
Cubic curves over finite fields

P. Edera and F. Hoffmann

31st October 2023



1 Rational points over finite fields

In this Section we explore cubic equations within the confines of a finite field,
specifically focusing on the field Fp, which corresponds to the integers modulo
p. Our exploration will closely align with the content covered in Chapter 4
of the work authored by Silverman and Tate [1]. In general Cubic curves are
a special case of elliptic curves when they have a specified point at infinity.
Instead, over finite fields, they are a fundamental topic in algebraic geometry
and number theory. These curves are a special class of algebraic curves defined
by cubic equations over finite fields. In the context of these fields, cubic curves
have important applications in cryptography, error-correcting codes, and coding
theory.

Consider a prime number p and a polynomial F (x, y) ∈ Fp[x, y] with
coefficients in Fp, defining a curve

C : F (x, y) = 0.

Since we cannot visualize things now, we look for solutions (x, y) of this equation
with (x, y) ∈ Fpn , an extension field of Fp with pn elements.

Definition 1.1. A point (x, y) with x, y ∈ Fp and F (x, y) = 0 is called a rational
point of the curve C. We denote the set of all rational points of C by C(Fp).

Example 1.2. Consider
y2 = x3 + x+ 1

over F5. Now we can simply consider each of the five potential values for x,
substitute them into the polynomial x3 + x+ 1, and verify whether the outcome
is a square within the field F5. We therefore find nine points, including O at
infinity:

C(F5) = {O, (0,±1), (2,±1), (3,±1), (4,±2)}.

When dealing with a non-singular cubic curve C, it becomes possible to
establish an addition law on the curve. The rational points on C, in combination
with the point O at infinity, collectively constitute an abelian group under this
defined operation. Utilizing images is unnecessary because the procedures and
formulas that we have seen for cubic curves over C also work over Fp. As the
field Fp is of finite size, there exists only a finite number of points that can exist
on the curve C. This observation leads to the conclusion that C(Fp) forms a
finite group.

One of the central problems in the study of cubic curves over finite fields
is determining the number of rational points on the curve. Therefore we want
to find an exact formula or an estimate for the number of points in C(Fp). First
and foremost, it’s important to emphasize that C invariably includes the point
O at infinity. Concerning the remaining points, we can assert that they adhere
to the pattern (x, y), where x and y are elements of the finite field Fp. Since
the Cartesian product Fp × Fp is a finite set, our task is simply to examine
whether the function F (x, y) equals zero for all potential combinations of x and
y drawn from Fp. An important result that we can use to achieve our goal is the
Hesse-Weil theorem. This theorem provides us an upper bound on the number
of rational points, which is related to the size of the finite field.
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2 The Hasse-Weil theorem

We now consider the curve C given by

C : y2 = f(x),

where f(x) is a polynomial with coefficients in Fp, and we try to estimate the
number of rational points of the curve C. To do this, we first assume that p ̸= 2.
It is now important to define a new concept:

Definition 2.1. An integer x is called a quadratic residue modulo p if there
exists an integer a such that:

a2 = x (mod p).

Otherwise, x is called a quadratic nonresidue modulo p.

The number of quadratic residues is related to Euler’s criterion, which
determines whether an element in a finite field is a quadratic residue modulo the
field’s characteristic prime. In other words, it helps determine if an integer can
be expressed as a perfect square modulo a prime. It turns out that the number
of quadratic residues in a finite field Fpn depends on the field’s size pn and its
prime characteristic p. In most cases, there are exactly (p − 1)/2 quadratic
residues among the nonzero elements of the field, but this number may vary
when the field has characteristic 2 (in this case every non-zero element is a
quadratic residue since a2 = (−a)2 for all elements a in a field of characteristic
2); this is why we have assumed p ̸= 2. It’s important to note that discussions
about quadratic residues typically exclude the field’s zero element since 02 = 0
for any element in any field. The following proposition summarises what has
been said:

Proposition 2.2. Let p ≥ 3 be a prime number. Then there are exactly p−1
2

non-zero elements of the field Fp which are squares (i.e. elements of the form
x2 for x ∈ F∗

p).

Therefore we can now consider x ∈ Fp and think of substituting the dif-
ferent values x = 0, . . . , p− 1 into the equation y2 = f(x). If f(x) equals zero,
the only feasible value for y is y = 0. In cases where f(x) is non-zero, we can
distinguish between two scenarios: either f(x) is one of the p−1 residues in Fp,
leading to two potential values for y, or f(x) is a nonresidue in Fp, resulting
in no solutions for y. Hence, assuming that the values of f(x) are uniformly
distributed across the elements of Fp, we can estimate that, on average, each
x ∈ Fp has approximately one solution. When including the point O at infin-
ity, this yields a total of p + 1 points. Importantly, for a separable polynomial
f ∈ Fp[x], there is no discernible bias in the distribution of f values as squares
or non-squares. Consequently, we can estimate that the overall number of ra-
tional points on the curve C, including the point at infinity, is approximately
p + 1. This estimation can be made precise using the Hasse-Weil theorem, as
discussed in Silverman and Tate [1] on page 120.

Theorem 2.3 (Hasse-Weil). If C is a non-singular irreducible curve of genus
g defined over a finite field Fp, then the number of points on C with coordinates
in Fp is equal to p+ 1− ϵ, where ϵ satisfies |ϵ| ≤ 2g

√
p.
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The full explanation of the genus concept is beyond the scope of this
presentation. For now, we will simply mention that every curve of the form
F (x, y) = 0 is linked to a non-negative number g, referred to as its genus (in a
nutshell it is a topological invariant that measures the number of ”holes” in the
curve’s surface). In particular, any non-singular curve given by a cubic equation
is a curve of genus 1. Therefore for an elliptic curve C over Fp, we have the
estimate ∣∣∣|C(Fp)| − (p+ 1)

∣∣∣ ≤ 2
√
p.

3 A theorem of Gauss

We can now give some special cases of Theorem 2.3. Gauss successfully estab-
lished proofs for specific instances of the theorem. In this section, we delve into
one such instance, focusing on the cubic Fermat curve

x3 + y3 = 1.

We consider the curve in its homogeneous form

x3 + y3 + z3 = 0

and its solutions in the projective sense. Hence we do not count the trivial solu-
tion (0, 0, 0) and we identify a solution (x, y, z) with all of its non-zero multiples
(ax, ay, az).

Before continuing, we state some definitions and propositions (without
proving them because they are not important with the aim of this talk) that
will make our life easier for the computations in the proof of Theorem 3.5.

Definition 3.1. Let X,Y, Z ⊂ Fp be subsets of Fp. Then we denote by [XY Z]
the number of triples (x, y, z) ∈ X × Y × Z with x+ y + z = 0.

Proposition 3.2. Let X,Y, Z,W ⊂ Fp. Then it holds:

(i) If Z ∩W = ∅, then [XY (Z ∪W )] = [XY Z] + [XYW ].

(ii) ∀a ∈ F∗
p : [XY Z] = [aX, aY, aZ].

(iii) [XY Z] = [XZY ] = [Y XZ] = [Y ZX] = [ZXY ] = [ZY X].

Proposition 3.3. Every line in the projective plane over the finite field Fp has
exactly p+ 1 points.

Proposition 3.4. The multiplicative group F∗
p of Fp consisting of the non-zero

elements 1, 2, . . . , p− 1 with the group operation being multiplication is a cyclic
group of order p− 1. For instance, F∗

p has p− 1 non-zero elements that can be
expressed as powers of a single element.

Adhering to these established conventions, we are now prepared to present
Gauss’s theorem; we can find it in Silverman and Tate [1] on page 121.

Theorem 3.5 (Gauss). Let Mp be the number of projective solutions to the
equation

x3 + y3 + z3 = 0

with x, y, z in the finite field Fp.
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(a) If p ̸≡ 1 (mod 3), then Mp = p+ 1.

(b) If p ≡ 1 (mod 3), then there exist integers A and B such that

4p = A2 + 27B2.

The numbers A and B are unique up to changing their signs, and if we fix
the sign of A so that A ≡ 1 (mod 3), then

Mp = p+ 1 +A.

Remark 3.6. If p ≡ 1 (mod 3) then 4p ≡ 4 ≡ 1 (mod 3) and also 27B2 ≡
0 (mod 3). Therefore the equation 4p = A2+27B2 implies that A2 ≡ 1 (mod 3),
which gives us A ≡ 1 (mod 3). We can also observe that A2 = 4p− 27B2 < 4p,
and thus |A| < 2

√
p and so Gauss’s theorem is indeed a special case of Theorem

2.3.

Proof of Theorem 3.5. (a) Let p ̸≡ 1 (mod 3). Then we get that 3 does not
divide p− 1 = |F∗

p| and since F∗
p is a cyclic group by Proposition 3.4, it follows

that the map
Φ : F∗

p → F∗
p, x 7→ x3

is a group isomorphism. With the fact that it holds 03 = 0, we get that every
element of Fp has a unique cubic root. Hence, the count of solutions to the
equation

x3 + y3 + z3 = 0

is equivalent to the count of solutions of the linear equation

x+ y + z = 0.

This is exactly the equation of a line in the projective plane, therefore by Propo-
sition 3.3 it has p+ 1 rational points over Fp, i.e. we obtain Mp = p+ 1.

(b) The idea of this proof is first to representMp with [RRR], then simplify
this number and calculate the simplified version with the help of the p’th roots
of unity. For this, let p ≡ 1 (mod 3), i.e. we can find m ∈ N with p = 3m + 1.
Since 3 divides p− 1 = |F∗

p|, the group homomorphism

Φ : F∗
p → F∗

p, x 7→ x3

is not surjective. We denote by R = {x3 | x ∈ F∗
p} the image of Φ. We can

observe that R is a subgroup of F∗
p of index 3, which implies that for u ∈ F∗

p

with u3 = 1 we obtain Ker(Φ) = {1, u, u2}. We can conclude by saying that
for any x3 ∈ R there are exactly x, ux, u2x ∈ F∗

p with x3 = x3, (ux)3 = x3 and
(u2x)3 = x3.

We are now ready to determine the number of solutions Mp. We start by
considering the simplest case, i.e. the case where one coordinate is zero. We
first consider the solutions of x3 + y3 + z3 = 0 where z = 0. Therefore neither x
nor y can be zero because we do not count the trivial solution (0, 0, 0). Hence
we can choose any non-zero x ∈ F∗

p and then there are 3 possible values for y,
namely −x, −ux and −u2x which are the solutions of y3 = −x3. Therefore there
are 3|F∗

p| = 3(p − 1) solutions of x3 + y3 + z3 = 0 with z = 0. By employing
the same approach for x = 0 and then separately for y = 0, we can observe
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that there are a total of 9(p − 1) solutions to our equation where one of the
coordinates is set to zero. We divide by the p− 1 possible multipliers since we
don’t distinguish proportional solutions, indeed we identify a solution (x, y, z)
with all of its multiples (ax, ay, az) with a ∈ F∗

p and we can choose |F∗
p| = p− 1

available options for a. We conclude that there are

9(p− 1)

p− 1
= 9

projective solutions with one coordinate zero.
Now we calculate solutions of x3 + y3 + z3 = 0 with x, y and z non-zero.

Using Definition 3.1, there are [RRR] ways of writing zero as a sum of three
non-zero cubes. By the discussion above, for each non-zero cube, there are
3 elements of F∗

p which give that cube. Thus there are 33[RRR] = 27[RRR]
solutions of x3 + y3 + z3 = 0 such that x, y, z ̸= 0. As above, the number of
projective solutions of x3 + y3 + z3 = 0 with x, y, z ̸= 0 is

27[RRR]

p− 1
=

9[RRR]

m
.

Combining these two results, we get that the total number of projective
solutions of the equation x3 + y3 + z3 = 0 is

Mp =
9[RRR]

m
+ 9 = 9

(
[RRR]

m
+ 1

)
.

We want now to count [RRR] and for this we consider the two other
cosets of R in F∗

p, i.e. take s ∈ F∗
p \ R and let S = sR = {sr | r ∈ R}

and T = s2R = {s2r | r ∈ R}. Our aim is now to represent the quantity of
solutions, denoted as Mp, using R, S, and T . Observe that

Fp = {0} ∪R ∪ S ∪ T

is a disjoint union with |R| = |S| = |T | = p−1
3 = m, hence, by Proposition 3.2

(i) we get

[RR{0}] + [RRR] + [RRS] + [RRT ] = [RRFp] = |R|2 = m2.

Since [RRS] = [sR, sR, sS] = [SST ] and [RRT ] = [s2R, s2R, s2T ] = [TTS], we
also get

[RR{0}] + [RRR] + [SST ] + [TTS] = m2. (1)

Since [FpTS] = |T | · |S| = m2, we similarly have

[{0}TS] + [RTS] + [STS] + [TTS] = [FpTS] = m2. (2)

Note that −1 = (−1)3 is a cube and therefore R = −R, S = −S and T = −T .
Since (−S) ∩ T = S ∩ T = ∅, we get that [{0}TS] = 0. Since −R = R, we have
[RR{0}] = |R| = m. Therefore by subtracting (2) from (1), we get

m+ [RRR] = [RTS],

from which it follows that

Mp = 9
[RTS]

m
.
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As stated at the beginning of the proof, we are now ready to calculate
[RTS] with the help of the p’th roots of unity. For this let ζ = e2πi/p ∈ C and
define

α1 =
∑
r∈R

ζr, α2 =
∑
s∈S

ζs, α3 =
∑
t∈T

ζt.

The complex numbers α1, α2 and α3 are thus each a sum ofm different p’th roots
of unity. These complex numbers serve as tools to encode information regarding
the sets R, S, and T . Specifically, they facilitate the connection between sums
of elements from R, S, and T and the products of the corresponding Gauss
sums. It turns out that these values are the solutions to a polynomial equation
with coefficients that are integers. Our subsequent objective is to determine the
specific form of this polynomial.

Claim 3.7. α1 + α2 + α3 = −1.

Proof. Since ζp−1 + ζp−2 + ...+ ζ + 1 = ζp−1
ζ−1 = 0, we have that

α1 + α2 + α3 =
∑

x∈R∪S∪T

ζx =

p−1∑
x=1

ζx = −1.

Claim 3.8. α1α2 + α1α3 + α2α3 = −m.

Proof. We can write α2α3 as

α2α3 =
∑
s∈S

ζs ·
∑
t∈T

ζt =
∑

s∈S, t∈T

ζs+t =
∑
x∈Fp

[ST{−x}]ζx,

where [ST{−x}] is the number of pairs (s, t) ∈ S × T with s+ t = x. Note that
for any r ∈ R we have

[ST{−x}] = [rS, rT, {−rx}] = [ST{−rx}]

which implies

m[ST{−x}] =
∑
r∈R

[ST{−rx}] = [S, T,Rx] =


[STR] if x ∈ R

[STS] if x ∈ S

[STT ] if x ∈ T

.

Define the integers a, b, c by

a =
[STR]

m
, b =

[STS]

m
, c =

[STT ]

m
.

Then

α2α3 =
∑
x∈Fp

[ST{−x}]ζx =
∑
r∈R

aζr +
∑
s∈S

bζs +
∑
t∈T

cζt = aα1 + bα2 + cα3.

Similarly, we determine that

α1α3 = aα2 + bα3 + cα1,
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α1α2 = aα3 + bα1 + cα2.

We conclude by noticing that

α1α2 + α1α3 + α2α3 = (a+ b+ c)(α1 + α2 + α3) =

= −(a+ b+ c) =

= −
(
[STR]

m
+

[STS]

m
+

[STT ]

m

)
=

= − [ST (R ∪ S ∪ T )]

m
=

= − [STFp]− [ST{0}]
m

=

= −m2 − 0

m
= −m.

Claim 3.9. α2
1 + α2

2 + α2
3 = 1 + 2m.

Proof. By Claim 3.5 and Claim 3.6 it follows that

α2
1 + α2

2 + α2
3 = (α1 + α2 + α3)

2 − 2(α1α2 + α1α3 + α2α3) = 1 + 2m.

Claim 3.10. α1α2α3 = a+km
3 with k = 3a−m.

Proof. Consider the equations

α1(α2α3) = α1(aα1 + bα2 + cα3),

α2(α1α3) = α2(aα2 + bα3 + cα1),

α3(α1α2) = α3(aα3 + bα1 + cα2).

By adding these equations together and applying Claim 3.6 and Claim 3.7, we
obtain

3α1α2α3 = a(α2
1 + α2

2 + α2
3) + (b+ c)(α1α2 + α1α3 + α2α3) =

= a(1 + 2m) + (b+ c)(−m) =

= a+ km,

where k = 2a− (b+ c) = 3a− (a+ b+ c) = 3a−m.

Therefore, using these these claims we obtain that

Mp = 9
[RTS]

m
= 9a = 3(k +m) = 3k + p− 1,

and defining A = 3k − 2 and B = b− c, we finally get that

Mp = 3k + p− 1 = p+ 1 +A.

The definition of A makes sense because we also have that A ≡ 1 (mod 3).

7



We still need to prove that A and B are unique and satisfy 4p = A2+27B2.
We consider the polynomial f(t) = (t−α1)(t−α2)(t−α3) ∈ Z[t]. Utilizing the
aforementioned claims, we can simplify f and compute the square root of its
discriminant by

f(t) = (t− α1)(t− α2)(t− α3)

= t3 − (α1 + α2 + α3)t
2 + (α1α2 + α1α3 + α2α3)t− α1α2α3

= t3 + t2 −mt− a+ km

3
.

And√
Discf = (α1 − α2)(α1 − α3)(α2 − α3)

= α2α3(α2 − α3) + α1α3(α3 − α1) + α1α2(α1 − α2)

= (aα1 + bα2 + cα3)(α2 − α3) + (aα2 + bα3 + cα1)(α3 − α1)

+ (aα3 + bα1 + cα2)(α1 − α2)

= (b− c)(α2
1 + α2

2 + α2
3 − α1α2 − α1α3 − α2α3)

= (b− c)(1 + 3m) = Bp.

(Where Discf denotes the discriminant of f)
We set

β1 = 1 + 3α1, β2 = 1 + 3α2 and β3 = 1 + 3α3

Notice that, as before with the help of our claims, we obtain

β1 + β2 + β3 = 3(α1 + α2 + α3 + 1) = 0,

β1β2 + β1β3 + β2β3 = 3 + 6(α1 + α2 + α3) + 9(α1α2 + α1α3 + α2α3) = −3p,

β1β2β3 = 1+3(α1+α2+α3)+9(α1α2+α1α3+α2α3)+27α1α2α3 = (3k−2)p = Ap.

In order to prove the equation that relates A and B we need to define another
polynomial whose roots are β1, β2, β3 with g(t) = (t − β1)(t − β2)(t − β3) =
t3 − 3pt − Ap, from the three formulas just calculated. Furthermore, from the
formula for the discriminant of a cubic polynomial, it follows that

Discg = −4(−3p)3 − 27(Ap)2 = 4 · 27p3 − 27A2p2

We find that Discg = 272Discf , since βi − βj = 3(αi − αj) and thus we follow

Discg = 4 · 27p3 − 27A2p2 = 272B2p2

and if we cancel out 27p2 we find

4p = A2 + 27B2.

Our final step is to demonstrate that A can be uniquely ascertained based
on the two given conditions 4p = A2 + 27B2 and A ≡ 1 (mod 3). For this let
A′ and B′ be integers such that 4p = A′2 + 27B′2. We have

4p(B′2 −B2) = (A2 + 27B2)B′2 − (A′2 + 27B′2)B2 =

= (AB′ +A′B)(AB′ −A′B).
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So p has to divide one of the two terms on the right-hand side of the equality.
W.l.o.g. we can assume that p

∣∣ (AB′ − A′B) (otherwise we change the sign of
A′). Next we multiply the two expression for 4p to get

16p2 = (A2 + 27B2)(A′2 + 27B′2)

= A2A′2 + 27A′2B2 + 27A2B′2 + 272B2B′2

= (AA′ + 27BB′)2 + 27(AB′ −A′B)2

With the assumption that p divides (AB′ −A′B), we find

16−
(
AA′ + 27BB′

p

)2

= 27

(
AB′ −A′B

p

)2

.

Note that the left-hand side cannot exceed 16, and the right-hand side has
to be 27 times the square of an integer. Consequently, both sides have to be
equal zero, implying that AB′ = A′B and in particular AB′ − A′B = 0. Let
λ = A′

A = B′

B , then we have A′ = λA and B′ = λB. Replacing in

A′2 + 27B′2 = λ2(A2 + 27B2) = λ2(A′2 + 27B′2),

we obtain that λ = ±1. The assumption that A ≡ A′ ≡ 1 (mod 3) implies that
sign(A) = sign(A′) and this forces that λ = 1.
Thus we find that A and B are distinct and we conclude the proof of Gauss’
theorem.

4 Points of Finite Order Revisited

We consider a cubic curve in Weierstrass form:

C : y2 = x3 + ax2 + bx+ c,

where a, b, c ∈ Z.
Consider a finite Field Fp and the reduction modulo p:

α : Z → Fp

z 7→ z̃

Reducing our Curve C we obtain:

C̃ : y2 = x3 + ãx2 + b̃x+ c̃

Where k̃ = k mod p for k ∈ Z. So we have obtained a new curve with coefficients
in Fp. Now a natural question to ask is when this curve is non-singular.

Lemma 4.1. Let D be the discriminant of C. Then the reduced curve C̃ is
non-singular if and only if p ∤ D and p ≥ 3

Proof. Recall that the discriminant of a cubic polynomial of the form x3+ax2+
bx+ c is given by:

D = a2b2 − 4a3c− 4b3 − 27c2 + 18abc
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And the discriminant of C̃ is given by:

D̃ = ã2b̃2 − 4ã3c̃− 4b̃3 − 27c̃2 + 18ãb̃c̃

(Note that the discriminant of C̃ can be either calculated from directly from
the expression of C̃ or by taking the reduction of D mod p, since the reduction
modulo p from Z to Fp is a homomorphism.)
Let us first consider the case p = 2.
Note that the partial derivative with respect to y vanishes, that is d

dyy
2 = 2y =

0. So we can always find a singular point on C̃

Now consider p ≥ 3, then we have 2y
!
= 0 which indicates that y = 0. Thus

x has to be a common root of both y2 = x3 + ãx2 + b̃x + c̃ and its derivative
and we find that C̃ is non-singular if and only if for the discriminant D̃ of C̃ it
holds that D̃ = D mod p ̸= 0. That is, if p does not divide D.

Consider now points in C(Z) (i.e. points in C(Q) that happen to have
integer coordinates), then we can reduce these points modulo p. Explicitly, let
P = (x, y) ∈ C(Z), that is, x and y satisfy

y2 = x3 + ax2 + bx+ c

where a, b, c ∈ Z. Then we can reduce the equation modulo p and we get

ỹ2 = x̃3 + ãx̃2 + b̃x̃+ c̃

Which tells us that P̃ = (x̃, ỹ) is a point on C̃(Fp). So we can find a map from

C(Z) to C̃(Fp).
Recall the Nagell-Lutz theorem: We have that all points of finite order (aside
from O) in C(Q) have integer coordinates. Consider now the following group:

Φ := {P = (x, y) ∈ C(Q) | P has finite order} ∪ {O}

This is the torsion subgroup of C(Q).
Note: Indeed this is a subgroup of C(Q): Let P 1 and P 2 be points of finite order,
then P 1 + P 2 and P 1 − P 2 are as well: Suppose m1P 1 = O and m2P 2 = O for
some positive integers m1 and m2 , then we have m1m2(P 1 ± P 2) = O as well.
Let us now define the reduction modulo p map on the torsion group as follows:

φ : Φ → C̃(Fp)

P 7→ P̄ =

{
(x̄, ȳ) if P = (x, y),

Ō if P = O.

(We can do this, since Φ consists of points with integer coordinates.)
Note that C̃(Fp) is a group if p ≥ 3 and if p ∤ D. In that case we have a map
from a group to a group.

Theorem 4.2 (Reduction Modulo p Theorem). Let C be a non-singular cubic
curve

C : y2 = x3 + ax2 + bx+ c,
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where a, b, c are integer coefficients and let D be the discriminant:

D = a2b2 − 4a3c− 4b3 − 27c2 + 18abc

Let Φ ⊆ C(Q) be the subgroup consisting of all the points of finite order. Let p
be a prime and let P → P̃ be the reduction modulo p map

φ : Φ → C̃(Fp)

P 7→ P̃ =

{
(x̄, ȳ) if P = (x, y),

Ō if P = O.

If p ∤ 2D, then φ : Φ → C̃(Fp) is an isomorphism of Φ onto a subgroup of C̃(Fp).

Note that the conditions p ≥ 3 and p ∤ D are equivalent to p ∤ 2D.

Proof. We first show that the map φ is a homomorphism, that is, we want to

show that ˜(P 1 + P 2) = P̃ 1 + P̃ 2.
We start by noticing

(̃−P ) = ˜(x,−y) = (x̃,−ỹ) = − ˜(P )

It suffices to show that P 1 + P 2 + P 3 = O implies P̃ 1 + P̃ 2 + P̃ 3 = Õ. This
suffices since if we set P 3 = −P 1 − P 2, then P 1 + P 2 + P 3 = O holds if and
only if

P 1 + P 2 = Õ − P̃ 3 = (̃−P 3) = −P̃ 3 = ˜(P 1 + P 2)

Furthermore, if (without loss of generality) we were to set P 3 = O, then P 1 +
P 2 + P 3 = O would imply P 1 = −P 2 and thus

P̃ 1 + P̃ 2 + P̃ 3 = P̃ 1 + (̃−P 1) = P̃ 1 − P̃ 1 = Õ

So it suffices to show the statement for three non-trivial points which are
not O. Let these be

P 1 = (x1, y1), P 2 = (x2, y2), P 3 = (x3, y3)

Now assume that P 1 +P 2 +P 3 = O. It follow from the definition of the group
law on C that these three points have to be on a line. Let this line be y = λx+µ.
In the case that all three points coincide, we take the tangent line.
With the explicit formula for adding points we find

x3 = λ2 − a− x1 − x2 and y3 = λx3 + µ.

Note that since x1, x2, y1, y2, a ∈ Z, we also have λ, µ ∈ Z. So we can use this
to reduce λ and µ modulo p. Now if we plug in the equation of the line into the
equation of the cubic, we find

x3 + ax2 + bx+ c− (λx+ µ)2 = 0

With x1, x2, x3 as the three roots. So we can factorise the above equation into

0 = x3 + ax2 + bx+ c− (λx+ µ)2 = (x− x1)(x− x2)(x− x3)
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Now we can reduce modulo p and find

x3 + ãx2 + b̃x+ c̃− (λ̃x+ µ̃)2 = (x− x̃1)(x− x̃2)(x− x̃3).

And furthermore we find ỹi = λ̃x̃i + µ̄, for i = 1, 2, 3. So the line y = λ̃x + µ̃
intersects the curve C̃ in the points P̃1, P̃2 and P̃3. In the case that two points
coincide, let’s say (without loss of generality) P̃1 = P̃2, then the line is tangent
to C̃ at the point P̃1 and similarly if all three points coincide.
So we have shown that P̃1+ P̃2+ P̃3 = Õ and thus φ is a group homomorphism.
To see that is also an isomorphism, we note that every non-zero point (x, y) in
Φ gets sent to (x̃, ỹ) ̸= Õ, which means that the kernel is trivial and thus the
homomorphism is one-to-one.

Example 4.3. Consider
C : y2 = x3 + 3.

We want to find the points of finite order using the theorem above. We find
D = −35, so we have p ∤ 2D if and only if p ≥ 5. So for all p ≥ 5 there
exists a one-on-one homomorphism from Φ to C̃(Fp). We find that |C̃(F5)| = 6.
Specifically

C̃(F5) = {Õ, (1̃, 2̃), (1̃, 3̃), (2̃, 1̃), (2̃, 4̃), (3̃, 0̃)}.

Similarly, we can also find |C̃(F7)| = 13. So by applying the theorem for p = 5
and for p = 7, we find that |Φ| has to divide both 6 and 13. Therefore it has to
be |Φ| = 1 and the only point of finite order in C(Q) is O.

Example 4.4.
C : y2 = x3 + x

The discriminant is D = −22 = −4. So we have a one-to-one homomorphism
for p ≥ 3. We find |C̃(F3)| = 4 and |C̃(F5)| = 4. Specifically we find:

C̃(F3) = {Õ, (0̃, 0̃), (2̃, 1̃), (2̃, 2̃)}

C̃(F5) = {Õ, (0̃, 0̃), (2̃, 0̃), (3̃, 0̃)}.

Note that one can actually find that |C̃(Fp)| is divisible by 4 for all primes p ≥ 3.

Using the fact that a point in C̃ has order 2 if and only if its y coordinate is
zero, we find that

C̃(F3) ∼= Z/4Z and C̃(F5) ∼= F2 ⊕ F2.

Since Φ has to be isomorphic to a subgroup of both of these two groups, Φ has
to either be cyclic of order two or be trivial. We note that (0, 0) in C(Q) has
order two (since it’s y-coordinate is 0) and we conclude Φ = {O, (0, 0)}.

Example 4.5.
C : y2 = x3 − 43x+ 166

The discriminant is D = −425984 = −215 ∗ 13 We start by applying the Nagell-
Lutz theorem and find the point P = (3, 8). By using the duplication formula
we find the x-coordinates:

x(P ) = 3 x(2P ) = −5 x(4P ) = 11 and x(8P ) = 3
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Note that x(8P ) = x(P ), so we have 8P = ±P . Furthermore, we have that 2D
is relatively prime to 3, so we know that Φ has to be a subgroup of C̃(F3), for
which we find |C̃(F3)| = 7. So Φ has to have order 1 or 7. Since we already know
that Φ contains the point P, we conclude that the points of finite order in C(Q)
form a cyclic group of order 7 generated by P = (3, 8). We find specifically

Φ = {O, (3,±8), (−5,±16), (11,±32)}

5 Reduction of an elliptic curve

Let us consider an elliptic curve

E : Y 2Z = X3 + aXZ2 + bZ3,

with a, b ∈ Q and D = 4a3 + 27b2 ̸= 0. By changing the variables, we can
minimize |D|. To do this we set X 7→ X/c2 and Y 7→ Y /c3 such that the new
a and b are integers and |D| is minimal. The new equation is then said to be
minimal.
Now let us consider

Ẽ : Y 2Z = X3 + ãXZ2 + b̃Z3

where ã and b̃ are the images of a and b in Fp. We call Ẽ the reduction of E
modulo p. There are different cases for us to consider:

• Good reduction If p ̸= 2 and p does not divide D (equivalent to p ∤ 2D),
then Ẽ is an elliptic curve over Fp and we call this reduction good.

• Cuspidal or additive reduction If p ̸= 2, 3, p | D and p | (−2ab). Then Ẽ
has a cusp and we say the reduction is cuspidal.

• Nodal or multiplicative reduction If p ̸= 2, 3, p | D and p ∤ (−2ab). Then
Ẽ has a node and the reduction is called nodal. In this case we have two
sub-cases:

– Split multiplicative reduction If −2ab is a square modulo p. In this
case the tangents at the node are rational over Fp.

– Nonsplit multiplicative reduction If −2ab is not a square modulo p.
In this case the tangents at the node are not rational over Fp

Note that for cases p = 2 and p = 3 we need to consider the full equation

Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3

since it might be possible to find a ”more minimal” equation of this form. As
before, a n equation for E would be considered minimal if all ai are integers
and |D| is minimal. An example would be

Y 2 + Y = X3 −X2

which defines a non-singular curve over Fp. But every equation of the form
Y 2Z = X3 + aXZ2 + bZ3 would define a singular curve over F2.
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