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The main goal of this talk is to prove the Nagell-Lutz theorem, which consists
of two parts. The first part says that if a rational point (x, y) has finite order,
then it’s coordinates are integers. The second part states that either y = 0, in
which case the point (x, y) has order two, or y divides the discriminant D. We
used the book “Rational Points of on Elliptic Curves“ by Joseph H. Silverman
and John T. Tate.

1 Points of Order Two and Three

Definition 1.1 (Order). For an element P of a group we say that P has order
n ∈ N if

nP = P + P + · · ·+ P︸ ︷︷ ︸
n summands

= O,

but mP ̸= O for all intergers 1 ≤ m < n. If such a n exists, then we say that P
has finite order, otherwise we say that P has infinite order.

Theorem 1.1 (Points of Order Two and Three). Let C be a non-singular cubic
curve

C : y2 = f(x) = x3 + ax2 + bx+ c.

a) A point P = (x, y) ̸= O on C has order two if and only if y = 0.

b) The curve C has exactly four points of order dividing two. The points
form a group that is the product of two cyclic groups of order two.

c) A point P = (x, y) ̸= O on C has order three if and only if x is a root of
the polynomial

ψ3(x) = 3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2.

d) The curve C has exactly nine points of order dividing three. These nine
point form a group that is a product of two cyclic groups of order three.

Proof . P = (x, y) has order equal to 2 is equivalent to the condition P =
−P . Since −(x, y) = (x,−y) we conclude that y = −y and therefore y = 0.
Conversely, if y = 0 we have P = (x, 0) = (x,−0) = −P and 2P = O follows
immediately. This concludes part (a).
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Figure 1: The points of order 2 on the curve C : y2 = x3 + x2 − 9x− 9

By part (a), we know that the elements of order 2 are exactly the points (x, 0),
such that x is a root of f . By assumption, C is non singular, which means that
over C f has 3 distinct roots a1, a2, a3. Therefore the points

P1 = (a1, 0), P2 = (a2, 0), P3 = (a3, 0)

are exactly the points of order 2 of C. Combining this, and the fact that O has
order 1, we get that the points with order a divisor of two are exactly

{O, P1, P2, P3}.

It’s easy to see that the addition of any two elements of this set has order less
than or equal to 2, and therefore it forms a subgroup of order 4. Since there is
no element of order 4, we see that the group is just C2 × C2.

image of curve with 3 real roots and the corresponding points of order 2

To prove (c) we first check that a point P that’s not O has order 3 if and only
if x(2P ) = x(P ):

If we have 2P = −P , it follows that x(2P ) = x(−P ) = x(P ). Conversely, if
x(2P ) = x(P ) holds, we have that 2P = −P or 2P = P . If the latter is true,
we get P = O which we excluded, and therefore we obtain that P has order 3.

Now to explicitly find the points that satisfy this condition, we apply the du-
plication formula for P = (x, y) and set it equal to x. This yields

x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c
= x,

or equivalently

3x4 + 4ax3 + 6bx2 + 12cx+ 4ac− b2 = 0

2



Note that this is precisely the polynomial named in part (c) of the statement of
the Theorem which concludes the proof of (c).

Now we want to to show that the polynomial ψ3 has 4 distinct roots by showing
that ψ3 and ψ′

3 have no common roots. One can check with a quick calculation
that we can write ψ3 as

ψ3 = 2f(x)f ′′(x)− f ′(x)2.

Taking the derivative of ψ3 we get

ψ′
3 = 2f(x)f ′′′(x) = 12f(x)

and therefore, a common root of of ψ3 and ψ′
3 would imply a common root of f

and f ′ which is a contradiction, since f is assumed to be non singular.

So ψ3 has 4 distinct roots x1, x2, x3, x4 in C. For 0 < i < 5, define yi :=
√
f(xi).

Now we can easily see that the set

{(x1,±y1), (x1,±y2), (x1,±y3), (x1,±y4)}

has exactly 8 elements: Since the xi are pairwise different, we just have to check
yi ̸= 0. But this is a consequence of part (a), since yi = 0 would imply that the
order of (xi, yi) is 2 and not 3, which is a contradiction. So we have 8 distinct
elements of order 3. Together with O that makes 9 elements of order a divisor
of three. These 9 elements (by the same reasoning as before) form a subgroup
of order 9 that is not cyclic, and therefore must be C3 ×C3. This concludes the
proof of the theorem.

2 The Discriminant

We first want to show that we may assume that our cubic curve is given by a
polynomial with integer coefficients.

Consider a cubic curve in it’s normal form

y2 = f(x) = x3 + ax2 + bx+ c,

where a, b, c ∈ Q. Let a = a1

a2
, b = b1

b2
and c = c1

c2
where ai, bi, ci ∈ Z for i = 1

and i = 2. By letting X = d2x and Y = d3y this equation becomes

Y 2 = X3 + d2
a1
a2
X2 + d4

b1
b2
X + d6

c1
c2

and by choosing d = a2b2c2 we can now eliminate all denominators in a, b and
c. Therefore we will from now on assume that our cubic curve is given by an
equation with integer coefficients.

We will now introduce the concept of the discriminant of a polynomial and prove
a lemma from which the second claim of the Nagell-Lutz theorem follows.

Definition 2.1 (Discriminant). Given a cubic curve

y2 = f(x) = x3 + ax2 + bx+ c,

where a, b, c ∈ Z, we define the discriminant of f(x) to be the value

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.
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If we factor f over the complex numbers we get

f(x) = (x− α1)(x− α2)(x− α3),

where α1, α2 and α3 are the roots of f , and by direct computation we get

D = (α1 − α2)
2(α1 − α3)

2(α2 − α3)
2.

Therefore it is clear that D ̸= 0 if and only if the polynomial f has distinct
roots, which is why the Nagell-Lutz theorem stipulates that the cubic curve is
non-singular.

Lemma 2.1. Let P = (x, y) be a point on our cubic curve such that both P and
2P have integer coordinates. Then either y = 0 or y | D.

For the proof of this lemma we need an additional result.

Lemma 2.2. Let f(x) = x3 + ax2 + bx + c be a monic polynomial in the ring
Z[x], then it’s discriminant is in the ideal of Z[x] generated by f(x) and f ′(x).

Proof. We define

r(x) := (18b− 6a2)x− (4a3 − 15ab+ 27c)

and
s(x) := (2a2 − 6b)x2 + (2a3 − 7ab+ 9c)x+ (a2b+ 3ac− 4b2).

By direct computation we see that

D = r(x)f(x) + s(x)f ′(x).

Remark 2.1. Lemma 2.2 also holds in a much more general context. Let f(x)
be a monic polynomial in Z[x], then it’s discriminant D is in the ideal generated
by f(x) and f ′(x).

Now we will prove lemma 2.1.

Proof. Let y be a non zero integer, we want to show that y divides the discrim-
inant D. Since P ̸= O and y ̸= 0 it follows from theorem 1.1 that P isn’t of
order 2, therefore 2P ̸= O and we can write 2P = (X,Y ). From the duplication
formula we get

X =
x4 − 2bx2 − 8cx+ b2 − 4ac

4x3 + 4ax2 + 4bx+ 4c

and it follows that

2x+X = λ2 − a, where λ =
f ′(x)

2y
,
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which is equivalent to

f ′(x)2

y2
= 8x+ 4X + 4a.

Since x,X, a, f ′(x) and y are all integers it follows that y divides f ′(x). In
particular we have y | f(x) since y2 = f(x). Using lemma 2.2 we get

D = r(x)f(x) + s(x)f ′(x)

for r(x), s(x) ∈ Z[x]. Thus y divides D.

3 Points of Finite Order Have Integer Coordi-
nates

In this section we want to prove that rational points (x, y) of finite order on
a non singular curve with integer coefficients have integer coefficients, which
will basically conclude the proof of the Nagell-Lutz theorem. The approach
to do that is rather indirect: we’re going to show that no prime divides the
denominator of x or y in a series of steps. So let p be a prime.

It will be helpful to introduce some notation. We note that every non-zero
rational number can be written uniquely in the form m

n p
ν wherem,n are integers

that are coprime to p and the fraction is in lowest terms.

Definition 3.1. We define the order of such a rational number as the unique
exponent ν of p in that representation

ord
(m
n
pν

)
:= ν.

So we see that the denominator of a rational number is divisible by p if and
only if the order of that rational number is negative. This order depends on the
chosen prime:

ord2

(2
7

)
= 1, ord2

(2
7

)
= −1, ord3

(2
7

)
= 0

If we know look at at point (x, y) on our curve and assume that p divides the
denominator of x we obtain that x = m

n p
µ, y = u

wp
σ with µ > 0 and p doesn’t

divide m,n, u, w. By plugging in our point in our curve and comparing the
orders of both sides, we get

3µ = 2σ,

and it quickly follows that that

µ = 2ν, σ = 3ν

for some ν > 0. In particular p also divides the denominator of y. Similarly, if
we assume p divides the denominator of y, by the same calculation we get that
µ = 2ν, σ = 3ν for again some ν > 0. So if p divides the denominator of x or
y, it divides both of them and the exact power is p2ν and p3ν .
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Definition 3.2. We define

C(pν) = {(x, y) ∈ C(C) : ord(x) ≤ −2ν, ord(y) ≤ −3ν},

in other words the rational points (x, y) on C such that p2ν divides x and p3ν

divides y. By convention we include O in every C(pν). We clearly have

C(Q) ⊃ C(p) ⊃ C(p2) ⊃ C(p3) ⊃ ...

Definition 3.3. We define

R := Rp := {q ∈ Q : ord(q) ≥ 0}.

Using the convention ord(0) = ∞, we see that R is the ring that contains 0 and
the non-zero rational numbers with no p in the denominator. In fact, it can
even be shown that R has unique factorization and is local with the maximal
ideal (p). The units in R are the elements of Q with order 0.

Proposition 3.1. Let p be a prime number, R the ring of rational numbers
with denominator prime to p and C(pν) the set of rational point (x, y) on our
curve for which x has denominator divisible by p2ν , together with the point O.

a) C(p) consists of all rational points (x, y) for which the denominator of
either x or y is divisible by p.

b) For every ν ≥ 1, the set C(pν) is a subgroup of the group of rational points
C(Q).

c) The map
C(pν)

C(p3ν)
−→ pνR

p3νR
, P = (x, y) 7−→ t(P )

x

y
,

is a one-to-one homomorphism which by convention sends O to 0.

Proof. (Sketch) In the previous discussion we proved part (a).
For (b) we change the coordinates by

t =
x

y
, s =

1

y
.

Intuitively, this means that in our s − t plane our origin is now O, and all our
points with y = 0 lie now at infinity. Apart from those points, all other points
get mapped bijectively between the two planes.
We can also see with a computation that a line in the x, y plane correspond to
lines in the t, s plane, and therefore we can add points in the t, s plane in the
same sense as in the x, y plane. Additionally, we see that for a point on the
curve we have

(t, s) ∈ C(pν) if and only if t ∈ pνR and s ∈ p3νR.

So to show that C(pν) is a group we check that it is closed under addition: One
can show that if we have P1 = (t1, s1), P2 = (t2, s2) ∈ C(pν) or equivalently
t1, t2 ∈ pνR, then the t coordinate of P1 +P2 is also in pνR. A similar property
also holds for the s coordinates.
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Additionally, if for P = (t, s) pν divides t and p3ν divides s, the same holds for
−t and −s respectively, and therefore −P = (−t,−s) ∈ C(pν).
Thus C(pν) is closed under addition and taking inverses, and we conclude the
proof of (b).
The key to prove part (c) is to use a formula derived in the proof of (b) that we
omitted, namely that

t(P1 + P2) ≡ t(P1) + t(P2) (mod p3νR)

. Thus, we get a surjective homomorphism

ϕ : C(pν) ↠
pνR

p3νR
, (x, y) 7→ x

y
mod (p3νR).

Note that the kernel of ϕ is given by those points whose t coordinate is in p3νR,
i.e. the points that are in C(p3ν). This proves the proposition.

Corollary 3.1. (a) For every prime p, the only point of finite order in the
group C(p) is the identity point O.

(b) Let P = (x, y) ∈ C(Q) be a rational point of finite order. Then x and y
are integers.

Proof. First we will prove (a). Let P = (x, y) ∈ C(Q) be a point of order m ≥ 2
and let p be a prime number. We will show P ̸∈ C(p) by contradiction. Assume
that P ∈ C(p), because the denominator of x cannot be divisible by arbitrary
large powers of p, we can find ν > 0 such that P ∈ C(pν) and P ̸∈ C(pν+1). We
have two cases to consider: p ∤ m and p | m.
First suppose that p ∤ m, by repeatedly applying the congruence

t(P1 + P2) ≡ t(P1) + t(P2) (mod p3νR)

we get
t(mP ) ≡ mt(P ) (mod p3νR).

Since P is of order m, we get t(mP ) = t(O) = 0. Since m is prime to p, it is a
unit in the ring R, thus

0 ≡ t(P ) (mod p3νR).

This implies that P ∈ C(p3ν), which contradicts our assumption that P ̸∈
C(pν+1) ⊃ C(p3ν).
Now we suppose that p | m, and write m = pq. Now we consider the point
P ′ := (x′, y′) = qP , which is clearly of order p. In addition we have P ′ ∈ C(pν)
and P ′ ̸∈ C(pν+1), since C(pσ) is a subgroup of C(Q) for σ ≥ 1. By using the
same congruence we get

0 = t(O) = t(pP ′) ≡ pt(P ′) (mod p3νR).

Therefore
t(P ′) ≡ 0 (mod p3ν−1R),

and since C(pν+1) ⊃ C(p3ν−1) we get a contradiction, in that P ′ ̸∈ C(pν+1).

Now we will prove (b). Let P = (x, y) be a point of finite order, from (a) we
know that P ̸∈ C(p) for all primes p. Therefore the denominators of x and y
are not divisible by any primes, which implies that they are both equal to one.
Thus x and y are integers.
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4 The Nagell-Lutz Theorem and Further Devel-
opments

We will now precisely state and prove the Nagell-Lutz theorem.

Theorem 4.1 (Nagell-Lutz Theorem). Let

y2 = f(x) = x3 + ax2 + bx+ c

be a non-singular cubic curve with integer coefficients a, b, c, let D be the dis-
criminant of the cubic polynomial and P = (x, y) a rational point of finite order.
Then x and y are integers, and either y = 0, in which case P has order two, or
y divides D.

Proof. It follows from corollary 3.1 that a point of finite order necessarily has
integer coefficients. If P is a point of order two, it follows from theorem 1.1
that y = 0 and otherwise 2P ̸= O. Since 2P is also a point of finite order, it’s
coordinates are also integers. Using lemma 2.1 it follows that y divides D, thus
concluding the proof.

At this point it is important to make clear that the Nagell-Lutz theorem says
nothing about the order of a point (x, y) with integer coordinates such that
y |D.

Remark 4.1. There is also a stronger form of the Nagell-Lutz Theorem which
states that if P = (x, y) is a rational point of finite order with y ̸= 0, then y2

divides the discriminant D.

With the help of the Nagell-Lutz theorem one can therefore find the rational
points of finite order in a finite amount of steps. We take the discriminant D
and consider it’s finite amount of divisors. We then substitute these integers
into the polynomial equation y2 = f(x). Since by assumption f is monic and
has integer coefficients, any integer root will divide the constant term c. Once
we find a potential integer point P of finite order, we can compute 2P, 3P, ...
until we get a point nP for n ∈ N with non integer coordinates. It then follows
from the Nagell-Lutz theorem that our candidate point P must have infinite
order. To accelerate this computation we can restrict the calculation to the
x-coordinates with the help of the duplication formula.

Example 4.1. Consider the curve

y2 = x3 − x2 + x.

We will now use the Nagell-Lutz theorem to find all points of finite order. We
first set y = 0 and get

0 = x(x2 − x+ 1).

Thus it follows from theorem 1.1 that the point P1 = (0, 0) has order 2. For the
discriminant we get D = −3 and it’s divisors are ±1 and ±3. If we set y = ±1
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and solve for x we find that the only integer value for x is 1, thus P1 = (1, 1)
and −P1 = (1,−1) are potential points of finite order. Using the duplication
formulas we get the value 2P1 = 2(−P1) = (0, 0), and since (0, 0) is of order 2
it follows that P1 and −P1 have order 4.
Setting y = ±3 and solving for x we find that there are no more possible points
of finite order.

Figure 2: C : y2 = x3 − x2 + x with the two points of finite order P1 = (1, 1)
and P2 = (1,−1)

Example 4.2. Consider the curve

y2 = x3 + 8.

First we set y = 0 and get

0 = (x+ 2)(x2 − 2x+ 4).

It follows from theorem 1.1 that P1 = (−2, 0) is a point of order two. By
computing the discriminant, we get

D = −1′728 = −26 · 33.

It follows now from the stronger version of the Nagell-Lutz theorem that the pos-
sible y-coordinates of points of finite order are ±1,±2,±3,±22,±2·3,±23,±22 ·3
and ±23 · 3. After plugging these values into our cubic equation and solving
for x, we find that the only other possible points of finite order are P2 = (1, 3),
P3 = (2, 22) and their inverses. However by using the duplication formula we
find that x(2P2) = x(2P3) = −1, 75 and therefore both P2 and P3 are points of
infinite order.

Given the existence of points of finite order, one can ask the natural question,
what orders can these points of finite order take? This question can be answered
with Mazur’s theorem.
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Figure 3: C : y2 = x3 + 8 with the point of finite order P1 = (−2, 0)

Theorem 4.2 (Mazur’s Theorem). Let C be a non-singular rational cubic
curve, and suppose that C(Q) contains a point of finite order m. Then either

1 ≤ m ≤ 10 or m = 12.

More precisely, the set of points of finite order in C(Q) forms a subgroup that
has one of the following forms:

1. A cyclic group of order N with 1 ≤ N ≤ 10 or N = 12.

2. The product of a cyclic group of order two and a cyclic group of order 2N
with 1 ≤ N ≤ 4.

The proof of this theorem goes beyond the scope of this paper.
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