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Abstract

This talk aims to discuss the Birch and Swinnerton-Dyer Conjecture and its relation
to congruent numbers. More precisely, if this conjecture proves to be true for certain
types of elliptic curves, then thanks to Tunnell’s Theorem, one can compute in a
finite time whether a natural number n is congruent or not. We can assume n to be
square-free, then the following holds:

n is a congruent number

En : y2 = x3 − n2x contains a
rational point (x, y), y ̸= 0

L(En, 1) = 0

the n-th q-espansion coefficient in Tunnell’s
product of theta-functions is zero

Theorem of Shimura,
Waldsprunger, Tunnell

Birch and Swinnerton-Dyer
Conjecture

Coates-Wiles (1977)

rank(En(Q)) > 0
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1 Congruent Numbers and Elliptic Curves

Problem Let n be a positive natural number. We want to find a right triangle with
rational sides a, b, c ∈ Q and area n. In other words, we are looking for a, b, c ∈ Q+

such that

a2 + b2 = c2,
a · b
2

= n. (1)

Definition 1.2 (congruent number) A natural number n ∈ N is called
congruent if there is a right triangle with area given by n.

The problem of whether a given number is a congruent number is called the
congruent number problem.

Remark 1.3 Note that if n is a congruent number, s2n is a congruent number, too,
for s ∈ N since we may just multiply the sides of the triangle by s. Therefore, it suffices
to reduce the congruent number problem to square-free numbers.

Example 1.4 The Pythagorean triple (3, 4, 5) shows that n = 6 is a congruent number
since 3·4

2 = 6.
It is noteworthy that we may apply Fermat’s principle of infinite descent to prove that
1,2 and 3 are not congruent numbers, as will be elaborated in in section 4 . In particu-
lar, there is no perfect square amongst congruent numbers since else the corresponding
rational triangle would be similar to one with area equal to 1, contradicting that 1 is
not a congruent number.

Example 1.5 The numbers that solve a congruent number problem for a given integer
n are much harder to find than one might expect. For example, a solution to the
congruent number problem for n = 7 is given by(

24

5
,
35

12
,
337

60

)
.

To answer this question, we may use elliptic curves. Indeed, equation (1) may be
rewritten in the following way: Let a, b, c fulfill (1) and define x, y by

x :=
n(a+ c)

b
, y :=

2n2(a+ c)

b2
, (2)

which are well-defined since n ̸= 0 implies b ̸= 0 by (1). Additionally, y ̸= 0 since else
a = −c, which would imply that b = 0, contradicting (1) for n ̸= 0.
These numbers fulfil a cubic equation.

Proposition 1.6 For x, y as above, we have

y2 = x3 − n2x.

Proof We have that

x3 − n2x =
n3(a+ c)3

b3
− n2n(a+ c)

b
=

n3(a+ c)3 − n3b2(a+ c)

b3

=
n3(a+ c)

b3
((a+ c)2 − b2).
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Since a, b, c fulfill (1), we have that b2 = c2 − a2 = (c+ a)(c− a) and hence

x3 − n2x =
n3(a+ c)2

b3
((a+ c)− (c− a)) =

2an3

b3
(a+ c)2.

using again (1), we use derive a = 2n
b from ab

2 = n and finally get

x3 − n2x =
2n4

b4
(a+ c)2 = y2. □

Remark 1.7 The discriminant of y2 = x3 − n2x =: x3 + px+ q is equal to

∆ = −4p3 − 27q2 = −4 · (−n6) = 4n6,

so the curve defined by this equation is non-singular.

Definition 1.8 (elliptic curve En) The elliptic curve defined by

y2 = x3 − n2x

is called En.

On the other hand, we may define for (x, y), y ̸= 0 on En the triple

(a, b, c) :=

(
x2 − n2

y
,
2nx

y
,
x2 + n2

y

)
, (3)

which fulfills (1). Through this construction, we have shown (up to showing that the
above maps are inverse to each other) that we may rewrite the congruent number
problem to a problem about elliptic curves.

Proposition 1.9 n ∈ N is a congruent number if and only if the elliptic curve En

contains a rational point (x, y), y ̸= 0.

Before introducing the Birch and Swinnterton-Dyer conjecture, which, together with
Tunnel’s theorem, would answer the congruent number problem, let us recall some
important definitions and theorems for this talk.
Let E be the elliptic curve with a rational point at infinity, then it is given by the
equation

y2 = x3 + ax2 + bx+ c (4)

for a, b, c ∈ Z.
We denote by E(Q) the set of rational points on E, which is an abelian group. We want
to study this group further to answer the congruent number theorem. Here, Mordell’s
theorem comes in handy:

Theorem 1.10 (Mordell) If the elliptic curve E has a rational point, then the group
of rational points is finitely generated.

Since we chose E to have a rational point, we thus conclude that the group E(Q)
is finitely generated, and by the fundamental theorem of finitely generated abelian
groups, we may write

E(Q) = E(Q)free ⊕ E(Q)finite

where E(Q)free is the free and E(Q)finite is the torsion part of the abelian group E(Q).
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Since E(Q)finite is a finite abelian group, its elements are of finite order. Hence,
E(Q)finite consists of the rational points of finite order on E. Mazur’s theorem (see
talk 2) classifies E(Q)finite up to isomorphism, so we restrict our attention to the free
part of E(Q).
We know that

E(Q)free ∼= ZrE

where rE is called the rank of E. This allows us to give a criterion for when there are
finitely many and when there are infinitely many rational points on an elliptic curve
E. More precisely:

rE = 0 ⇐⇒ |E(Q)| < ∞
rE > 0 ⇐⇒ |E(Q)| = +∞.

Thus, we see that describing the set E(Q) works through finding the rank of the elliptic
curve rE . This is where the Birch and Swinnerton-Dyer conjecture comes into play.

2 The Birch and Swinnerton-Dyer Conjecture

Let E be an elliptic curve defined by equation (4). The BSD conjecture yields an
analytic tool to determine whether rE = 0 or rE > 0.
For this, let p be a prime and define

Np := |{x, y ∈ {0, . . . , p− 1} | y2 ≡ x3 + ax2 + bx+ c mod p}|+ 1,

where the +1 arises from the neutral element. Birch and Swinnerton-Dyer found the
following equivalence through experiments.

Conjecture (weak Birch Swinnerton-Dyer) For an elliptic curve E given by (4),
it holds that

rE > 0 ⇐⇒
∏

p prime,p≤x

Np

p
−−−−→
x→∞

∞. (5)

□

While this conjecture helps us know whether there are infinitely many rational points
on an elliptic curve E, it still does not explicitly answer how to calculate the rank rE .
For this, we need the stronger version of the BSD conjecture. For this, let L(E, s) be
the L-function associated to E for Re(s) > 3

2 given by

L(E, s) :=
∏

p prim,p̸| 2∆

1

1− (p+ 1−Np)p−s + p1−2s
.

Then, supposing that L(E, s) can be extended to s = 1, we could write

L(E, 1) =
∏

p prime,p̸| 2∆

1

1− (p+ 1−Np)p−1 + p−1

=
∏

p prime,p̸| 2∆

p

Np
=

 ∏
p prime,p|2∆

p

Np

−1 ∏
p prime

p

Np
.
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Therefore, assuming that L(E, s) can be extended to s = 1, (5) can be formally
rewritten to

rE > 0 ⇐⇒ L(E, 1) = 0. (6)

This leads us to the strong Birch Swinnerton-Dyer conjecture.

Conjecture (strong Birch Swinnerton-Dyer) For an elliptic curve E given by
(4), we have

• The L-function L(E, s) can be extended holomorphically to the whole C. In
particular, L(E, 1) is defined.

• The order of vanishing ords=1L(E, s) of L(E, s) at s = 1 fulfills the equation

rE = ords=1L(E, s) (7)

and there is an explicit formula, which relates the first non-vanishing coefficient
of the Taylor series of L(E, s) around s = 1 with the arithmetic of E. □

Current state of the proof

• Coates and Wiles: proved that for elliptic curves E | Q with complex multipli-
cation and LE(1) ̸= 0, it follows that rE = 0.

• Gross and Zagier: proved that for modular curves E | Q with LE(1) = 0 but
L′
E(1) ̸= 0 there are infinitely many rational points, i.e. rE > 0.

• Kolyvagin: proved that if LE(1) ̸= 0, then rE = 0. Additionally, if LE(1) and
L′
E(1) ̸= 0, then rE = 1.

3 Points of Finite Order of En

In this section, we will prove that the only points of finite order in En are O, (±n, 0)
and (0, 0), i.e. En(Q)finite contains only 4 elements. Thus if for n ∈ N there are
a, b, c ∈ Q+ such that a2 + b2 = c2 and ab/2 = n, i.e. n is congruent, then from the
map defined in section 1 we get a rational point on En with y ̸= 0, hence a point
in En(Q)free. Viceversa, if there is a point of infinite order in En(Q), then n is a
congruent number.

For the proof, first recall the following theorem from the fifth talk of this seminar:

Theorem 3.1 (Reduction Modulo p Theorem) Let E : y2 = x3 + ax2 + bx + c
be a non-singular cubic curve with a, b, c ∈ Z and let D be the discriminant. Let p be
a prime and consider the reduction modulo p map of the torsion group:

φ : E(Q)finite → Ẽ(Fp)

Q 7→ Q̃ =

{
(x, y) if Q = (x, y)

O if Q = O

If p ∤ 2D, then φ : E(Q)finite → Ẽ(Fp) is an isomorphism of E(Q)finite onto a

subgroup of Ẽ(Fp). In this case, Ẽ is an elliptic curve, and we call this a good reduction.

Moreover #E(Q)finite | #Ẽ(Fp) since it is isomorph to one of its subgroups.
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We consider the elliptic curve En : y2 = f(x) = x3 − n2x with determinant D = 4n6.
For any prime p not dividing 4n6, which is equivalent to p ∤ 2n, we get a good reduction
modulo p of En. We call primes of this kind good primes.

Proposition 3.2 Let p be a good prime with p ≡ 3 mod 4, then #Ẽn(Fp) = p+ 1.

Proof First of all Ẽn(Fp) contains the neutral element O and three points of order
2, i.e. (0, 0) and (±n, 0). Since p is a good prime, these are four different elements of
the curve Ẽn. We now consider all x ∈ Fp with x ̸= 0,±n and we arrange these p− 3
x’s in p−3

2 pairs {x,−x}. Since f(x) is an odd function, i.e. f(−x) = −f(x), we get
f(x)f(−x) = (−1) · f(x)2. Recall the following properties of squares in Fp:

• For p prime, p ≡ 3 mod 4, −1 is not a square modulo p

• The set of squares in Fp is is a subgroup of index 2

It follows that (−1) · f(x)2 is not a square modulo p, hence exactly one between f(x)
and f(−x) is a square modulo p, i.e. there is an element y ∈ Fp with y2 = f(x) or

y2 = f(−x). Thus for any pair {x,−x} we get exactly two distinct points of Ẽn(Fp),
either (x,±y) or (−x,±y). From the p−3

2 pairs, we get in total p − 3 points, and

together with the four points at the beginning, we get #Ẽn(Fp) = p+ 1. □

We will now prove that the only points of finite orders in En are O, (±n, 0) and (0, 0)
by contradiction using the following theorem:

Theorem 3.3 (Dirichlet prime number theorem) Let a, b ∈ N coprime and con-
sider the arithmetic progression {a, a+b, a+2b, . . . }. This sequence contains infinitely
many primes.

Proposition 3.4 En(Q)finite = {O, (0, 0), (±n, 0)}

Proof (by contradiction) First of all the only elements of En(Q) of order 2 are
(0, 0), (±n, 0), since the y-coordinate must be zero. Hence, if En(Q)finite contains
some other element, it must have order greater than 2. Suppose this is true, then there
exists a point Q in En(Q)finite either of odd order m or of order 4. In the first case
Q generates a subgroup of size m, while in the second case {O, (0, 0), (±n, 0), Q,Q+
(0, 0), Q + (±n, 0)} is a subgroup of size 8. Thus either m | #En(Q)finite for m odd
or 8 | #En(Q)finite.

Recall from the Reduction Modulo p Theorem together with proposition 3.2
that for any good prime p, i.e. p ∤ 2n, congruent to 3 modulo 4 it holds #En(Q)finite
divides #Ẽn(Fp) = p+1. Hence either m | p+1 or 8 | p+1. Let’s now go through all
possible cases:

1. m odd, 3 ∤ m: consider all good primes of the form p = 3+k·4m. Since p ≡ 3 mod
4, we know from above that m | p+1, i.e. p ≡ −1 mod m. But from construction
it holds p ≡ 3 mod m, hence −1 ≡ 3 mod m, which means m = 2 or m = 4,
a contradiction. It follows that all primes of the form p = 3 + k · 4m are not
good primes, i.e. p | 2n. But this would mean that there are finitely many primes
of this form, which is a contradiction to Dirichlet prime number theorem
since 4m and 3 are coprime.
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2. m odd, 3 | m, hence w.l.o.g. m = 3: consider all good primes of the form
p = 7 + k · 12. Since p ≡ 3 mod 4, similarly to above, we get −1 ≡ p ≡ 1 mod
3, which is a contradiction. Since 7 and 12 are coprime, we arrive at the same
conclusion as above.

3. 8 | #En(Q)finite: consider all good primes of the form p = 3+ k · 8. Since p ≡ 3
mod 4, we obtain 3 ≡ p ≡ −1 mod 8, which is a contradiction. Since 3 and 8 are
coprime, we arrive at the same conclusion as above.

From these contradictions, it follows that there is no point in En(Q)finite of order
greater than 2, and we conclude that En(Q)finite = {O, (0, 0), (±n, 0)}. □

Hence, a natural number n is congruent if and only if there is a rational point (x, y)
of the curve En with y ̸= 0, which is equivalent to rank(En(Q) > 0. Moreover, if
the Birch and Swinnerton-Dyer Conjecture proves to be true for elliptic curves of this
kind, this is equivalent to L(En, 1) = 0.

4 Tunnel’s Theorem

Before stating Tunnel’s theorem, we look at a couple of methods one can currently
use to help determine whether a natural number is congruent or not.

First of all, there is a simple algorithm that will eventually list all congruent numbers:
recall that for any primitive Pythagorean triple (a, b, c) (w.l.o.g. b is even), there exist
x > y > 0 coprime integers, not both odd, such that a = x2−y2, b = 2xy, c = x2+y2,
and vice versa for any x > y > 0 coprime integers, not both odd, (a, b, c) is a primitive
Pythagorean triple. Hence, by listing all pair (x, y) ∈ N with x > y > 0 coprime, not
both odd and the corresponding Pythagorean triple (a, b, c), we can compute the area
of the triangle ab

2 = xy(x+ y)(x− y). By removing the square from the factorization,
we get a congruent square-free natural number. Unfortunately, with this method, we
cannot tell if a natural number n is not congruent or if we have not waited long enough.

Another possibility is using Fermat’s method of infinite descent: for example, to prove
whether 1 is congruent or not is the same as proving the existence of an integer right tri-
angle with square area. Suppose (a, b, c) is a primitive Pythagorean triple with square
area, then one can check that it is always possible to derive a smaller Pythagorean
triple with square area. Thus, we would get an infinite strictly decreasing sequence
of integer squares, which is not possible; hence, we conclude that 1 is not congruent.
Using the same idea, one can show that neither 2 nor 3 are congruent.

We now look at the last equivalence shown in the abstract, namely the relation be-
tween the L-function of an elliptic form En, for n, a square-free natural number, and
Tunnell’s product of theta-functions. We are not going to discuss the proof since it
goes beyond the topics of this seminar (you can find more about this in [3, Chap-
ter 4]). We are more interested in what this implies for congruent square-free natural
numbers, that is the following theorem:
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Theorem 4.1 (Tunnel 1983) Let n be a square-free natural number and consider
the following values:

An := #{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 32z2}
Bn := #{(x, y, z) ∈ Z3 : n = 2x2 + y2 + 8z2}
Cn := #{(x, y, z) ∈ Z3 : n = 8x2 + 2y2 + 64z2}
Dn := #{(x, y, z) ∈ Z3 : n = 8x2 + 2y2 + 16z2}

Then the following statements are true:

1. If n is an odd congruent number, then 2An = Bn

2. If n is an even congruent number, then 2Cn = Dn

Moreover, if the Birch and Swinnerton-Dyer Conjecture proves to be true for the curves
En : y2 = x3−n2x, these equalities are sufficient to determine whether n is congruent.

Note that for any of the values defined in the theorem above, the entries of an integer
solution of the respective quadratic equation are bounded in absolute value by

√
n.

Hence, should the BSD Conjecture be proven true, we would be able to determine in
a finite time whether any natural number is congruent or not.
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