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1 Ingredients of Modular Forms

1.1 Modular Group and the Upper Half Plane

In the following, we consider the upper half plane of the complex number plane

H := {z ∈ C | ℑ(z) > 0}

The special linear group of 2× 2 matrices with integer entries

SL2(Z) =
{
M =

(
a b
c d

)
∈ Z2 | det(M) = 1

}
acts on the upper half plane by means of fractional linear transformations (or
Mobius transformations)

z 7→ Mz :=
az + b

cz + d
, M =

(
a b
c d

)
∈ SL2(Z)

For M =

(
a b
c d

)
we have

ℑ(Mz) =
ℑ(z)

|cz + d|2
,

so the action is well-defined. Also, one quickly computes that Iz = z,
where I denotes the identity matrix, and that M(Nz) = (MN)z holds for
M,N ∈ SL2(Z). The group SL2(Z) is also called the modular group.

Examples :

• The matrix T =

(
1 1
0 1

)
acts by translation Tz = z + 1.

• The matrix S =

(
0 −1
1 0

)
acts by inversion on the unit circle Sz = − 1

z .

Note : The modular group SL2(Z) can be generated by the matrices S and
T . A proof of this statement can be found in [3].
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1.2 Fundamental Domain

We now describe a fundamental domain for the operation of SL2(Z) on the upper
half-plane. This is a subset F ⊂ H such that no two distinct points from F are
equivalent under the operation of SL2(Z) and under the operation of SL2(Z)
every point z ∈ H is equivalent to a point in F .

Theorem 1.1. The set

F =

{
z ∈ H

∣∣∣∣ℜ(z) ∈ (
−1

2
,
1

2

]
,

∣∣∣∣ |z| ≥ 1, |z| > 1 for R(z) ∈
(
−1

2
, 0

]}
is a fundamental domain for the operation of SL2(Z) on the upper half-plane.

Proof. We first show that for every z ∈ H there exists a matrix M ∈ SL2(Z)
such that Mz lies in the set

F =

{
z ∈ H||z |≥ 1,R(z) ∈

[
−1

2
,
1

2

]}

The lattice Zz + Z is discrete in C. So there is a pair ( c, d) ∈ Z2\{(0, 0)}
such that

|mz + n| ≥ |cz + d| for all (m,n) ∈ Z2\{(0, 0)}

If we choose M0 =

(
∗ ∗
c d

)
∈ SL2(Z), then it holds that 1

|mz+n|2 ≤ 1
|cz+d|2

and thus
ℑ(Mz) ≤ ℑ (M0z) for all M ∈ SL2(Z)
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We set z0 := M0z and consider z0 + n =

(
1 n
0 1

)
z0 with n ∈ Z. By

choosing n appropriately, we can assume that |ℜ (z0)| ≤ 1
2 , since this does not

change the imaginary part of z0.

If we choose M =

(
0 −1
1 0

)
M0 in (3.1), it follows that.

ℑ (z0) ≥ ℑ
((

0 −1
1 0

)
z0

)
=

ℑ (z0)

|z0|2
,

so |z0|2 ≥ 1. We now note that the points z ∈ H with ℜ(z) = ± 1
2 are equivalent

to each other by the action of the matrix T (z 7→ z + 1). The points z ∈ H on
the left and right half of the arc |z| = 1 are transformed into each other via
S
(
z 7→ − 1

z

)
.

2 Vector Space of Modular Forms

Definition 2.1. Let k ∈ Z. A function f : H → C is called modular form of
weight k for SL2(Z) if the following conditions are satisfied:

• f is holomorphic on H;

• We have

f(Mz) = (cz + d)kf(z) for all z ∈ H and M =

(
a b
c d

)
∈ SL2(Z)

• f is holomorphic in ∞.

If f vanishes in ∞, then f is called a cusp form of weight k for SL2(Z).

We now discuss in detail, the last point in the definition, the holomorphicity
in ∞. In doing so, first note that invariance under the matrix T implies the
1-periodicity of a modular form f . The mapping H → {q ∈ C : 0 < |q| <
1}, z 7→ e2πiz =: q is surjective and holomorphic. Because of the 1-periodicity of

f , the function g(q) = f
(

log q
2πi

)
is well-defined and holomorphic for 0 < |q| < 1.

So g has a Laurent expansion g(q) =
∑

n∈Z a(n)q
n. Now the fact that f is

holomorphic in ∞ means that g(q) =
∑∞

n=0 a(n)q
n. Thus f has a Fourier

expansion of the form

f(z) =

∞∑
n=0

a(n)e2πinz where a(n) ∈ C

If f is a cusp form, then a(0) = 0. Further, a(n) =
∫ 1

0
f(x+iy)e−2πin(x+iy)dx,

where y > 0 is arbitrary.

Remark 2.1. We can make the following remarks :

• Let k ∈ Z be odd. Then it holds

f(z) = f((−I)z) = (−1)kf(z) = −f(z),

so there are no modular forms of odd weight for SL2(Z).
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• Because of SL2(Z) = ⟨S, T ⟩, it suffices to check the transformation prop-
erty, for the matrices S and T .

• Let f be a modular form of weight k for SL2(Z) and g be a modular form
of weight ℓ for SL2(Z). Then, f · g then has weight k + ℓ.

Definition 2.2. For k ∈ Z, let Mk denote the C-vector space of all modular
forms of weight k for SL2(Z) and Sk denote the C-vector space of all cusp forms
of weight k for SL2(Z).

In the following, we determine the dimension of these vector spaces in some
cases. First, we note that Mk = {0} holds for k < 0. First, we derive the
so-called k

12 -formula.

Theorem 2.1. Let k ∈ Z and f ∈ Mk, f ̸≡ 0, be a nontrivial modular form of
weight k for SL2(Z). Then it holds:

1

2
ordi(f) +

1

3
ordρ(f) + ord∞(f) +

∑
z

ordz(f) =
k

12

z ̸= ρ, i

with ρ = e
πi
3 . Here we set

ord∞(f) = min{n : a(n) ̸= 0}, where f(z) =

∞∑
n=0

a(n)qn

Proof. We give a brief sketch of the proof.
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One integrates the function h(z) = f ′(z)
f(z) along the path γε shown in the

figure, which runs counterclockwise along the boundary of the fundamental
domain cut off at height ℑ(z) = T , and uses the residue theorem from complex
analysis. Here, one chooses ε such that γε includes all zeros and poles of f
except ρ and i in F . Then it holds

1

2πi

∫
γε

h(z)dz =
∑
z∈F
z ̸=ρ,i

ordz f.

The integrals over the individual segments of the path then provide the
corresponding contributions in the formula (after letting ε → 0 ).

With the help of simple considerations one can conclude the following state-
ments from the k

12 -formula.

Corollary 2.1.1. It holds:

• Mk = {0}, k < 0;

• M0 = C, S0 = {0};

• M2 = {0};

• dimMk ≤ 1 and Sk = {0} for k = 4, 6, 8, 10.

3 Building Modular Forms and Examples

3.1 Eisenstein Series

We want to introduce the Eisenstein series, which can be seen as building blocks
for modular forms. As explained earlier by analyzing the Weierstrass ℘-function
we are led to the Eisenstein series. The original definition of this depends on
a lattice; however, as we have seen, we can normalize lattices in a certain way
such that the Eisenstein series becomes a function on a parameter z ∈ H.

Definition 3.1. Let k ∈ Z with k > 2. We define the Eisenstein series of
weight k for SL2(Z) by

Gk(z) =
∑
c,d∈Z

(c,d) ̸=(0,0)

1

(cz + d)k
, z ∈ H.

Remark 3.1. For odd k, the terms (cz+ d)k and (−cz− d)k cancel each other
out in the sum, so that in this case it holds Gk ≡ 0.

We now demonstrate that Eisenstein series for k > 2 are modular forms of
weight k for SL2(Z). Holomorphicity on H follows from the convergence of the
Eisenstein series. Further, we show the transformation property for the matrices
S and T , and hence all of SL2(Z).

Gk(Tz) = Gk(z + 1) =
∑
c,d∈Z

(c,d)̸=(0,0)

1

(cz + c+ d)k
= Gk(z) = (0z + 1)kGk(z),
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where for the third equality we performed an index shift. It also holds

Gk(Sz) = Gk(−
1

z
) =

∑
c,d∈Z

(c,d) ̸=(0,0)

1

(c(− 1
z ) + d)k

= zk
∑
c,d∈Z

(c,d)̸=(0,0)

1

(dz − c)k
= (1z + 0)kGk(z).

The following statement about the Fourier expansion of the Eisenstein series
implies the holomorphicity in ∞.

Lemma 3.1. Let k > 2 be even. The Eisenstein series Gk has the Fourier
expansion

Gk(z) = 2ζ(k) +
2(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)q
n,

where q = e2πiz, σl(n) =
∑

0<d|n d
l denotes the divisor sum function, and ζ(s) =∑∞

n=1 n
−s denotes the Riemann zeta function.

In particular, Gk has a Fourier expansion which has no terms with a negative
index, hence is holomorphic in ∞. Thus, we have shown Gk ∈ Mk.

Definition 3.2. For k ∈ Z even and k ≥ 2, the normalized Eisenstein series is
defined as

Ek(z) =
1

2ζ(k)
Gk(z) = 1 +

(2πi)k

ζ(k)(k − 1)!

∞∑
n=1

σk−1(n)q
n.

Using Euler’s formula, one can show that the normalized Eisenstein series
has Fourier expansion

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n,

where Bk denotes the k-th Bernoulli number defined by t
et−1 =

∑∞
n=0

Bn

n! t
n.

Example 3.1. We have

E4(z) = 1 + 240

∞∑
n=1

σ3(n)q
n = 1 + 240q + 2160q2 + 6720q3 + . . . .

E6(z) = 1− 504

∞∑
n=1

σ5(n)q
n = 1− 504q − 16632q2 − 122976q3 − . . . .

A simple conclusion from Corollary 2.1.1 is now that

Mk = CEk

for k = 4, 6, 8, 10.

Example 3.2. It holds
E4(z)

2 = E8(z),

since the dimension of M8 is 1 and both E4(z)
2 and E8(z) have leading coeffi-

cient 1, so they must agree.
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3.2 The Delta Function

Let us now construct a first example of a non-trivial cusp form.

Definition 3.3. The ∆-function or discriminant is defined by

∆(z) =
E3

4(z)− E2
6(z)

1728
= q − 24q2 + 252q3 + . . . .

Note that ∆ is a cusp form of weight 12. By multiplying the Fourier ex-
pansions, we can see that E3

4 and E2
6 are both modular forms of weight 12 that

have constant term 1. Therefore, E3
4 − E2

6 ∈ S12. The term 1728 normalizes
∆ so that the Fourier expansion begins with q. In particular, ∆ is not the zero
function.

Remark 3.2. The ∆-function has the product expansion

∆(z) = q

∞∏
n=1

(1− qn)24.

Lemma 3.2. The ∆-function has no zeros on H. In particular the map

Mk → Sk+12, f 7→ ∆ · f

is a C-vector space isomorphism.

Proof. For k = 12, the right-hand side of the k
12 -formula is equal to 1. Moreover,

ord∞(∆) = 1. Since ordz(∆) ≥ 0 for all z ∈ H, it follows from the k
12 -formula

that ordz(∆) = 0 for all z ∈ H, hence ∆ has no zeros on H. In particular, the
map

Sk+12 → Mk, g 7→ g

∆
is well-defined and yields the inverse mapping of f 7→ ∆ · f.

Observing that Sk = ∆ · Mk−12 and using the k
12 -formula, the following

dimension formulas for even k follow by induction.

Theorem 3.3. The spaces Mk of modular forms for k even are finite-dimensional
with dimensions given by

dimMk =

{
⌊ k
12⌋+ 1, if k ̸≡ 2 (mod 12),

⌊ k
12⌋, if k ≡ 2 (mod 12).

Proof. We proceed by induction on k. According to Corollary 2.1.1, this dimen-
sion formulas applies for 0 ≤ k < 12. For k = 12, the formula holds by invoking
(without proof) the identity M12 = CE12 ⊕C∆. Let k > 12. Employing (with-
out proof) the result dimMk = 1 + dimSk for k ≥ 4 along with Lemma 3.2, we
get

dimMk = 1 + dimSk

= 1 + dimMk−12

= 1 +

{
⌊k−12

12 ⌋+ 1, if k − 12 ̸≡ 2 (mod 12),

⌊k−12
12 ⌋, if k − 12 ≡ 2 (mod 12),

=

{
⌊ k
12⌋+ 1, if k ̸≡ 2 (mod 12),

⌊ k
12⌋, if k ≡ 2 (mod 12).

We obtain the claimed formula.
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We are now in a position to give an explicit basis for the space of modular
forms of fixed weight.

Theorem 3.4. Let k ∈ Z and let a, b ∈ N0 with 4a+6b = k. The modular forms
Ea

4 · Eb
6 form a basis of the space of modular forms of weight k for SL2(Z).

Proof. We prove this statement by induction on the weight k. We have already
treated the cases k ≤ 20 and k = 14. Let a, b ∈ N0 such that 4a+6b = k. Since
g := Ea

4E
b
6 has constant term equal to 1, g is not a cusp form. Let now f ∈ Mk

be arbitrary. Since g(∞) = 1 ̸= 0, there exists an α ∈ C such that f −αg ∈ Sk.
As we have seen in Lemma 3.2, f 7→ ∆ · f is an isomorphism and hence there
exists an h ∈ Mk−12 such that h∆ = f − αg. By induction hypothesis, h is a
polynomial in E4 and E6 with the corresponding powers. By definition, this is
also true for ∆, so it is also true for f. By elementary considerations it follows
that there are no non-trivial relations between the products.

3.3 The j-invariant

In this section, we consider so-called modular functions, modular forms of weight
zero. Since there is no holomorphic functions on compact Riemann surfaces (like
SL2(Z) \H ∪ {∞}), we have to admit poles of finite order in ∞.

Definition 3.4. We define the j-invariant or absolute invariant by

j(z) =
E3

4(z)

∆(z)
, z ∈ H.

Remark 3.3. 1. From the k
12 -formula it follows that ∆ has no zeros on H,

hence j is holomorphic on H.

2. The j-invariant has weight 0, so j(Mz) = j(z) for all M ∈ SL2(Z).

3. From the Fourier expansions of E3
4 and ∆ we get the Fourier expansion

of j:

j(z) = q−1 + 744 + 196.884q + . . .

= q−1 +

∞∑
m=0

jmqm,

that is, j has a pole of order 1 in ∞.

In particular, j is not a modular form in the sense of our original definition,
since the Fourier expansion has terms with negative q-exponents. This gives
rise to the following generalization of the definition of a modular form.

Definition 3.5. Let k ∈ Z. A function f : H → C is called weakly holomorphic
modular form of weight k for SL2(Z), if the following conditions are satisfied:

1. f is holomorphic on H;

2. The following holds

f(Mz) = (cz + d)kf(z) for all M =

(
a b
c d

)
∈ SL2(Z), z ∈ H;
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3. The Fourier expansion of f in ∞ is of the form

f(z) =

∞∑
n=m

a(n)qn

with m ∈ Z. That is, f has a pole of finite order in ∞.

We denote the space of weakly holomorphic modular forms of weight k for
SL2(Z) by M !

k.
The next theorem states that the space of modular functions, the weakly

holomorphic modular forms of weight 0, is given by complex polynomials in the
j-invariant.

Theorem 3.5. It holds that M !
0 = C[j].

4 L-functions of Modular Forms

Let us first recall some important results about the Riemann zeta function

ζ(s) :=

∞∑
n=1

n−s, s ∈ C,ℜ(s) > 1.

This series converges normally (locally uniform and absolute) and the func-
tion defined by it is holomorphic. The function ζ(s) − 1

s−1 has a holomorphic
continuation to C.

Theorem 4.1. The Riemann zeta function has a meromorphic continuation
to C. The completed Riemann zeta function ζ∗(s) := π− s

2Γ( s2 )ζ(s) satisfies the
functional equation

ζ∗(s) = ζ∗(1− s).

Here Γ(s) =
∫∞
0

e−tts−1dt is for ℜ(s) > 0 denotes the gamma function.

Analogous to the Riemann zeta function, one can consider L-functions of
cusp forms.

Definition 4.1. Let f(z) =
∑∞

n=1 a(n)q
n, q = e2πiz, be a cusp form of weight

k > 0 for SL2(Z). We call

L(f, s) =

∞∑
n=1

a(n)n−s, s ∈ C,

the L-function of f.

Remark 4.1. One can show that L(f, s) converges absolutely and locally uni-
formly for s ∈ C with ℜ(s) > k

2 + 1.

Theorem 4.2. Let f ∈ Sk. Then the associated L-function has a holomorphic
continuation to all C. The function

Λ(f, s) = (2π)−sΓ(s)L(f, s)

is entire and satisfies the functional equation

Λ(f, s) = (−1)
k
2 Λ(f, k − s).

The function Λ(f, s) is bounded on every vertical strip, that is, for every T > 0
there exists a CT > 0 such that |Λ(f, s)| ≤ CT for all s ∈ C with ℜ(s) ≤ T.
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