. Choose two large primes p, q.
2. Compute RSA modulus $N=p q$.
3. Compute $\varphi(N)=(p-1)(q-1)$.
4. Choose public key e with $1<e<\varphi(N)$ and $\operatorname{gcd}(e, \varphi(N))=1$.
5. Compute private key d with $1<d<\varphi(N)$ and $e d \equiv 1(\bmod \varphi(N))$.

- Encode a message m as a natural number.
- Encryption: $c=m^{e}(\bmod N)$.
- Decryption: $m=c^{d}(\bmod N)$.
- Proof that this works: Euler-Fermat, at least if $\operatorname{gcd}(m, N)=1$.
- Important: Long message $m>N$ has to be split into blocks $<N$.

Sums of squares

- Fermat: An odd prime p is a sum of two squares iff $p \equiv 1(\bmod 4)$.
- Legendre: A number n is a sum of three squares iff it is not of the form $4^{a}(8 b+7)$.
- Lagrange: Every natural number is a sum of four squares.
- Proof ingredients:

1. Euler's four square identity, so we can reduce to primes p.
2. Show that $m p=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$ for some m.
3. Method of infinite descent: If $m>1$, construct a new solution such that $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+y_{4}^{2}=r p$ with $r<m$.
4. Continue until $m=1$.

Binary quadratic forms

- $Q(x, y)=a x^{2}+b x y+c y^{2}$, discriminant $D=b^{2}-4 a c$.
- Lemma. Q positive definite iff $D<0$ and $a>0$.
- $\mathrm{SL}_{2}(\mathbb{Z})$ acts on quadratic forms by $Q \circ M=M^{t} Q M$.
- Equivalent forms have the same discriminant and represent the same numbers.
- Theorem. For fixed D, there are finitely many $\mathrm{SL}_{2}(\mathbb{Z})$-classes of quadratic forms of discriminant D.
- Proof using weakly reduced forms,

$$
|b| \leq|a| \leq|c|
$$

and reduction algorithm.

- Definition. For $D<0$, the class number $h(D)$ is the number of $\mathrm{SL}_{2}(\mathbb{Z})$-classes of primitive positive definite quadratic forms of discriminant D.
- Algorithm to compute the class number: list all reduced forms of discriminant D.
- Gauss composition turns the set of eqivalence classes into a finite abelian group (GAUSS COMPOTISITION WILL NOT BE ASKED IN THE EXAM).

Pell's equation

- Pell's equation $x^{2}-d y^{2}=1$ with $d>0$ non-square.
- Trivial solutions $(x, y)=(\pm 1,0)$.
- Fundamental solution $\left(x_{1}, y_{1}\right) \in \mathbb{N}^{2}$ with minimal $x>1$.
- Lagrange: Every solution with $x>1$ is of the form $\left(x_{n}, y_{n}\right)$ where

$$
x_{n}+y_{n} \sqrt{d}=\left(x_{1}+y_{1} \sqrt{d}\right)^{n} .
$$

- Solutions (x, y) yield rational approximation $\frac{x}{y}$ to \sqrt{d} with

$$
\left|\frac{x}{y}-\sqrt{d}\right|<\frac{1}{2 y^{2}}
$$

Continued fractions

- Continued fraction $\left[a_{0}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}$.
- Algorithm to compute the expansion of a rational number.
- Quadratic irrational w satisfies $a w^{2}+b w+c=0$ with $a, b, c \in \mathbb{Z}$.
- Theorem. w quadratic irrational iff w has a periodic CFE.
- Algorithm to compute expansion of quadratic irrational, e.g. $\frac{1+\sqrt{5}}{2}$.
- Theorem. \sqrt{d} has CFE of the form

$$
\sqrt{d}=\left[a_{0}, \overline{a_{1}, \ldots, a_{n-1}, 2 a_{0}}\right], \quad a_{0}=\lfloor\sqrt{d}\rfloor .
$$

- Main Theorem. Let n be minimal in \sqrt{d} above.

1. If n is even, put $\frac{x}{y}=\left[a_{0}, \ldots, a_{n-1}\right]$.
2. If n is odd, put $\frac{x}{y}=\left[a_{0}, \ldots, a_{2 n-1}\right]$.

Then (x, y) is the fundamental solution to $x^{2}-d y^{2}=1$.

Pythagorean Triples

- Pythagorean triple: $(a, b, c) \in \mathbb{N}^{3}$ with $a^{2}+b^{2}=c^{2}$.
- Theorem. Every primitive Pythagorean triple with odd a is of the form

$$
\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right)
$$

for unique coprime $m>n$ of different parity.

Congruent numbers

- Congruent number n : area of a right-angled triangle with rational side lengths.
- Example: $n=6$ is congruent, the triangle has sides $(3,4,5)$.
- Lemma. n is congruent iff $d^{2} n$ is congruent for every $d \in \mathbb{Q} \backslash\{0\}$.
- Fermat: 1, 2, 3 are not congruent numbers.
- Corollary: $x^{4}+y^{4}=z^{4}$ has no non-trivial integer solutions.
- Tunnell: Let n be square-free, and put

$$
\begin{aligned}
& A(n)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}: 2 x^{2}+y^{2}+8 z^{2}=n\right\} \\
& B(n)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}: 2 x^{2}+y^{2}+32 z^{2}=n\right\} \\
& C(n)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}: 8 x^{2}+2 y^{2}+16 z^{2}=n\right\} \\
& D(n)=\#\left\{(x, y, z) \in \mathbb{Z}^{3}: 8 x^{2}+2 y^{2}+64 z^{2}=n\right\}
\end{aligned}
$$

Then:

1. If n is an odd congruent number, then $A(n)=2 B(n)$.
2. If n is an even congruent number, then $C(n)=2 D(n)$.

- Example 10 is not a congruent number.

Partitions - WILL NOT BE ASKED IN THE EXAM

- $p(n)$ counts the number of partitions of n.
- Example: $p(4)=5$ since

$$
4=3+1=2+2=2+1+1=1+1+1+1 .
$$

- Generating function:

$$
\sum_{n=0}^{\infty} p(n) x^{n}=\prod_{n=1}^{\infty} \frac{1}{1-x^{n}}
$$

- Euler's Pentagonal Number Theorem:

$$
\prod_{n=1}^{\infty}\left(1-x^{n}\right)=\sum_{k=-\infty}^{\infty}(-1)^{k} x^{k(3 k-1) / 2}
$$

- Recursions:
- $p(n)=\sum_{k=1}^{n} p(n, k)$ and $p(n, k)=p(n-1, k-1)+p(n-k, k)$.
- $p(n)=\frac{1}{n} \sum_{k=1}^{n} p(n-k) \sigma(k)$ where $\sigma(k)=\sum_{d \mid k} d$.
- $p(n)=\sum_{k=1}^{\infty}(-1)^{k+1}\left[p\left(n-\frac{k(3 k-1)}{2}\right)+p\left(n-\frac{k(3 k+1)}{2}\right)\right]$.

