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1 Introduction to heights

In the following, we will introduce the notion of heights and how it behaves under certain operations
(e.g. adding two points on the curve). Furthermore, the height translates geometry on the curve
into number theory. The height will be essential to prove Mordell’s theorem. Our main reference
is Chapter 3 of Silverman and Tate [1].

From now on, we consider a non-singular cubic curve in the weierstrass normal form y2 = f(x) =
x3 + ax2 + bx+ c with integer coefficients a, b, c ∈ Z.

Definition 1.1 (Height). The height of a rational number x = m
n ∈ Q \ {0}, gcd(m,n) = 1 is

defined as

H(x) = H(
m

n
) := max{|m|, |n|} ∈ Z≥1.

(by convention H(0) = 1)

Example 1.1. H( 12 ) = 2 = H( 36 ) or H(− 9999
20000 ) = 20000

The height is a useful tool to measure the “complexity” of a rational point. Even though 1
2 and

9999
20000 have a similar absolute value, intuitively one would say that 9999

20000 is more complicated than
1
2 (in a number theoretic sense).

Definition 1.2 (Height of a point). For a point P = (x, y) ∈ C(Q) we define the height of P to be
the height of the x−coordinate:

H(P ) := H(x)

and in the special case of P = O we define H(O) := 1.

Definition 1.3 (Small height). The small height is defined as h(P ) := log(H(P )) ∈ R≥0.

We will want to compare H(P +Q) to H(P )H(Q). Since the logarithm transforms multiplication
into addition it is reasonable to define the small height.

The goal is to prove that the group of rational points C(Q) is finitely generated. To this end, we
prove three lemmata.
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2 Lemma 1: Finiteness Property

Lemma 2.1. For any real number M , the set

{P ∈ C(Q) : h(P ) ≤M}

is finite.

This lemma is quite straight forward once we proved result 2.1:

Result 2.1 (Finiteness Property of the Height). The set of all rational numbers whose height is
less than some fixed real number is a finite set.

Proof. Let M ∈ R be a constant. Since the height takes values in Z≥1 we have:

{x ∈ Q : H(x) ≤M} = {x ∈ Q : H(x) ≤ max{0, ⌊M⌋}}.

By replacing M with max{0, ⌊M⌋} we may assume M ∈ Z≥0 . Take any x = m/n ∈ Q with height
H(x) = max{|m|, |n|} ≤ M . It follows that there are only finitely many possibilities for m and n.
Actually, if we assume n ≥ 1 we have ≤ M possibilities for n and 2M + 1 possibilities for m. It
follows that

|{x ∈ Q : H(x) ≤M}| ≤ 2M2 +M.

We conclude, that there are only finitely many x = m/n with H(x) ≤M .

Proof of lemma 2.1. Fix a real number M .

{P ∈ C(Q) : h(P ) ≤M} = {P ∈ C(Q) : H(P ) ≤ eM}

We can use the finiteness property of the height. This means that there are only finitely many
possibilities for the x-coordinate of P and for each x-coordinate there are only two possibilities for
the y-coordinate.

Lemma 2: Height of P + P0

Lemma 2.2. Let P0 be a fixed rational point of C. There is a constant κ0 that depends on P0 and
on a, b, c, so that

h(P + P0) ≤ 2h(P ) + κ0

for all P ∈ C(Q).

To prove this lemma, we need two preliminary results.

Result 2.2. If P = (x, y) ∈ C(Q) then x and y have the form

x =
m

e2
, y =

n

e3

for integers m,n, e with e > 0 and gcd(m, e) = gcd(n, e) = 1.
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Proof. Write

x =
m

M
and y =

n

N

in lowest terms with M > 0 and N > 0. Substituting into the equation of the curve gives

n2

N2
= y2 = x3 + ax2 + bx+ c =

m3

M3
+ a

m2

M2
+ b

m

M
+ c

⇔M3n2 = N2m3 + aN2Mm2 + bN2M2m+ cN2M3.

Step 1: We can write M3n2 = N2(m3 + aMm2 + bM2m+ cM3). Hence, N2|M3n2 but since N and
n are coprime N2|M3.

Step 2: Rearranging gives

M3n2 − (aN2Mm2 + bN2M2m+ cN2M3) = N2m3. (1)

M(M2n2 − (aN2m2 + bN2Mm+ cN2M2)) = N2m3.

Therefore, M |N2m3 and since M,m are coprime, we find that M |N2.

Step 3: This implies that

M2(Mn2 − (a
N2

M
m2 + bN2m+ cN2M) = N2m3.

So, M2|N2m3 ⇒M2|N2 using again gcd(M,m) = 1. Thus, M |N .

Step 4: Using a similar argument as in Step 3 and again equation (1), we get M3|N2

From N2|M3 (step 2) and M3|N2 (step 2) and M,N > 0 it immediately follows that M3 = N2.
In step 2 we have shown that M |N so if we take e := N/M , we get that

e2 =
N2

M2
=
M3

M2
=M and e3 =

N3

M3
=
N3

N2
= N.

We can conclude that x = m
e2 and y = n

e3 .

The second result relates the height of the y-coordinate of a rational point on the curve f(x) to the
height of the point.

Result 2.3. There is a constant K > 0, depending on a, b, c (here we mean the coefficients of the
curve) such that |n| ≤ KH(P )3/2 for all P = (me2 ,

n
e3 ) ∈ C(Q).

Proof. We multiply

(
n

e3
)2 = (

m

e2
)3 + a(

m

e2
)2 + b

m

e2
+ c

by e6 and this yields
n2 = m3 + ae2m2 + be4m+ ce6.

using triangle inequality and the fact that |m| ≤ H(P ) and e2 ≤ H(P ) by definition of the height:

⇒ |n2| ≤ |m3|+ |ae2m2|+ |be4m|+ |ce6| ≤ H(P )3 + |a|H(P )3 + |b|H(P )3 + |c|H(P )3

The result follows by taking K =
√
1 + |a|+ |b|+ |c|.

3



We are now ready to prove lemma 2.2.

Proof of lemma 2.2. The idea is to write out the formula for the sum of two points and to use the
triangle inequality. If P0 = O, the result is trivial. Hence, we assume that P0 = (x0, y0) ̸= O. It is
enough to prove the inequality for all P except for some finite points (we just consider the differences
h(P + P0) − 2h(P ) and take κ0 larger than the finite number of values that occur). We want to
avoid using the duplication formula (see first talk). Therefore, we may assume P ̸∈ {P0,−P0,O}.
We write

P = (x, y) and P + P0 = (ξ, µ).

We want to express the height of P + P0 in terms of (x, y) and x0, y0. From the first talk we know
that

ξ + x+ x0 = λ2 − a with λ =
y − y0
x− x0

.

Substituting λ gives us

ξ =
(y − y0)

2

(x− x0)2
− a− x− x0 =

(y − y0)
2 − (x− x0)

2(x+ x0 + a)

(x− x0)2
.

After some manipulation one can see that y2−x3 appears in the numerator and can be replaced by
ax2 + bx+ c since P lies on the curve. Hence, there exist rational numbers A,B,C,D,E, F,G ∈ Q
that can be expressed in terms of a, b, c and (x0, y0) so that

ξ =
Ay +Bx2 + Cx+D

Ex2 + Fx+G
.

We may assume that A,B,C,D,E, F,G ∈ Z after multiplying the numerator and denominator by
the least common multiple of the denominators of A,B . . .G. Note that it is okay for our constant
κ0 to depend on A,B, . . . G since they only depend on a, b, c, P0. Using result 2.2, we write x = m/e2

and y = n/e3 and multiply denominator and numerator by e4.

ξ =
Ane+Bm2 + Cme2 +De4

Em2 + Fme2 +Ge4
.

We have achieved that the numerator and denominator are both integers. It might not be in lowest
terms, but cancellation will only make the height smaller.

H(ξ) ≤ max{|Ane+Bm2 + Cme2 +De4|, |Em2 + Fme2 +Ge4|}.

By definition, |e| ≤ H(P )1/2 and |m| ≤ H(P ) and by result 2.3, |n| ≤ KH(P )3/2. Here, K is a
constant that only depends on a, b, c. Now we apply the triangle inequality and this gives

|Ane+Bm2 +Cme2 +De4| ≤ |Ane|+ |Bm2|+ |Cme2|+ |De4| ≤ (|AK|+ |B|+ |C|+ |D|)H(P )2.

and
|Em2 + Fme2 +Ge4| ≤ |Em2|+ |Fme2|+ |Ge4| ≤ (|E|+ |F |+ |G|)H(P )2.
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In summary,

H(P + P0) = H(ξ) ≤ max{|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|}H(P )2.

Finally, taking the logarithm we get that

h(P + P0) ≤ 2h(P ) + κ0.

where κ0 = log max{|AK|+ |B|+ |C|+ |D|, |E|+ |F |+ |G|} is a constant depending only on a, b, c
and P0. This is what we wanted to prove.

3 Lemma 3: Height of 2P

In this section, we want to prove that

Lemma 3.1. There is a constant κ depending on a, b, c s.t

h(2P ) ≥ 4h(P )− κ for all P ∈ C(Q)

Proof of lemma 3.1. Let P ∈ C(Q).
Write P = (x, y).
Since there are only finitely many points P ∈ C(Q) such that 2P = 0, we can suppose 2P ̸= 0.
Therefore we have f(x) ̸= 0, where f(x) = x3 + ax2 + bx+ c.
From a duplication formula from one of the earlier talks we know that if we write 2P = (ξ, ν) we
have

ξ + 2x =
f ′(x)2

4y2
− a

⇐⇒ ξ =
f ′(x)2 − f(x)(8x+ 4a)

4f(x)

Due to the definition of the height of a point P ∈ C(Q) we have h(2P ) = h(ξ) and h(P ) = h(x).
Therefore we need to prove that h(ξ) ≥ 4h(x)− κ, where κ only depends on the coefficients of f .
Since f is non-singular, f and f ′ have no common root.
Therefore f ′(X)2 − f(X)(8X + 4a) and 4f(X) have no common roots.

Lemma 3.2. Let ϕ, ψ ∈ Z[X] with no common complex root.
Let d := max{deg(ψ), deg(ϕ)}.
Then we have
(a) ∃R ∈ Z such that for all n,m ∈ Z coprime we have that

gcd
(
ndϕ

(m
n

)
, ndψ

(m
n

))
divides R

(b) There are constants κ1, κ2 ∈ R such that for all n,m ∈ Z with ψ
(
m
n

)
̸= 0, we have

dh
(m
n

)
− κ1 ≤ h

(
ϕ(m/n)

ψ(m/n)

)
≤ dh

(m
n

)
+ κ2

We will proof this lemma later, for now lets suppose it is true.
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Let ϕ(X) := f ′(X)2 − f(X)(8X + 4a) and ψ(X) := 4f(X).
Since ψ and ϕ are polynomials in Z[X] with no common roots, we can apply the lemma 3.2.
Since deg(f(x)) = 3, we have deg(f ′(x)2) = 4 and therefore d = max{deg(ψ, ϕ)} = 4.
Using lemma 3.2, we find a constant κ1 only dependent on ψ and ϕ such that

4h(x)− κ1 ≤ h

(
ϕ(x)

ψ(x)

)
= h(ξ)

⇐⇒ 4h(P )− κ1 ≤ h(2P )

Since P was arbitrary such that 2P ̸= 0 and this only happens finitely often, we can finally find a
constant κ such that for all P ∈ C(Q) we have

4h(P )− κ ≤ h(2P )

Now we want to prove (a) of lemma 3.2.

Proof of lemma 3.2 (a). Since ϕ and ψ have no common roots we have gcdQ[X](ψ, ϕ) = 1.
Therefore there are F,G ∈ Q[X] s.t

ϕ(X)F (X) + ψ(X)G(X) = 1 (2)

Since F,G ∈ Q[X] we can find A ∈ Z s.t AF,AG ∈ Z[X].
Without loss of generality we have d = deg(ϕ).
Moreover we can suppose d > 0 since in the case d = 0, the lemma follows immediately.
Let D := max{deg(F ), deg(G)}.
Let m,n ∈ Z coprime.
Multiplying (2) by AnD+d and evaluating at X = m

n leads to

AnD+dϕ
(m
n

)
F
(m
n

)
+AnD+dψ

(m
n

)
G
(m
n

)
= AnD+d (3)

To ease notation we define Φ := ndϕ
(
m
n

)
and Ψ := ndψ

(
m
n

)
.

Notice that Φ,Ψ ∈ Z.
Let γ := gcd(Φ,Ψ).
Since γ|Φ and γ|Ψ, it follows from (3) that γ|AnD+d.

Now we want to find R ∈ Z which does not depend on n,m such that γ|R to finish the proof of (a).
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Claim: γ|AaD+d
d where ad is the leading coefficient of ϕ.

Proof of the claim:
By the definitions we have

AnD+d−1Φ = AnD+d−1mdad +AnD+dmd−1ad−1 + ....+AnD+2d−1a0 (4)

Since γ|AnD+d and γ|Φ, by (4), we have γ|AnD+d−1mdad.
Therefore

γ|gcd(AnD+d, AnD+d−1mdad) (5)

Since gcd(AnD+d, AnD+d−1mdad) = AnD+d−1gcd(n,mdad) and n,m are coprime, we have

γ|AnD+d−1ad

Repeating the above by looking at AnD+d−2adΦ, we find γ|AnD+d−2a2d.
This can be repeated until we have γ|Aad+Dd .

Because AaD+d
d doesn’t depend on n,m (a) is proven with R := AaD+d

d .

Now we want to prove part (b) of lemma 3.2.
Intuitively, κ1 and κ2 exist because from (a) we know that there are no massive cancellations in

the fraction
(
ϕ(m/n)
ψ(m/n)

)
. This means that h

(
m
n

)
and h

(
ϕ(m/n)
ψ(m/n)

)
grow somewhat similar.

We only prove the lower bound, since the upper bound can be proven like lemma 2.

Proof of the lower bound of (b). Let n,m ∈ Z such that ψ
(
m
n

)
̸= 0.

Since ϕ(x) = 0 only happens finitely often, we can suppose that ϕ
(
m
n

)
̸= 0.

Let ξ := ϕ(m,n)
ψ(m,n) .

Since h(ξ) = h(1/ξ), we can assume without loss of generality that d = deg(ϕ).
Define Φ and Ψ as in (a), therefore ξ = Φ

Ψ .
By (a) there exists R ∈ N, not dependent on m,n, such that gcd(Ψ,Φ)|R.
Since gcd(|Φ|, |Ψ|) ≤ R, we have

H(ξ) ≥ 1

R
max{|Φ|, |Ψ|}

Since max{a, b} ≥ a+b
2 and by the definition of Ψ and Φ, we have

H(ξ) ≥ 1

2R
(|Φ(m,n)|+ |Ψ(m,n)|) = 1

2R
(|ndϕ

(m
n

)
|+ |ndψ

(m
n

)
|)

Since H(m/n)d = max{|n|d, |m|d} we have

H(ξ)

H(m/n)d
≥ 1

2R

|ndϕ
(
m
n

)
|+ |ndψ

(
m
n

)
|

max{|n|d, |m|d}
=

1

2R

|ϕ
(
m
n

)
|+ |ψ

(
m
n

)
|

max{ |m|d
|n|d , 1}

(6)
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Let f : R → R with t 7→ 1
2R

|ϕ(t)|+|ψ(t)|
max{|t|d,1} .

Since ϕ is of degree d and ψ of degree less or equal to d we have

lim
|t|→∞

f(t) ∈ {|ad|
2R

,
|ad|+ |b|

2R
}

where ad and b are the leading coefficients of ϕ and ψ respectively.
Therefore there exists t0 > 0 such that for any |t| ≥ t0 we have f(t) ≥ C for some C > 0.
Moreover, since f |[−t0,t0] is continues on a compact interval, f admits a minima M .
Since ψ and ϕ have no common roots by assumption, we have M > 0.
Therefore f(t) ≥ min{M,C} > 0 for any t ∈ R.
Therefore by (6) we have

min{M,C}H
(m
n

)d
≤ H(ξ)

Setting κ1 := log(2R/min{M,C}) and taking the logarithm, we obtain

dh
(m
n

)
− κ1 ≤ h(ξ)

which concludes the proof of the lower bound in (b) since ξ = ϕ(m/n)
ψ(m/n) .
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