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Why is Mordell’s Theorem interesting?

In this talk we will outline a proof for the following theorem due to Louis Mordell
(see the end of Section 1.2 in [1]):

Theorem 1 (Mordell’s Theorem). If a non-singular rational plane cubic curve
has a rational point, then the group of rational points is finitely generated.

Louis Mordell first proved it in [6] in 1922. He was born in Philadelphia,
Pennsylvania, on 28 January 1888 as the son of Phineas Mordell, who had im-
migrated from Lithuania and later became a reknown Hebrew scholar. In the
exam for a scholarship at the university of Cambridge Louis Mordell excelled
and outperformed all other candidates and so he persuade his studies there. He
later was professor at Manchester University and Cambridge and also obtained
the British citizenship [7]. Besides the above theorem another important contri-
bution of Mordell was the proof of Ramanujans conjecture about the τ -function
by using modular forms [8]. Mordell died in 1972 in Cambridge [7].

The above theorem was generalized by Weil to what is now known as the
Mordell-Weil Theorem, which states that for an abelian variety A over a number
fieldK (i.e. K/Q is finite) the group A(K) ofK-rational points of A is a finitely-
generated group. Néron even further generalized this theorem to fields which
are a finite extension over their prime field of arbitrary characteristics [9].

Now back to the topic of this talk and the above theorem. The usefulness
and beauty of Mordell’s theorem becomes apparent, when we reformulate it in
more concrete and geometric terms. It says that we only need finitely many
(rational) points on the curve and the geometrically defined group law to write
any rational point on the curve. So if our goal was to understand the set of
rational points on an elliptic curve, we could probably declare victory (at least
for the non-singular plane cubic case) – once we have proven Mordell’s theorem.
So let’s get started.

The Proof

Since the proof of Mordell’s theorem is somewhat long, following Chapter 3 in
[1], we have broken it down into several parts. The second part will be concerned
with the Descent Theorem and finish up the proof of Mordell’s Theorem. The
first part will establish that a key assumption for the Descent Theorem actually
holds for our curve.
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1 Part I: (C(Q) : 2C(Q)) is Finite

In this part we will present the proof of the following Lemma which is Lemma
3.4 in [1].

Lemma 1. The index (C(Q) : 2C(Q)) is finite.

First, we will call C(Q) =: Γ for convenience. Then what we want to prove
becomes

(Γ : 2Γ) < +∞ .

Unfortunately, if we want to avoid using too much algebraic number theory
we cannot prove this in all its generality. Instead we will have to assume that
our curve

y2 = f(x) = x3 + ax2 + bx+ c for a, b, c ∈ Z

has at least one rational root x0. We know from the previous talk on Points
of finite order that x0 then is a rational point of order two (see Theorem 1.1
in [2]). This will later be of importance. Now it is more interesting to observe
that if x0 is the root of a quadratic polynomial with integer coefficients, then
also x0 must be an integer. Hence, we can replace x 7→ x−x0 and our equation
will have the easier form

C : y2 = f(x) = x3 + ax2 + bx for a, b ∈ Z.

Then our rational root is T = (0, 0). Observe also that under this transformation
we only translate the group of rational points by an integer and thus not change
it relevantly.

The idea of the proof is to break down the map P 7→ 2P into two simpler
maps. Then we will use the group theoretic fact that for maps ϕ; Γ → B and
ψ : B → Γ with (ψ ◦ ϕ)(P ) = 2P we have

(Γ : 2Γ) ≤ (Γ : ψ(B)) · (B : ϕ(Γ)).

This fact can be proven quickly by thinking about the cosets and how to repre-
sent them in terms of each other. If we now moreover can show that the indexes
on the right side are both finite, we would be done.

This is the technical way of how we will do this. But in the end we will see,
that the moral reason for why (C(Q) : 2C(Q)) is finite, is really the fact that
modulo squares there are only finitely many possibilities for the x-coordinate of
a rational point on the curve. But we will come back to that towards the end
of this section.

1.1 Two Homomorphisms

We will now go about to define the ϕ and ψ that we were dreaming of above.
Unfortunately, they will not be endomorphisms, meaning form our curve C to
our curve C but we will have to make a little detour and visit another elliptic
curve. We will call this other curve C and we will get it from C by

C : y2 = x3 + āx2 + b̄x ā := −2a and b̄ := a2 − 4b .
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Observe that it follows that

C : y2 = x3 + ¯̄ax2 + ¯̄bx

= x3 − 2ā+ ā2 − 4b̄

= x3 + 4a+ 4a2 − 4(a2 − 4b)

= x3 + 4a+ 16b

which we can transform by x 7→ 4x, y 7→ 8y and then dividing by 64 in a purely
rational way back to our original curve C. So also their groups of rational points

are isomorphic. Thus, form now on we will identify C with C.
In order to motivate the following definition, we would have to first internal-

ize part of the content of Section 2.2 to of [1]. Cut short, this section says that
to every elliptic curve there exists a complex meromorphic function ℘ called
the Weierstraß ℘-function which has two periods in to linearly independent di-
rection. We then can consider a so called period parallelogram onto which the
function maps bijectively. The following image (which is figure 3.1 in [1]) is an
example of such a period parallelogram.

This image also illustrates exactly what we want to do: We want to define a
map ϕ from a curve C with a period parallelogram as in a to a curve C with

period parallelogram as in b and another map ψ from C to a curve C ≈ C with
a period parallelogram as in c. The parallelogram in c can clearly be seen to be
the same as in a but for being scaled by 1

2 . Observe also that the point marked
with T in the picture is a point of order two just as the point we are calling
T . So it should not come very surprisingly that our point T of order two will
play a special role in the definition we will make inside this Proposition, which
is Proposition 3.7 in [1]:

Proposition 1. Let C and C be elliptic curves given by the equations

C : y2 = f(x) = x3 + ax2 + bx and C : y2 = x3 + āx2 + b̄x

where

ā = −2a and b̄ = a2 − 4b .
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Let T = (0, 0) ∈ C.

(a) There is a homomorphism ϕ : C → C defined by

ϕ((x, y)) =

{(
y2

x2 ,
y(x2−b)

x2

)
if (x, y) ̸= O, T

O if (x, y) = O, T

(b) Analogously we get a map ϕ : C → C. Using that C is isomorphic to
C via (x, y) 7→ ( 14x,

1
8y we get that there is homomorphism ψ : C → C

defined by

ϕ((x, y)) =

{(
y2

x2 ,
y(x2−b)

x2

)
if (x, y) ̸= O, T

O if (x, y) = O, T

(c) The composition ψ ◦ ϕ : C → C is the multiplication by two map:

(ψ ◦ ϕ)(P ) = 2P

The proof of this proposition is lengthy but consists mostly of elementary
computations, therefore we will omit it. The interested reader can find it in
section 3.4 of [1].

1.2 The Images of the homomorphisms and the Indexes

Instead we want to take a closer look at these two homomorphisms or to be more
precise, we would like to study the image ϕ(Γ) ≤ Γ. We observe the following
three facts:

(i) O ∈ ϕ(Γ)

(ii) T = (0, 0) ∈ ϕ(Γ) ⇐⇒ b = a2 − 4b

(iii) For P = (x, y) Γ with x ̸= 0 we have P ∈ ϕ(Γ) ⇐⇒ x is the square of a
rational number.

The first one holds by definition. For the second one observe that we immedi-
ately get y = 0 and thus using the factorization x(x2+ax+ b) of C, we see that
x must be a root of the second factor. This it possible if and only if the deter-
minant a2 − 4b of the second factor is a square. From left to right in the third
fact is by definition. For the converse one has to check, that the two points one

would expect should work (i.e. x1,2 = 1
2

(
x− a± y√

x

)
and y1,2 = ±x1,2

√
x )

indeed lie on the curve C. This can be done by direct computation.
Knowing all of this we are now ready to prove the finiteness of the indexes

of the images of the two homomorphism. Luckily, they are defined very analo-
gously, so that it suffices to prove it for ψ and it also will follow for ϕ.

We will show that there exists an injective homomorphism from the quotient
group Γ/ψ(Γ) into a finite group. To that end consider the subgroup

Q∗2 = {u2 : u ∈ Q}
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of the multiplicative group Q∗ of the rational numbers. We define a map

α(O) = 1 mod Q∗2

α(T ) = b mod Q∗2

α((x, y) = x mod Q∗2 if x ̸= 0.

where b is the coefficient from our elliptic curve. Once we have proven that α
is a homomorphism (which works exactly as expected, therefore, we will omit
it) we can deduce from the above three properties (i), (ii) and (iii) that indeed
kerα = im ψ and so α induces an injective homomorphism Γ/ψ(Γ) ↪→ Q∗/Q∗2.
But what about the promised finite subgroup? Let’s state it as a proposition
(see propostion 3.8. in [1].

Proposition 2. Let p1, p2, . . . , pt be the distinct primes dividing b, meaning
b =

∏t
i=1 p

νi
i . Then the image of α is contained in the subgroup of Q∗/Q∗2

consisting of the elements

{±pϵ11 p
ϵ2
2 · · · pϵtt : ϵi ∈ {0, 1}}.

Hence, we get the bound (Γ : ψ(Γ) ≤ 2t+1. In particular, this index is finite.

To prove this proposition one can ask oneself the question, which x-coordinates
can occur for points in Γ. In the last talk we saw a very useful lemma which
is result number 2.2 in the notes to the talks on Heights [3] and can be found
in section 3.2 in [1]. Namely, we can write x = m

e2 and y = n
e3 for m,n, e ∈ Z.

Using this and a divisibility argument, one can quickly prove the proposition.
Here we see, as mentioned in the beginning, that there are only finitely many

possibilities for the x-coordinate of a rational point on C and dirctly . Now, as
promised, we only need to use the group theoretic fact

(Γ : 2Γ) ≤ (Γ : ψ(Γ)) · (Γ : ϕ(Γ)) < +∞

to conclude the finiteness of (C(Q) : 2C(Q)).

2 Part II: The Descent Theorem

Theorem 2. Let Γ be a commutative group, and suppose that there is a function

h : Γ → [0,∞)

with the following three properties:

1. For every real number M, the set {P ∈ Γ : h(P) ≤ M}

2. For every P0 ∈ Γ ther is a constant κ0 so that

h(P+P0) ≤ 2h(P) + κ0 for all P ∈ Γ

3. There is a constant κ so that

h(2P) ≥ 4h(P) - κ for all P ∈ Γ
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Suppose further that

4. The subgroup 2Γ has finite index in Γ.

Then Γ is finitely generated

Proof. Because the index (Γ : 2Γ) is finite, we define (Γ : 2Γ) = n. We now
take a representative from each of the cosets of Γ/2Γ and call them Q1, . . . ,
Qn, which means that for every P ∈ Γ we have an index i1 such that

P - Q i1 ∈ 2Γ,

since P is in one of the cosets, and so we can write:

P - Q i1 = 2P1

for P1 ∈ Γ. Repeating this, we get

P1 −Qi2 = 2P2

P2 −Qi3 = 2P3

...
Pm-1 −Qim = 2Pm ,

where Q i2 , . . . , Q in ∈ {Q1, . . . , Qn} and P1, . . . , Pm ∈ Γ.

The idea now is that since P i ≈ 2P i+1, h(P i+1) ≈ h(Pi )
4 , so the points P, P1,

P2, . . . have decreasing height, so we end up in a set of points of bounded height,
which by a) is finite, completing the proof. We will now formalize these steps:
We first substitute the first equation

P = 2P1 + Q i1

into the second equation

P1 = 2P2 + Q i2 ,

giving us

P = 4P2 + 2Q i2 + Q i1

and, by repeating this we get

P = 2mPm + 2m-1Q im + . . .+ 4Q i3 + 2Q i2 +Q i1 , (*)

so P is in the subgroup generated by the Q i ’s and Pm ’s.
We now show that we can choose m large enough, such that Pm will have height
less than a fixed bound not depending on P. Then Γ will be generated by the
set of points with height less than this bound and the Q i , which together still
form a finite set. Let P j be in the set {P, P1, P2, . . . }. We will now show that
the height of P j is considerably smaller than the height of P j -1:
Using 2) with P0 = −Qi, we get that

h(P −Qi) ≤ 2h(P) + κi for all P ∈ Γ

where κi is some constant. We now denote as κ′ the largest of all κi ’s, and for
this we have that:

h(P −Qi) ≤ 2h(P) + κ′ for all P ∈ Γ and 1 ≤ i ≤ n,
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which we can do, because there is only finitely many Q i ’s. We now use 3):

4h(Pj ) ≤ h(2Pj ) + κ

= h(Pj -1 −Qij) + κ

≤ 2h(Pj -1) + κ′ + κ

where κ is another constant. From this, we get that:

h(Pj ) ≤
2h(P j -1) + κ’ + κ

4
=

h(Pj -1)

2
+
κ′ + κ

4

=
3

4
h(Pj -1)−

1

4
(h(Pj -1)− (κ’ + κ))

If we now assume h(P j -1) ≥ κ′ + κ we get that

h(P j ) ≤ 3
4h(P j -1),

meaning that the sequence of h(P j )’s converges to zero, meaning that we can
find an m such that h(Pm) ≤ κ′ + κ. Using (*) we now know that we can write
every P ∈ Γ as

P = 2mR + anQn + . . .+ a2Q2 + a1Q1,

for a1,. . . , an integers and R ∈ Γ such that h(R) ≤ κ′ + κ.
Therefore the set

{Q1,. . . , Qn} ∪ {R ∈ Γ : h(R) ≤ κ′ + κ}

generates Γ and since it is finite we are done.

3 Concluding the Proof

First, let us restate the version of Mordell’s theorem that we now can fully
prove:

Theorem 3 (for curves with a rational point of order two). Let C be a non-
singular cubic curve given by

C : y2 = x3 + ax2 + bx a, b ∈ Z .

Then the group of rational points C(Q) is a finitely generated abelian group.

Proof. From the lemma 2.1, lemma 2.2 and lemma 3.1 from the last talk [3]
(which are lemma 3.1, lemma 3.2 and lemma 3.3 in [1]) and the first part of this
talk we know that we have all the requirements to apply the Descent Theorem
on C (Q). Therefore, C (Q) is finitely generated.

Finding the Generators

One might ask, how to go about finding these finitely many generators. The
unfortunate and unsatisfactory answer is that there is no procedure that is
guaranteed to work in every case. However, by using some of the methods that
were used in the proof of Mordell’s theorem, one can often succeed after all.
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Free Rank

Since C (Q) is a finitely generated group, we can write it as:

Zr ⊕
⊕

l
i=1Z/pνi

i Z.

While we understand the torsion part pretty well (the second talk on points of
finite order was in principle about that), the free part and the free rank is much
harder to understand. If the rank is 0, the C (Q) is finite. One example for this
is the elliptic curve

y2 = x 3 - x,

where C (Q) contains (0,0), (1,0), (-1,0), all of order 2 and O and so is isomorphic
to Z/2Z × Z/2Z [4]. There is a conjecture that the rank can be arbitrarily large.
The elliptic curve with the highest rank ever found is:

y2 + xy + y =x 3 -x 2 -
20067762415575526585033208209338542750930230312178956502x +

34481611795030556467032985690390720374855944359319180361266008296291939448732243429,

which has rank at least 28 [5].
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