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1 Introduction to cubic curves

In this section we will give an introduction to cubic curves and show that it
exists a group law for these objects.

1.1 Definitions and notation

Definition 1.1. A cubic curve in the plane is the zero set of a polynomial of
degree three in two variables. A general cubic curve is of the form

ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0, (1)

where a, b, c, d, e, f, g, h, i, j ∈ C. We say that a cubic curve is rational if the
coefficients of its equation are rational numbers.

Definition 1.2. A homogeneous polynomial is a polynomial in three variables
whose nonzero terms have all the same degree. We will use the convention
to write a polynomial with lowercase variables and its homogeneous form with
uppercase variables. So, the equation (1) becomes

aX3+bX2Y +cXY 2+dY 3+eX2Z+fXY Z+gY 2Z+hXZ2+iY Z2+jZ3 = 0.

Example 1.3. A famous example for a cubic is

x3 + y3 = 1

or in its homogeneous form X3 + Y 3 = Z3.

Figure 1: Example of a cubic curve : x3 + y3 = 1 from [3].

Definition 1.4. Let C be a cubic curve. Let

∗ : C × C → C
(P,Q) 7→ P ∗Q

define the composition of two points on C. It is intuitively correct, that a
line meets the cubic three times counted with multiplicity. So, P ∗Q is defined
as the third intersection point on C of the line going through P and Q.
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We want to have a closer look at the composition of all points of a cubic curve,
that is why we introduced the above general Definition 1.4. Later in this semi-
nar one will focus particularly on the rational points of a rational cubic curve.
However this general Definition 1.4 restricted on the rational points will still be
well-defined (see Theorem 1.5).
Note, that there is no known method that is guaranteed to determine, in a finite
number of steps, whether a given rational cubic has a rational point. Hence its
existence is always just assumed in this script.

Theorem 1.5. The composition ∗ is a well-defined operation on C(Q), the set
of all rational points on a rational cubic curve.

Proof. Since the line connecting P and Q is a rational line that intersects with
a rational cubic the three intersection points are the roots of a cubic equation
with rational coefficients. Since two roots are rational per assumption the third
intersection point P ∗Q must be rational too.
Also, if you take the tangent line of a rational point P you can think of it as
going twice through the point P and P ∗ P will be again a rational point.

Remark 1.6. Repeating ∗ on more rational points and its intersection point
will generate more rational points. So, one of the goals of this seminar will be
to prove Mordell’s Theorem that states the following:
If C is a non-singular rational cubic curve, then there is a finite set of rational
points such that all other rational points can be obtained by repeatedly drawing
lines and taking intersections.

Theorem 1.7. Introducing two properties that are going to be useful later on:

• (Bezout’s theorem). Two cubic curves always meet in nine points.

• Let C,C1 and C2 be cubic curves. Suppose that C goes through eight of
nine intersection points of C1 and C2. Then C must also go through the
ninth intersection point.

For Bezout’s Theorem you can find the proof in Appendix A.4 of [1]. The proof
of the second property is available in Chapter 1.2 (page 10f.) of [1].

1.2 Group structure of C

Unfortunately, (C, ∗) does not form a group, since we can not find an identity
element. But we can define another operation that satisfies the group axioms.

Definition 1.8. Let C be a cubic curve and O ∈ C a point on it. We define
the binary operation as

+ : C × C → C
(P,Q) 7→ O ∗ (P ∗Q)

where ∗ denotes the composition defined in Definition 1.4. The operation is
illustrated in Figure 2. 1
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Figure 2: The + operation on C.

We will show in section 3 that this operation is well-defined by giving an explicit
formula for it.

Theorem 1.9. Let C be a cubic curve and O ∈ C a point on it. Then (C,O,+)
is an abelian group.

Proof. Commutativity: It is easy to see that + is commutative. Since the line
through P and Q is the same as the line through Q and P , it follows P ∗Q =
Q ∗ P . So it also holds

P +Q = O ∗ (P ∗Q) = O ∗ (Q ∗ P ) = Q+ P.

Identity Element: Given P ∈ C, the line through P and O intersects C in the
points P,O and P ∗ O. So it follows that the third point on the intersection of
C and the line through P ∗ O and O must be P . Since P was arbitrary and by
the commutativity it holds that O is the identity element, i.e.

∀P ∈ C : P +O = O + P = P.

In Figure 3 we can see geometrically that O acts as the identity element.

Figure 3: O acts as the identity element.

Inverse elements: We can construct the inverse of an arbitrary Q ∈ C as follows
(see Figure 4): Let S be the additional point on the intersection of C and the

1If no other sources are given, the Figures are from [1].
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tangent line to the cubic on O, i.e. S = O ∗ O. Then we join Q and S and we
claim that

−Q = Q ∗ S = Q ∗ (O ∗ O).

It is easy to check this claim:

Q+ (−Q) = O ∗ (Q ∗ (−Q))

= O ∗ S
= O

Figure 4: Construction of an inverse element.

Associativity: Let P,Q,R ∈ C. We have to show that

(P +Q) +R = P + (Q+R).

Claim (without proof): It suffices for the associativity to show that

(P +Q) ∗R = P ∗ (Q+R).

So, we only need to show that the equality (P + Q) ∗ R = P ∗ (Q + R) holds:
To get (P + Q) ∗ R, first construct P ∗ Q and then take the third intersection
point of the line going through P ∗Q and O. Then take the line going through
P +Q and R. Similarly, for P ∗ (Q+R) you construct Q ∗R and Q+R.
Now, as seen in the picture 5 each of these points

O, P,Q,R, P ∗Q,P +Q,Q ∗R,Q+R ∈ C

lies on one of the dashed and one of the solid lines. If we consider the dashed
lines as three linear equations, by multiplying them together, we get a cubic
equation with the solution set being the union of the three dashed lines. The
same holds for the three solid lines. So, now there are two cubic curves that
intersect in the eight listed points plus one point, denoted as X in the picture.
The goal is to show that their last intersection also lies on the original cubic
curve C. We apply the second property of Theorem 1.7 and take for C1 the
union of the three dashed and for C2 the union of the three solid lines. As seen
before, C goes through the eight listed points above and so it follows that X the
intersection of the two highlighted lines must lie on C as well. Hence it follows
that (P +Q) ∗R = P ∗ (Q+R).
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Figure 5: Sketch to visualize the associativity of +.

Remark 1.10. As seen in Theorem 1.9, (C,O,+) forms an abelian group for
any O ∈ C. Choosing any other O′ ∈ C as the identity element results in a new
group (C,O′,+′) with the same structure as before. Specifically, the map

(C,O,+) → (C,O′,+′)
P 7→ P +O′

is an isomorphism with the following new addition law:

P +′ Q := P +Q−O′.

2 Weierstrass normal form and singularities

Later in this script we want to give an explicit formula for the addition opera-
tion. To get a formula that is as simple as possible we will introduce now the
Weierstrass normal form.

2.1 Weierstrass normal form

Definition 2.1. A cubic is in Weierstrass normal form if it is of the form

y2 = x3 + ax2 + bx+ c

with a, b, c ∈ C.

We want to find an algorithm that transforms a general cubic into Weierstrass
normal form. This allows us to later just focus on curves in this normal form.

Now we sketch the way how the transformation works. We start with a cubic
curve C in the projective plane (see section 3.1) and assume that there is an
element O ∈ C which is rational and C is non-singular. Then we are proceed
as follows:

1. Change the coordinates such that O lies at the point [1, 0, 0].
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2. Find the tangent T1 of C at O and change the coordinates such that T1

is the line where Z = 0 holds.

3. Let Q = O ∗O (we assume Q ̸= O). Then find the tangent T2 of C at Q.
Change the coordinates again such that T2 is the line where X = 0 holds.

4. Take any line T3 that goes through O such that T3 ̸= T1 and change the
coordinates such that T3 is the line where Y = 0 holds.

An illustration of the first 4 steps is shown in Figure 6.

Figure 6: First steps of the transformation.

5. Choose the axes as described in the steps 1 to 4 and define

x =
X

Z
and y =

Y

Z
.

6. Without working out the details we tell you that at the end the equation
for C takes the form

xy2 + (ax+ b)y = cx2 + dx+ e.

Multiply with x and get

(xy)2 + (ax+ b)xy = cx3 + dx2 + ex.

Renaming xy as y gives

y2 + (ax+ b)y = cx3 + dx2 + ex.

Replace y by y − 1
2 (ax+ b) to get

y2 = cubic in x.

7. In case that λ, the leading coefficient of the cubic in x, is not 1, we can
replace x and y by λx and λ2y and divide by λ4 to get a normal form. If
one wants to get rid of the x2 term in the cubic, replace x by x−α for an
appropriate choice of α.

7



Now we have a sketch of how to transform a general cubic equation into Weier-
strass normal form. Since the transformation of the coordinates and its inverse
are rational functions, there is a bijection of the rational points on the general
cubic and on its Weierstrass normal form. So the problem of finding rational
points on the initial form of C is the same as finding the rational points on the
Weierstrass normal form of C. Since the transformation is a group homomor-
phism, the group structures of a cubic curve and its transform are not the same
but connected through the transformation.

There is an example of a transformation of a cubic in Appendix B of [1].

Definition 2.2. A cubic curve of the form y2 = f(x) = x3 + ax2 + bx + c is
called an elliptic curve if f(x) has distinct roots. A general cubic curve is
called an elliptic curve if its transform into the Weierstrass normal form is an
elliptic curve.

Remark 2.3. An important remark is that for any curve of the form y2 =
f(x) = x3 + ax2 + bx + c, f(x) having distinct roots is equivalent to the curve
being non-singular. Look at the examples in Figure 7 to get an idea how curves
in Weierstrass normal form look like. They all have the form y2 = x3 + ax+ b
and one can easily see that the case a = b = 0 has a singularity and is therefore
not an elliptic curve. All the other examples are elliptic curves.

Figure 7: Cubic curves of the form y2 = x3 + ax+ b from [2].

2.2 Singular cubics

As mentioned in the last section, singular cubes are excluded in the definition
of elliptic curves. But why do we distinguish between these two cases? This
comes from the fact that singular cubics and non-singular cubics have different
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behaviours. Studying rational points on a singular cubic is much easyer than
studying rational points on a non-singular cubic, as we will see in this section.

There are three possible pictures of singular cubics which depend on whether f
has a double root or triple root. In case that f has a double root, the typical
equations are

y2 = x2(x+ 1) and y2 = x2(x− 1).

They are illustrated in the Figures 8 and 9. If f has a triple root, then we
consider the equation (see Figure 10)

y2 = x3.

Figure 8: A singular cubic with distinct tangent directions.

Figure 9: A singular cubic with an isolated singular point.

Figure 10: A singular cubic with a cusp.

Rational points on singular cubics are trivial to analyse:
If we look at the singular cubic y2 = x2(x+ 1) and let r = y

x , then we get

r2 = x+ 1

and from this follows

x = r2 − 1 and y = r3 − r.
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So if r is any rational number, then we obtain a rational point (x, y) on the
cubic with these equations. And also the other way around, if we first have a
rational point (x, y) ̸= (0, 0) on the cubic, we will get a rational number r = y

x .
These functions are inverses of each other and defined for all points but the
singularity (0, 0). This is how we get all rational points on the curve.
Analogously, we can find similar equations for y2 = x2(x− 1) with r = y

x :

x = r2 + 1 and y = r3 + r.

The curve y2 = x3 is even simpler to describe, take

x = t2 and y = t3.

The rational solutions of y2 = x3 are exactly of the form (t2, t3) for t ∈ Q.

3 Explicit Formulas for the Group Law

3.1 The projective plane

For now, we will focus on points on a non-singular cubic curve. First start with
the Weierstrass normal form

y2 = x3 + ax2 + bx+ c.

Now, to describe an explicit formula for the addition law, we need to introduce
the projective plane. This will be done, by giving an intuitive understanding
of the projective plane (see Figure 11). The projective plane is a regular plane
with one additional line added to it. To us, only one point, denoted as O, is
important: It is the point where all vertical (to x) lines will ”meet” at infinity.
The point O is non-singular and is counted as a rational point belonging to the
given cubic curve C. As the notation suggests, we will take the point O as the
identity element of the group (C,O,+).

Figure 11: intuitive sketch of the projective plane

(For those who would like a more rigorous definition of the projective plane are
asked to look at the first two sections of Appendix A of [1].)
The projective plane visualizes well that every line meets the cubic in three
points:
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· (Special case.) The line at infinity meets the cubic at the point O three
times.

· The lines vertical to the x-axis go through the cubic twice and once
through the point O.

· The lines non-vertical to the x-axis go through the cubic in the regular
plane three times.

· The lines that meet the cubic in complex points will be excluded for now.

3.2 The addition formula for distinct points in Weierstrass
form

The geometrical idea of the addition in Weierstrass form is equal to the one
introduced at the beginning for an arbitrary cubic curve (see Definition 1.8).
Note that the sum of two points P,Q is easier to compute since a cubic curve
in Weierstrass form is symmetric about the x-axis. Hence after having the
intersection point P ∗Q you just reflect it about the x-axis.
Similarly, to find the negative point −P of a given point P you just reflect it
about the x-axis.

3.3 Explicit formula to compute P +Q

To efficiently develop an explicit formula, the points on a given cubic curve C
need to be written as coordinates: Set

P = (x1, y1), Q = (x2, y2), P ∗Q = (x3, y3).

It follows from Subsection 3.2 that P +Q = (x3,−y3), the point that we want
to compute. Now assume that (x1, y1), (x2, y2) are given.

1. Look at the equation of the line joining (x1, y1) to (x2, y2):

y = λx+ ν, where λ =
y2 − y1
x2 − x1

and ν = y1 − λx1 = y2 − λx2.

2. To get the third intersection point of the line with the cubic curve C,
substitute y = λx+ν into the equation (in Weierstrass form) of the curve:

(λx+ ν)2 = y2 = x3 + ax2 + bx+ c.

3. Rearranging everything and because a cubic equation has three roots, it
follows:

0 = x3 + (a− λ2)x2 + (b− 2λν)x+ (c− ν2) = (x− x1)(x− x2)(x− x3).

4. Comparing the coefficients of the x2 terms on either side results in:

a− λ2 = −x1 − x2 − x3.

5. Hence the following explicit formula for P +Q holds:

P +Q = (x3, y3) = (λ2 − a− x1 − x2,−(λx3 + ν)).
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3.4 The duplication formula

Now we want to focus on the special case P + Q where P = Q and we define
2P := P + P .

We can not calculate the line through P and P as in section 3.3, since λ is not
well-defined in this case. Instead, we take the tangent to C at P = (x0, y0).
From the relation y2 = f(x) we get

λ =
dy

dx

∣∣∣
P=(x0,y0)

=
f ′(x0)

2y0

The tangent has then the form y = λx+ ν, where ν = y0 − λx0.

The same calculation as before leads to

2(x0, y0) = (x0, y0) + (x0, y0) = (λ2 − a− 2x0,−λ(λ2 − a− 2x0)− ν).

By plugging in the terms for λ and ν and using the relation y20 = f(x0) we get

x− coordinate of 2(x0, y0) =
x4
0 − 2bx2

0 − 8cx0 + b2 − 4ac

4x3
0 + 4ax2

0 + 4bx0 + 4c
.

We can do the same for y′ = the y−coordinate of 2(x0, y0):

y′ =
x6
0 + 2ax5

0 + 5bx4
0 + 20cx3

0 + (20ac− 5b2)x2
0 + (8a2c− 2ab2 − 4bc)x0 + 4abc− b3 − 8c2)

8y30
.

These formulas can be used to prove some facts about rational points on cubic
curves, for example in the proof of Mordell’s Theorem.

References

[1] J.H. Silverman and J.T. Tate, Rational Points on Elliptic Curves, Springer
(1992).

[2] Tos Wikipedia user, Elliptic curve, URL: https://en.wikipedia.org/
wiki/Elliptic_curve.

[3] Geogebra user, URL: https://www.geogebra.org/calculator

12

https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://www.geogebra.org/calculator

	Introduction to cubic curves
	Definitions and notation
	Group structure of C

	Weierstrass normal form and singularities
	Weierstrass normal form
	Singular cubics

	Explicit Formulas for the Group Law 
	The projective plane
	The addition formula for distinct points in Weierstrass form
	Explicit formula to compute P+Q
	The duplication formula


