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Primes and Divisibility

I Euclid: There are infinitely many primes.

I Fundamental Theorem of Arithmetic. Every natural number
n > 1 has a prime factorization

n = p1 · · · pr ,

which is unique up to order.

I Division with remainder: a = qb + r with 0 ≤ r < |b|.
I Bézout’s Lemma: There exist a, b ∈ Z with gcd(a, b) = ax + by .

I Euclidean Algorithm: Computes gcd(a, b), as well as x , y ∈ Z with
gcd(a, b) = ax + by .

I Bertrand’s Postulate: There’s always a prime between n and 2n.

I Prime Number Theorem: π(x) ∼ x
log(x) for large x .



Number-theoretic functions

I Important examples: e(n), 1(n), σk(n), σ(n), τ(n), ϕ(n), µ(n).

I Basic properties of multiplicative functions: f (1) = 1, f · g is
multiplicative.

I Summatory function F (n) =
∑

d|n f (d)

I Examples:
∑

d|n ϕ(d) = n and
∑

d|n µ(d) =

{
1, if n = 1,

0, otherwise.

I Theorem. f multiplicative ⇔ F multiplicative.

I Dirichlet convolution (f ∗ g)(n) =
∑

d|n f (d)g(n/d).

I Proposition. f with f (1) 6= 0 has an inverse w.r.t. convolution.

I Moebius inversion formula: F = f ∗ 1⇔ f = F ∗ µ.

I Important application: Proof that ϕ is multiplicative.

I Explicit formula: ϕ(n) = n
∏

p|n

(
1− 1

p

)
.



Perfect and amicable numbers

I Definition. n is perfect if it is equal to the sum of its proper
divisors, i.e. σ(n) = 2n.

I Theorem (Euclid, Euler): An even n is perfect iff it is of the form

n = 2m−1(2m − 1) and 2m − 1 is prime

for some m ∈ N.

I First few are 6, 28, 496, 8128.

I Lemma. If 2m − 1 is prime, then m must be prime.

I Definition. Mp = 2p − 1 the p-th Mersenne number.

I Definition. m, n are amicable if m is the sum of the proper divisors
of n, and vice versa. Smallest pair is (220, 284).

I Thabit’s Rule: If

Tk = 3 · 2k − 1, Tk−1 = 3 · 2k−1 − 1, Rk = 9 · 22k−1 − 1

are all prime, then m = 2kTkTk−1 and n = 2kRk are amicable.



Modular arithmetic

I Proposition. a has an inverse modulo m iff gcd(a,m) = 1.

I Chinese Remainder Theorem. If m1, . . . ,mk are pairwise coprime,
then the system

x ≡ a1 (mod m1), . . . , x ≡ ak (mod mk)

has a unique solution modulo m =
∏

mi .

I Euler-Fermat. If gcd(a,m) = 1 then

aϕ(m) ≡ 1 (mod m).

I Fermat’s Little Theorem. If gcd(a, p) = 1 then

ap−1 ≡ 1 (mod p).

I Applications:

1. Computing inverse modulo m.
2. Computing powers modulo m.



Lagrange, Wilson, and Wolstenholme

I Lagrange A polynomial f ∈ Z[x ] whose coefficients are not all
divisible by p has at most deg(f ) roots modulo p.

I Wilson n > 1 is prime iff (n − 1)! ≡ −1 (mod n).

I Wolstenholme For p > 3 the numerator of

1 +
1

2
+

1

3
+ · · ·+ 1

p − 1

is divisible by p2.

I Proof idea: Consider the polynomials

g(x) = xp−1 − 1, h(x) = (x − 1)(x − 2) · · · (x − (p − 1))

and use Fermat’s Little Theorem and Lagrange to deduce
g(x)− h(x) ≡ 0 (mod p). Then look at the constant and linear
coefficient in g(x)− h(x).



Quadratic residues

I Definition.
(

a
p

)
=


1 if a is a quadratic residue mod p,

−1 if a is a quadratic nonresidue mod p,

0, if p | a.
I Theorem. Half of the elements in (Z /p Z)∗ are quadratic residues.

I Euler’s criterion. a
p−1
2 ≡

(
a
p

)
(mod p) if gcd(a, p) = 1.

I Theorem. Legendre symbol is completely multiplicative.

I First supplement.
(
−1
p

)
=

{
1, if p ≡ 1 (mod 4),

−1 if p ≡ 3 (mod 4).

I Second supplement.
(

2
p

)
=

{
1, if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).

I Quadratic reciprocity.
(

p
q

)(
q
p

)
= (−1)

p−1
2

q−1
2 .

I Algorithm. Computation of the Jacobi symbol using quadratic
reciprocity, but without factoring.



Primality testing

I Fermat test: Choose a and check if an−1 ≡ 1 (mod n).

I Carmichael number: n composite such that an−1 ≡ 1 (mod n)
whenever gcd(a, n) = 1. Example: 561

I Korselt’s criterion: n is Carmichael iff n square-free and
(p − 1) | (n − 1) for every prime p | n.

I Solovay-Strassen test: Choose a and check a
n−1
2 ≡

(
a
n

)
(mod n).

I Theorem. There are no analogs of Carmichael numbers that can
fool the Solovay-Strassen test.



The RSA cryptosystem

I Key generation:

1. Choose two large primes p, q.
2. Compute RSA modulus N = pq.
3. Compute ϕ(N) = (p − 1)(q − 1).
4. Choose public key e with 1 < e < ϕ(N) and gcd(e, ϕ(N)) = 1.
5. Compute private key d with 1 < d < ϕ(N) and ed ≡ 1 (mod ϕ(N)).

I Encode a message m as a natural number.

I Encryption: c = me (mod N).

I Decryption: m = cd (mod N).

I Proof that this works: Euler-Fermat, at least if gcd(m,N) = 1.

I Important: Long message m > N has to be split into blocks < N.



Sums of squares

I Fermat: An odd prime p is a sum of two squares iff p ≡ 1 (mod 4).

I Legendre: A number n is a sum of three squares iff it is not of the
form 4a(8b + 7).

I Lagrange: Every natural number is a sum of four squares.

I Proof ingredients:

1. Euler’s four square identity, so we can reduce to primes p.
2. Show that mp = x2

1 + x2
2 + x2

3 + x2
4 for some m.

3. Method of infinite descent: If m > 1, construct a new solution such
that y 2

1 + y 2
2 + y 2

3 + y 2
4 = rp with r < m.

4. Continue until m = 1.



Binary quadratic forms

I Q(x , y) = ax2 + bxy + cy2, discriminant D = b2 − 4ac .
I Lemma. Q positive definite iff D < 0 and a > 0.
I SL2(Z) acts on quadratic forms by Q ◦M = M tQM.
I Equivalent forms have the same discriminant and represent the same

numbers.
I Theorem. For fixed D, there are finitely many SL2(Z)-classes of

quadratic forms of discriminant D.
I Proof using weakly reduced forms,

|b| ≤ |a| ≤ |c |

and reduction algorithm.
I Definition. For D < 0, the class number h(D) is the number of

SL2(Z)-classes of primitive positive definite quadratic forms of
discriminant D.

I Algorithm to compute the class number: list all reduced forms of
discriminant D.

I Gauss composition turns the set of eqivalence classes into a finite
abelian group (GAUSS COMPOTISITION WILL NOT BE ASKED
IN THE EXAM).



Pell’s equation

I Pell’s equation x2 − dy2 = 1 with d > 0 non-square.

I Trivial solutions (x , y) = (±1, 0).

I Fundamental solution (x1, y1) ∈ N2 with minimal x > 1.

I Lagrange: Every solution with x > 1 is of the form (xn, yn) where

xn + yn
√
d = (x1 + y1

√
d)n.

I Solutions (x , y) yield rational approximation x
y to

√
d with∣∣∣∣xy −√d

∣∣∣∣ < 1

2y2
.



Continued fractions

I Continued fraction [a0, . . . , an] = a0 + 1
a1+

1
a2+...

.

I Algorithm to compute the expansion of a rational number.

I Quadratic irrational w satisfies aw2 + bw + c = 0 with a, b, c ∈ Z.

I Theorem. w quadratic irrational iff w has a periodic CFE.

I Algorithm to compute expansion of quadratic irrational, e.g. 1+
√
5

2 .

I Theorem.
√
d has CFE of the form

√
d = [a0, a1, . . . , an−1, 2a0], a0 = b

√
dc.

I Main Theorem. Let n be minimal in
√
d above.

1. If n is even, put x
y

= [a0, . . . , an−1].
2. If n is odd, put x

y
= [a0, . . . , a2n−1].

Then (x , y) is the fundamental solution to x2 − dy2 = 1.



Pythagorean Triples

I Pythagorean triple: (a, b, c) ∈ N3 with a2 + b2 = c2.

I Theorem. Every primitive Pythagorean triple with odd a is of the
form

(m2 − n2, 2mn,m2 + n2)

for unique coprime m > n of different parity.



Congruent numbers

I Congruent number n: area of a right-angled triangle with rational
side lengths.

I Example: n = 6 is congruent, the triangle has sides (3, 4, 5).

I Lemma. n is congruent iff d2n is congruent for every d ∈ Q \{0}.
I Fermat: 1, 2, 3 are not congruent numbers.

I Corollary: x4 + y4 = z4 has no non-trivial integer solutions.

I Tunnell: Let n be square-free, and put

A(n) = #{(x , y , z) ∈ Z3 : 2x2 + y2 + 8z2 = n},
B(n) = #{(x , y , z) ∈ Z3 : 2x2 + y2 + 32z2 = n},
C (n) = #{(x , y , z) ∈ Z3 : 8x2 + 2y2 + 16z2 = n},
D(n) = #{(x , y , z) ∈ Z3 : 8x2 + 2y2 + 64z2 = n}.

Then:

1. If n is an odd congruent number, then A(n) = 2B(n).
2. If n is an even congruent number, then C(n) = 2D(n).

I Example 10 is not a congruent number.



Partitions - WILL NOT BE ASKED IN THE EXAM

I p(n) counts the number of partitions of n.

I Example: p(4) = 5 since
4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

I Generating function:

∞∑
n=0

p(n)xn =
∞∏
n=1

1

1− xn
.

I Euler’s Pentagonal Number Theorem:

∞∏
n=1

(1− xn) =
∞∑

k=−∞

(−1)kxk(3k−1)/2.

I Recursions:
I p(n) =

∑n
k=1 p(n, k) and p(n, k) = p(n − 1, k − 1) + p(n − k, k).

I p(n) = 1
n

∑n
k=1 p(n − k)σ(k) where σ(k) =

∑
d|k d .

I p(n) =
∑∞

k=1(−1)k+1
[
p
(
n − k(3k−1)

2

)
+ p

(
n − k(3k+1)

2

)]
.


