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Introduction

In this section we will report about Fermat’s last theorem, which is a famous
theorem from number theory that, until fairly recently, remained a conjecture
that attracted the attention of mathematicians for over three centuries. Our
section will closely follow the paper by Kramer [1].

Pierre de Fermat was born on the 20" of August 1601 in France. At the
insistence of his father, Fermat chose to lead a judicial career which resulted in
him becoming a lawyer and, in 1631, the Conseiller au Parlement de Toulouse
as well. In place of having any large political ambitions, Fermat fervently stud-
ied mathematics in his spare time, in particular number theory, which at the
time, still mainly consisted of the works collected in Diophantus’ book Arith-
metica which was written in the 3" century. And so it was that Fermat studied
the then by Claude Gaspar Bachet newly issued Arithmetica and wrote many
notes on the margins on his copy. Most of his notes were observations for which
he sometimes made little incomplete proof sketches. His son Samuel recognised
the importance of his father’s observations and thus published a new version of
Diophantus’ Arithmetica five years after Fermat’s death in 1665, now containing
the marginal notes from Fermat’s copy, making his observations available to the
following generations of mathematicians. Until 1995, all but one of these ob-
servations were rigorously proven by notable mathematicians such as Leonhard
Euler (1707-1783) for instance. The problem that remained, eluded mathemati-
cians for three and a half centuries, becoming known as Fermat’s Last Problem
or Fermat’s Last Theorem, it being the last of his observations yet to be proven
then or contradicted. The solution to this riddle came from Andrew Wiles
in 1995, who worked on the problem for more than seven years with Richard
Taylor. We will look at the main parts of the proof in the latter half of this
report.

Fermat’s conjecture came about after studying the part of Diophantus’ book
about Pythagorean triples, i.e. triples of integers (a,b,c) that satisfy the equa-
tion

a’ +b* =% (1)

Some of these numbers were already known to the Babylonians in 1600 B.C.
and were revered by the so-called Pythagoreans in ancient Greece. In Arith-
metica, Diophantus concerned himself with the question of how to systemat-
ically construct such Pythagorean triples. If (a,b,c) is a Pythagorean triple
then so is (|al,|b|,|c|), hence it suffices to restrict ourselves to the primitive
Pythagorean triples. These are Pythagorean triples (a, b, ¢) satisfying a, b, ¢ > 0,



ged(a, b, ¢) = 1 and a even, so all other solutions are obtained by changing signs,
permuting a,b and by multiplying with some non-zero integer. A complete de-
scription of all the primitive triples, of which there are then infinitely many, are
given in the following theorem.

Theorem 1. A triple of positive integers (a,b,c) is a primitive Pythagorean
triple if and only if there exist two integers x,y with x >y > 0, ged(a,b,c) > 1
and x,y not of the same parity such that

a = 2xy
b=a%—y?
c=a? 442

Fermat asked himself how many such solution triples of positive natural
numbers exist when one replaces the exponent 2 in the Pythagorean equation
by an integer n > 3. After his attempts to find such triples, Fermat wrote on
the margin of his copy of Diophantus’ book the following statement:

It is impossible to separate a cube into two cubes, or a biquadrate into two
biquadrates, or in general any power higher than the second into powers of
like degree; I have discovered a truly remarkable proof which this margin
is too small to contain.

In modern language, Fermat’s statement means:

Theorem 2 (Fermat’s Last Theorem). For every integer n > 3, there exist no
three integers a,b, c with abc # 0 satisfying:

a” + bt =c".

No proof of this statement was ever found among Fermat’s papers. He did,
however, write a proof for the case when n = 4. Mathematicians have debated
whether Fermat indeed possessed the proof of the theorem. Perhaps, at one
point, he mistakenly believed he had found such a proof. Despite Fermat’s
honesty and frankness in acknowledging imperfect conclusions, it is very difficult
to understand today, how some of the most distinguished mathematicians could
have failed to rediscover his proof, given that he did not have the tools of modern
number theory.

From 1637 to 1980

Quite clearly, any proof of Fermat’s theorem will rely on a proof by contradic-
tion. We suppose there exists m > 2 and a triple of positive natural numbers
(a,b,c) such that

a™+b"m =c".

and try to produce a contradiction. We observe the following:

Remark. If Fermat’s last theorem holds for p € N then it also holds for n = pl,
for every | € N

Proof. Suppose Fermat’s last theorem does not hold for n = pl, that is, there
exist non-zero integers a, b, ¢ such that a™ + b" = ¢”. But this means that

(@) + () = a? 40P = a" +b" = " =P = ()"



Since a!,b', ¢! are non-zero integers, Fermat’s theorem also does not hold for
P. O

By the remark it is sufficient to suppose that m is a prime number m = p > 2
or m = 4: If m > 2 is an integer, then either m = pl for a prime p > 2 and
some [ € N or m = 4] for some [ € N.

Furthermore, without loss of generality, we may assume that a, b, ¢ are rela-
tively coprime. If not, i.e. d := ged(a,b,c) > 1, then we can divide the triple by
d to get a new solution triple (a/, ¥, ¢’) which share no common divisor. Lastly,
observe that exactly one of the numbers a, b, ¢ is even when a, b, ¢ are coprime.
To see this, we reduce the equation modulo 2 and use the fact that a® = a
mod 2 to get

a+b=c mod 2.

If a is even, then b can not be even as then ¢ would be even too, which is a
contradiction to the assumption that a, b, ¢ share no common factor. So if a is
even then b and ¢ are odd. Similarly we get for b even that a and ¢ must be
odd. If a and b are both odd, then ¢ must naturally be even. Hence exactly one
of the numbers a, b, ¢ must be divisible by 2. So we suppose a is even.

We begin with Fermat’s proof for the case n = 4. We prove a slightly
more general statement first, in which the so-called infinite descent technique is
utilised which consists of constructing a smaller solution to the problem from an
existing one we assume to exist. Repeating the argument infinitely many times
yields a sequence of positive integers ag > a; > --- > 0 and thus a contradiction.

Theorem 3. There exist no integers a, b, c with abc # 0 such that

at + bt =% (2)

Proof. Suppose that (a,b,c) is a triple of positive integers satisfying (2). Sim-
ilarly as discussed beforehand, we may assume without loss of generality that
ged(a,b,c) = 1, as well as that a is even. Then (a2, b% ¢) is a primitive
Pythagorean triple: (a?)? + (b?)?2 = c?. By theorem 1 there exist integers
x,y of different parity with >y > 0, ged(z,y) = 1 and
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a® = 2zxy
b2:x2—y2
c:z2+y2.

By the second equation b? + y? = 22 and ged(b,y,x) = 1, hence by theorem 1
again there exist integers w, z such that they are of different parity, w > z > 0,
ged(w, z) =1 and

b= 2wz
y=w?— 2%

x=w?+ 22

Hence
a? = 2zy = dwz(w? + 2?)



Since w, z, (w? + 22) are pairwise coprime and by the uniqueness of the fac-
torisation into primes, we conclude that w, z, (w? + 22) are squares of positive
integers e, f, g:

w = e,

z=f?
w2+22 :gQ.

which satisfy e* + f* = g2. We have that ¢ = 22 +y? = (w2 +22)? + (w? —22)? >
g* > g > 0, thus we have found a new triple (e, f, g) satisfying (2) with ¢ > g. In
this way, we can construct infinitely many triples of integers (a;, b;, ¢;) satisfying
(2) and ¢; > ¢i11, yielding an infinite decreasing sequence of positive integers
co > c1 > cg > -+ > 0, but this is absurd. O

Fermat’s Last Theorem for n = 4 follows immediately from this: Suppose
there exist natural numbers a, b, ¢ such that a* + b* = ¢?, then setting d = ¢2,
it holds that a* + b* = d2, contradicting the statement of theorem 3.

The same technique can be used for proving similar theorems such as: The
following equations have no solution in non-zero integers: z* — y* = +22, 2* +
4yt = 22, 2t — 4yt = £22

Indeed the technique of infinite descent was also used by Leonhard Euler
in this proof for the case n = 3. An important step in Euler’s proof uses the
divisibility properties of integers of the form a? + 32 thus being more technical
than the case n = 4. Later, Peter Gustave Lejeune Dirichlet (1805-1859) and
Adrien-Marie Legendre (1752-1833) proved the case for n = 5 in 1825. An
important contribution was made by Sophie Germain (1776-1833): If p is an
odd prime such that 2p+1 is also prime then Fermat’s theorem holds for p when
p 1 abe. By relating the problem to cyclotomic fields, Ernst Eduard Kummer
(1810-1893) managed to prove the theorem for all prime exponents smaller than
100, except for 37, 59, 67. During the 20*" century only minor progress was
made, building on the work of Kummer. Number theory also seemed to be
drifting away from Fermat’s problem at the time in spite there being offered a
lucrative sum of 100°000 DM (or approximately 50°000 CHF). Taking advantage
of the improving computer technology, in 1976 Wagstaff confirmed numerically
via a computer that Fermat’s theorem held true for all primes smaller than
125°000.

Modern Approach: Frey curves and their con-
ductor
Thanks to the work of Fermat, Euler and Legendre or Dirichlet, and the con-

siderations from before, we know that it is enough to suppose that there exists
a triple (a,b,¢) and a prime [ > 5 such that

ad+vt=¢

holds. We already saw that without loss of generality we can assume that a, b, ¢
are coprime. For each such a triple we define a corresponding elliptic curve, the
Frey curve, given by

Eope:Y?=X (X —d') (X +0') =X+ (b —a') X* — (ab)'X.



Furthermore, the discriminant of a Frey curve is

Ag, , . = 16(abc)*.

a,b,c
If we now can show that such an elliptic curve cannot exist, then we are done
as each Frey curve corresponds to a solution of Fermat’s last theorem. In order
to do so, we define the notion of a good and a bad reduction.
Let ~

E: Y =X3+aX?+aX +as = f(X)
be the reduction modulo p (for some prime p) of the elliptic curve

E:Y?=X?+a1 X+ a2 X + as.

and A be the discriminant of the elliptic function. If the prime p does not
divide A, then we call the reduction good, else we call it bad. We have seen in
a previous talk that if a reduction is bad then either of the following two cases
happen

e Two of the zeroes of f(X) are equal. In this case we call the reduction a
multiplicative reduction and the curve E has a node.

e All three zeroes of f(X) are the same, then we call the reduction an
additive reduction and F has a cusp.

With this in mind, we can now set up the notion of a semistable elliptic curve,
which is an elliptic curve E over Q for which the reduction E modulo a prime
p of E has either a node or is good for all possible primes.

For semistable elliptic curves E over Q we define the conductor Ng as the
product of all primes p for which the reduction E modulo p of E has a node.
Since F is semistable the only primes which give us a node in the reduction are
exactly the primes which divide the discriminant A. Therefore we get

NE = H p-
plA
p prime

The conductor Ng is well defined, because we have only finitely many primes p
that divide A.

We now come back to the Frey-curves and show that they are semistable. It is
obvious from the definition that the roots of E, ;. are {0,a’, —b'}. If a prime p
divides a, then it cannot divide b, as otherwise it would also divide a' + b' = ¢,
which is a contradiction to the assumption that a, b, ¢ are coprime. Similarly we
get that every prime p that divides b cannot divide a. Hence for every p that
divides either a or b the reduction & mod p given by X (X —a')(X +b') has two
distinct roots, namely @' and El, and therefore cannot be an additive reduction.
If the prime p divides ¢, then we must have a' + b =0 mod p. Then we must
also have a! = —b' mod p, which cannot be zero as otherwise we would have
ged(a, b, ¢) > p > 1, which is a contradiction. Therefore the reduction FE for such
a p cannot be additive as it has two distinct roots, namely 0 and a'. Therefore
we can conclude that the Frey curves are semistable ellitpic curves.

Since Frey curves are semistable we can calculate the conductor Ng and get

a,b,c

New.= I p=2- 1] »
plAEu.,b,c p|a.bc

p prime p prime
pF#2



Modular to the level Nr and Ribet’s Reduction

Before we can state the definition of a modular elliptic curve of level IV, we first
need to recall some things.

An element 7 € QU {00} is a cusp if and only if there exists a matrix g with
trace £2 such that g7 = 7. T’ = SLy(Z) has only one cusp, namely co.

A cusp form £ of integral weight & is a holomorphic function defined on the
upper complex half plane H which satisfies the relation

€|k g = (et +d) " e(gm) = &(7)

for all fractional linear transformations (Z 2) = g € I" and which vanishes at

the cusp co. We can use the invariance of ¢ with respect to <é 1 €I and
the fact that £ vanishes at co to deduce that & has a Fourier expansion of the

form -
&(r) = Z €™,
n=1

We call € normed if ¢; = 1 holds.

We can now generalise this to the notion of a generalised cusp form by replacing
I in the above definition by an arbitrary subgroup IT of I and by requiring £(7)
to vanish at all cusps of II. We then call such a cusp form a generalised cusp
form with respect to II of integral weight k, however some authors drop the
generalised part and refer to this as a cusp form, when it is inherently clear
which subgroup is used in the definition.

In the last talk we saw that the cusp forms of weight k for I form a complex
vector space S whose dimension is given by

|&£] -1 ifk=2 mod 12

dim¢(Sk) =
im¢(Sk) {thJ if k=2 mod 12.

Unfortunately we cannot do this for a generalised cusp forms. Even though they
form complex vector space GSi(II), we cannot give a formula for its dimension
due to the fact that, the smaller the subgroup, the less restrictions we impose
on GS;(II). To demonstrate this, let us pick II = {I}, where I is the 2 x 2
identity matrix. We then clearly have ¢ |, I = (07 + 1)k¢ = ¢ for all functions
& on the upper half plane.

So if we let IT be any subgroup of I' we will run into problems, as the definition is
too broad. We therefore choose a special set of subgroups, the so called modular
subgroups of weight N given by

To(N) := {(‘CL 2) €T

We can now finally set up our definition of a modular elliptic function.

We call an elliptic curve E = E(Q) : Y2 = f(X) over Q modular to the level
N if every prime p coprime to N results in a good reduction E(F,) and there
exists a non-zero normed generalised cusp form & of weight 2 with respect to
To(N), such that the p-th Fourier coefficient satisfies

cp =p= | E(Fy) |=p— [{(z,y) € Fyly* - f(x) = 0}].

c=0 modN}.



At first glance this definition seems to be quite restrictive in the sense that it
seems to exclude quite a lot of elliptic curves. However, this is not the case. As
already conjectured in 1957 by Yutaka Taniyama and Goro Shimura and later
proven by Andrew Wiles, all elliptic curves are modular to some level. This sur-
prising result is summarised in the modularity theorem, which can a bit loosely
stated as

Theorem 4 (Modularity theorem). Every (rational) elliptic curve E is modular
to the level N = Ng.

Since we now know what it means for an elliptic curve to be modular to the
level N, we can now take a look at Ribet’s reduction (or at least a simplified
version, which applies to the Frey curves).

Theorem 5 (Ribet’s reduction). Suppose there is a non-trivial integral triple
a,b, c together with an exponent | > 5 such that a' + ' = ¢'. Now, given that
the associated Frey-curve

Eope: Y2 =X (X —d) (X +10)

is modular to the level N = Ng, then it is also modular to the level % for any
odd prime p dividing N .

Some early work of Wiles and Taylor shows that the Frey curve is indeed
modular to the level Ng where Ng,, . is the conductor of Eqp.. But
then we must have by Ribet, that we can divide out all odd prime factors of
the conductor. Doing so leads to the fact that the Frey-curve E, . is indeed
modular to the level 2, hence if we can show that there are no such curves, then
we are done.

a,b,c)

Modular elliptic curves of weight 2

Before we can finish the proof of Fermat’s last theorem with the proof that
there are no elliptic curves that are modular to the level 2, we first want to
understand the space of generalised cusp forms for I'g(NN) a bit better.

For this, we realise that the quotient I'o(N)\H is an open Riemann surface
(often called the modular curve Y (I'o(N)) ), that is an open one-dimensional
complex manifold. Since this space is Tychonoff we can compactify it and get
the Riemann surface T'o(N)\H (one can show that adding the cusps of T'o(N)
gives said compact Riemann surface), which is often called the compactified
modular curve X (T'g(V)) or Xo(N) and for which we can define its geometric
genus.

The geometric genus of a complex manifold M of dimension & is the dimension
of the space of holomorphic k-forms on M.

We will omit the calculations, but one can find the genus gy of T'o(N)\H by
studying the quotient maps I'o(N)\H — I'g(1)\H and using the Hurwitz genus
formula and the fact that I'g(1)\H has genus 0. One finds for p > 3 prime

n—1 ifp=12n+1
gp=19n ifp=12n+5,12n+7
n+1 ifp=12n+11.



Moreover, one has

gy =0 ifN=1,23...,10,12,13, 16,18, 25;
gy =1 if N =11,14,15,17,19, 20, 21, 24, 27, 32, 36, 49;
gy =2 if N =22,23,26,28,29,31,37, 50.

Since all those definitions are rather technical and complex we want to gain
some visual intuition before we continue. Let us first take a the elliptic curve
Y2 = X3 — X. If we take a look at the real cross section of its plot, then we
have the following image.

Figure 1: the real cross section of the elliptic curve Y2 = X3 — X
If we add the point O as an infinitely far point to the complex plane, the
two ends of the curve going to oo are glued together, so when we consider the

elliptic curve up to homotopy or up to ”continuous deformations” we get the
following picture over the reals.

O O

Figure 2: the real image of the elliptic curve Y2 = X3 — X after adding the
point O

Over the complex numbers it appears as a torus.

Figure 3: The complex image of an elliptic curve: A Tours

Figure 4 shows an example of a surface of genus 3. In simple terms, the
value of an orientable surface’s genus is equal to the number of "holes” it has.

Figure 4: The complex image of a modular curve of genus gy = 3



We do exactly this kind of procedure, but instead of an elliptic curve we use
a fundamental domain I'o(N)\H and instead of the point O we use the cusps of
T'o(N) to arrive at a complex manifold. Since we now have a somewhat visual
image, we can finish the proof using the following theorem.

Theorem 6. There is a natural isomorphism of vector spaces between the
cusp forms of weight 2 with respect to To(N) and the regqular differential 1-

forms on the complex manifold To(N)\H. The isomorphism GS2(I'o(N)) —
0t (FO(N)\H> is characterised by (1) — &(7)dT. Thus

dime (GS2(To(N))) = gn-

Using this theorem we can immediately conclude that there are no modular
elliptic curves to the level 2, since we have

This finishes the proof of Fermat’s last theorem as we have successfully shown
that Frey curves, which are a direct consequence from the existence of solutions
to the equation a' +b' = ¢!, cannot be modular of level 2 (as no such curves can
exist) and therefore cannot exist.
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