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1 How Many Integer Points?

Let

C : ax3 + bx2y + cxy2 + dy3 + ex2 + fxy + gy2 + hx+ iy + j = 0

be a non-singular cubic curve with integer coefficients. As the title of the talk
suggests, we will try to find which rational points on C have integer coordinates.
Let us first recall a few results from the previous talks:

Theorem (Nagell-Lutz Theorem). Let y2 = f(x) = x3+ax2+ bx+ c be a non-
singular cubic curve with integer coefficients a, b, c, let D be the discriminant of
the cubic polynomial and P = (x, y) be a rational point of finite order. Then
x and y are integers, and either y = 0, in which case P has order two, or y
divides D.

Theorem (Mordell’s Theorem). If a non-singular rational plane cubic curve
has a rational point, then the group of rational points is finitely generated.

The Nagell-Lutz Theorem gives us an answer to our question in the case
of curves given by a Weierstrass equation and points of finite order. But is
the converse also true? Are the integer points on such curves always of finite
order? We can easily find examples where this is not true. For example, the
curve y2 = x3 + 3 has no points of finite order but it has an integer point
(x, y) = (1, 2).

Can we expect to have infinitely many integer points on a non-singular cubic
curve? By Mordell’s Theorem, if we have rank(C) = 0, then C(Q) is finite and
by Nagell-Lutz Theorem the finitely many rational points are integers.

If rank(C) > 0, e.g. rank(C) = 1, then there are no non-trivial points of
finite order and there is a generator P of C(Q) such that every point has the form
nP = (xn, yn) for some n ∈ Z. Now we can consider the points P, 2P, 3P, ....
It holds that nP = (n − 1)P + P , therefore using the explicit formulas for the
group law (Section 1.4 in [1]) we get for n ≥ 3

xn = λ2 − a− x1 − xn−1,

where λ = yn−1−y1

xn−1−x1
. This means, even if P and (n−1)P have integer coordinates,

it is highly unlikely that nP will also have integer coordinates. Indeed,

Theorem (Siegel’s Theorem). Let C be a non-singular cubic curve given by an
equation F (x, y) = 0 with integer coefficients. Then C has only finitely many
points with integer coordinates.

Remark. C consists of the points (x, y) such that F (x, y) = 0, as well as one or
more points at infinity. Therefore, for Siegel’s Theorem we need the curve C to
be non-singular at every point, including the ones at infinity.

Let us now compare Siegel’s Theorem to the cases of linear, quadratic and
singular cubic equations:

• If (x0, y0) is an integer solution to the linear equation ax + b = c with
a, b, c ∈ Z, then there are infinitely many solutions (xn, yn) = (x0+bn, y0−
an) for n ∈ Z.
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• We know that Pell’s equation x2 − Dy2 = 1 has infinitely many integer
solutions for every D a positive square-free integer.

• The singular cubic curve C1 : y2 = x3 − x2 has infinitely many integer
points: (t2 + 1, t3 + t) for all t ∈ Z.

• The singular cubic curve C2 : y2 = x3 also has infinitely many integer
points: (t2, t3) for all t ∈ Z. In particular, the non-singularity condition
in Siegel’s Theorem is essential.

Proving Siegel’s Theorem in the general case is quite complicated. However,
in the next sections we will consider some special cases of this theorem in which
the proofs are manageable.
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2 Taxicab Numbers

In this section we will discuss the so-called taxicab numbers. Their name comes
from the following anecdote of G.H. Hardy visiting Ramanujan in the hospital:
”I remember once going to see him [Ramanujan] when he was lying ill at Putney.
I had ridden in taxi cab number 1729 and remarked that the number seemed to
me rather a dull one, and that I hoped it was not an unfavorable omen. ”No,”
he replied, ”it is a very interesting number; it is the smallest number expressible
as the sum of two cubes in two different ways.”

Indeed, we have 1729 = 93+103 = 13+123 and the cubic curve x3+y3 = 1729
has four integer points: (9, 10), (10, 9), (1, 12), (12, 1). We will now prove this as
a special case of Siegel’s Theorem.

Claim. The cubic curve x3 + y3 = 1729 has only finitely many points with
integer coordinates.

Proof. We will use the polynomial factorization of x3 + y3 as

x3 + y3 = (x+ y)(x2 − xy + y2).

Then for x, y ∈ Z

(x+ y)(x2 − xy + y2) = 1729 = 7 · 13 · 19

and we have to look at all possible factorizations of 1729 = A ·B.

x+ y = A, x2 − xy + y2 = B ⇒ B = (x+ y)2 − 3xy = A2 − 3xy

Then

x+ y = A, xy =
A2 −B

3

and x, y are the solutions of the quadratic equation t2 −At+ A2−B
3 = 0. Using

the quadratic formula we have

t1,2 =
3A±

√
12B − 3A2

6

and for each A,B checking if t1,2 ∈ Z gives the pairs (A,B) = (13, 133), (19, 91).
Then we get the four solutions (9, 10), (10, 9), (1, 12), (12, 1).

We can also prove that cubic equations of the type

(ax+ by + c)(dx2 + exy + fy2 + gx+ hy + i) = j with j ̸= 0

have finitely many integer solutions (again using the factorization method).
Let’s go back to the taxicab equations

x3 + y3 = m (∗)

(with finitely many integer solutions) and try to answer some questions about
them.

• Can we bound how large the integer solutions are?
Yes. We have the following
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Proposition. Let m ≥ 1 be an integer. Then every solution to the equa-
tion x3 + y3 = m in integers x, y satisfies

max{|x|, |y|} ≤ 2

√
m

3
.

Proof. Again we can use the factorization x3+y3 = (x+y)(x2−xy+y2) =
A ·B = m. Then

m ≥ |B| = |x2 − xy + y2| = 3

4
x2 + (

1

2
x− y)2 ≥ 3

4
x2

⇒ |x| ≤ 2
√

m
3 . Similarly, |y| ≤ 2

√
m
3 .

• How many integer solutions are there?
We consider two solutions (x, y) and (y, x) as the same. Ramanujan ob-
served that m = 1729 is the smallest positive integer such that (∗) has two
solutions. But is there an integer m for which we have three solutions?
Or four? The following proposition answers this question

Proposition. For any integer N ≥ 1 we can find an m ∈ N such that the
equation (∗) has at least N points with integer coordinates.

We omit the proof here, it can be found in [1], Section 5.2.

• What is the smallest m such that (∗) has N integer solutions?
Let us define the N -th Taxicab Number Taxi(N) as

Taxi(N) = min{m ≥ 1 : x3+y3 = m has at least N integer solutions with x ≥ y > 0}.

We have

Taxi(1) = 2

Taxi(2) = 1729

Taxi(3) = 87539319

Taxi(4) = 6963472309248

Taxi(5) = 48988659276962496

Taxi(6) = 24153319581254312065344

However, for N ≥ 7 the taxicab numbers are still not known.

• Given an integer N , is it possible to find an integer m ≥ 1 so that
the equation x3 + y3 = m has at least N integer solutions with
x ≥ y > 0 and gcd(x, y) = 1?
These are the so-called cubefree taxicab numbers. Only the first four of
them are known so far:

– for N = 1 or 2 we have that Taxi(1) = 2 and Taxi(2) are cubefree.

– for N = 3 Paul Vojta found the following example in 1981:

15170835645 = 24683 + 5173 = 24563 + 7093 = 21523 + 17333.
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– for N = 4 Stuart Gascoigne and Duncan Moore discovered in 2003
independently that 1801049058342701083 is the 4-th cubefree taxicab
number.

– for N ≥ 5 finding the cubefree taxicab numbers is an open problem.
Some mathematicians believe that there aren’t any such numbers.
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3 Thue’s Theorem and Diophantine Approxi-
mation

Let us now consider a polynomial that does not factor, e.g.

x3 + 2y3 = m. (⋆)

The fact that x3 + y3 = m has infinitely many integer solutions does not give
us any information about the number of integer solutions of (⋆): in the case of
quadratic equations we had that x2 − y2 = 1 has finitely many solutions and
x2 − 2y2 = 1 has infinitely many.

In fact, we have the following general result for cubic curves of the type
ax3 + by3 = c:

Theorem (Thue). Let a, b, c be non-zero integers. Then the equation

ax3 + by3 = c (†)

has only finitely many solutions in integers x, y.

Remark. 1. If (x, y) ∈ Z2 is a solution to (†), then we have a3x3+a2by3 = a2c
and (ax, y) is a solution to the equation x3 + a2by3 = a2c. This means it
is enough to prove Thue’s Theorem for a = 1.

2. It is enough to consider equations of the form x3 − by3 = c with b, c ∈
Z, b > 0 and c > 0 (otherwise we can replace y by −y, b by −b if needed).

We will prove that the equation

x3 − by3 = c

with b, c ∈ Z>0 has only finitely many integer points.

Proof. We will use once again the factorization method. Let β := 3
√
b (not

necessarily rational), then we have

x3 − by3 = x3 − (βy)3 = (x− βy)(x2 + βxy + β2y2) = c.

However, we cannot continue in the same way as we did in the previous section.
Instead, we will try to approximate β.

• If (x, y) is a solution to x3−by3 = c with x, y large⇒ |x−βy| = |y|·|x/y−β|
must be quite small:
We have

x2 + βxy + β2y2 = (x+
1

2
βy)2 +

3

4
β2y2 ≥ 3

4
β2y2

then

|c| = |x3 − by3| = |x− βy| · |x2 + βxy + β2y2|

⇒ |c| ≥ |x− βy| · 3
4
β2y2

∣∣∣∣ : 34β2|y|3

⇒
∣∣∣∣xy − β

∣∣∣∣ ≤ 4|c|
3β2

· 1

|y|3
(∗)

i.e.: if (x, y) is an integer solution of x3 − by3 = c with |y| large then the
rational number x

y is a good approximation of the irrational β.
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• Then, in order to prove that there are only finitely many integer points
it is enough to prove that there are only finitely many rational numbers
with denominator > 0 that satisfy (∗). Let us first assume that this claim
is true and finish the proof.

– if b = β3 for some β ∈ Z then the factorization argument from before
works

– if y = 0 we have x3 = c and there is at most one solution

– if b is not a perfect cube and (x, y) is a solution with y ̸= 0 then
(∗) is fulfilled and by the claim there are only finitely many pairs
(x, y) ∈ Z2 with y > 0. In the case where y < 0 we just use that
x/y = −x/− y and apply the claim again.

Our remaining goal is to prove the following

Theorem (Diophantine Approximation Theorem). Let b be a positive integer
that is not a perfect cube, and let β = 3

√
b. Let C be any fixed positive constant.

Then there are only finitely many pairs of integers (p, q) with q > 0 that satisfy
the inequality ∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3
.

3.1 Motivation of Proof

Let us first try the factorization method once again. As before, we have

x3 − by3 = (x− βy)(x2 + βxy + β2y2).

If we suppose that the rational number p/q satisfies |p/q−β| ≤ C/|q|3, then we
have using the triangle inequality and that β > 0, q > 0:∣∣∣∣pq

∣∣∣∣ ≤ ∣∣∣∣pq − β

∣∣∣∣+ |β| ≤ β +
C

q3
≤ β + C. (⋆1)

Our plan is to bound |pq − β| on both sides. First we can use the factorization
to write

p3 − bq3 = (p− βq)(p2 + βpq + β2q2)

∣∣∣∣ : q3
f

(
p

q

)
:=

p3 − bq3

q3
=

(
p

q
− β

)
·
(
p2

q2
+ β

p

q
+ β2

)
. (⋆2)

Here f(x) is the polynomial f(x) = x3 − b. Because b ∈ Z>0 is not a perfect
cube, p3 − bq3 ∈ Z can’t be zero ⇒ |p3 − bq3| ≥ 1 and since q > 0 we have∣∣∣∣p3 − bq3

q3

∣∣∣∣ = |p3 − bq3|
|q|3

≥ 1

q3
. (⋆3)

On the other hand, using (⋆1) and again the triangle inequality, we have∣∣∣∣p2q2 + β
p

q
+ β2

∣∣∣∣ ≤ ∣∣∣∣pq
∣∣∣∣2 + β ·

∣∣∣∣pq
∣∣∣∣+ β2 ≤ (β + C)2 + β(β + C) + β2 =: C ′ (⋆4)
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for some constant C ′ depending on β and C. Plugging (⋆3) and (⋆4) in (⋆2) we
get ∣∣∣∣pq − β

∣∣∣∣ =
∣∣∣∣p3−bq3

q3

∣∣∣∣∣∣∣∣p2

q2 + β p
q + β2

∣∣∣∣ ≥
1
q3

C ′ =
1

C ′q3
.

Therefore,
1

C ′q3
≤

∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3
⇒ C ′ ≥ 1

C
.

This inequality doesn’t really help us, because we already have that C ′ =
(β + C)2 + β(β + C) + β2 is rather large. If we were to find a stronger lower
bound for |p/q − β|, say

1

C ′q2.9
≤

∣∣∣∣pq − β

∣∣∣∣,
then we would have

1

C ′q2.9
≤

∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3
⇒ q ≤ (CC ′)10

and the denominators q of the rationals p
q will be bounded. Using |p/q − β| ≤

C/q3 it follows that the nominators p also will be bounded, which gives us
the desired result that there are only finitely many rationals p/q that satisfy
|p/q − β| ≤ C/q3.

So, let’s see how we can improve the lower bound. In our unsuccessful first
attempt we used the polynomial f(x) = x3 − b. So one possible way to improve
would be to use some ”better” polynomial F (x). Suppose we found a polynomial
F (x) ∈ Z[x] such that (x3 − b)n|F (x) for some (large) n ∈ Z. Then F (x) has
the factorization F (x) = (x− β)nG(x) for some G(x) ∈ R[x] and again we can
show that |F (p/q)| ≤ C̄|p/q− β|n for some constant C̄ depending only on F (x)
and C. If F (p/q) ̸= 0 we get the lower bound for |F (p/q)|:∣∣∣∣F(

p

q

)∣∣∣∣ ≥ 1

qd
,

where d = deg(F ).
(because F (p/q) = Ad(p/q)

d + (some polyn. of degree < d) = Adp
d(1/q)d +

(. . . ), Adp
d ∈ Z and again we use the triangle inequality)

Then, we have

1

qd
≤

∣∣∣∣F(
p

q

)∣∣∣∣ ≤ C̄

∣∣∣∣pq − β

∣∣∣∣n ⇒
∣∣∣∣pq − β

∣∣∣∣ ≥ 1
n
√
C̄

· 1

qd/n

If d < 3n we are done. However, d ≥ 3n, because (x − β)n|F (x) and F (x) ∈
Z[x] then F (x) is divisible by the n-th power of the minimal polynomial of
β ⇒ (x3 −β)|F (x) ⇒ deg(F (x)) ≥ deg((x3 − b)n) = 3n. So we need to improve
the lower bound differently.
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3.2 Actual Proof

The key idea of Thue was to use a two-variable polynomial F (X,Y ) ∈ Z[X,Y ].
He chose a polynomial that vanishes to high order at the point (β, β) and he
then compared upper and lower bounds for the value F (p1/p2, p2/q2), where
p1/q1 and p2/q2 are solutions to ∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3

Thue’s proof naturally divides into three parts:

1. Find a suitable polynomial F (X,Y ).

2. Compute a good upper bound for |F (p1/p2, p2/q2)| in terms of the quan-
tities |p1/q1 − β| and |p2/q2 − β|.

3. Derive a lower bound for |F (p1/p2, p2/q2)|, and in particular, show that
this value is not zero. This is the technically hardest part of the proof.

Since the proof is rather long and somewhat technical, we decided to not go
into much detail of the proof. Instead we give an outline of each step and for
those who want to see the full proof, we encourage them to just read through
it in the main reference [1].

3.2.1 Construction of Auxiliary Polynomial

We begin by constructing a polynomial F (X,Y ) with integer coefficients so that
F (X,Y ) vanishes to very high order at the point β, β). Further we will need to
find an F whose coefficients are not too large. This is achieved by using Siegel’s
Lemma

Lemma (Siegel). Let N > M be positive integers and let

a11T1+ · · · +a1NTN = 0
...

. . .
...

...
aM1T1+ · · · +aMNTN = 0

be a non-trivial system of linear equations with integer coefficients. Then there
is a solution (t1, . . . , tN ) to this system with t1, . . . , tN integers, not all zero,
and satisfying

max
1≤i≤N

|ti| <
(
4N max

1≤i≤M
1≤j≤M

|aij |
) M

N−M

The statement of Siegel’s lemma says: The system of homogeneous equa-
tions has more variables than equations, so we know that it has non-trivial
solutions in rational numbers and clearing denominators, we can create integer
solutions. So it is obvious that there are non-zero integer solutions. The last
part of the lemma says that we can find a solution whose coordinates are not
too large. More precisely, we can find a solution whose coordinates are bounded
explicitly in terms of the number of equations M , the number of variables N ,
and the size of the coefficients aij .
In fact, Siegel’s lemma is the precise form of the bound we are looking for.
We can now state the goal of the first step.
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Theorem (Auxiliary Polynomial). Let b be an integer, and let β = 3
√
b, and let

m,n be integers satisfying

m+ 1 >
2

3
n ≥ m ≥ 3

Then there is a non-zero polynomial

F (X,Y ) = P (X) +Q(X)Y =

m+n∑
i=0

(uiX
i + viX

iY )

having the following properties:

F (k)(β, β) = 0 ∀0 ≤ k < n (1)

max
0≤i≤m+n

{|ui|, |vi|} ≤ 2 · (16b)9(m+n) (2)

The theorem is by no means a trivial corollary of Siegel’s Lemma, but one
can imagine if done correctly we can apply Siegel’s Lemma. (i.e. condition (1)
and maximal degree m + n yield a system of linear equations and Siegel then
provides the bound). Further since 1, β, β2 are linearly independent over Q, we
get that

A+Bβ + Cβ2 = 0 =⇒ A = B = C = 0.

By expressing every power of β in (1) in terms of 1, β, β2 we get more constraints
on our vi, ui and end up with 3n homogeneous linear equations .

Example. Suppose we take

n = 5, m = 3, b = 2, β =
3
√
2.

So we are looking for a polynomial

F (X,Y ) =
8∑

i=0

(uiX
i + viX

iY )

satisfying F (k)(β, β) = 0 for all 0 ≤ k < 4. Writing this out explicitly leads to
15 homogeneous linear equations in 18 variables {u0, . . . , u8, v0, . . . , v8}. Solving
for the first 15 variables in terms of the last 3, we can substitute small integer
values for v6, v7, v8 to find non-zero integer solutions. For example, v6 = v7 = 0
and v8 = 1 gives the polynomial

F (X,Y ) = −8− 64X3 − 20X6 + 40X2Y + 32X5Y +X8Y

We observe that the largest coefficient of this F has magnitude 64, while the
theorem only guarantees a polynomial whose coefficients are no larger than

2 · (16b)9(m+n) = 2 · 3272.

It is obvious that the estimate in the theorem is far from optimal.
We now use F to illustrate a further point. The rational numbers
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29

23
≈ 1.2608

635

504
≈ 1.2599206

are quite close to

3
√
2 ≈ 1.259921.

So we expect that F evaluated at these rational numbers should be quite
small, and indeed we find that

F (
29

23
,
635

504
) ≈ −0.0000714.

This serves to illustrate the Smallness Theorem, which would be the next step.

3.2.2 Auxiliary Polynomial is Small

The auxiliary polynomial F (X,Y ) that we constructed in the last section van-
ishes to high order at the point (β, β). So if p1/q1 and p2/q2 are close to β, then
we expect F (p1/q1, p2/q2) to be small. We formulate the following theorem.

Theorem (Smallness). Let F (X,Y ) be a polynomial as described in the Auxil-
iary Polynomial Theorem. Then there is a constant c1 > 0, depending only on
b, so that for any rational numbers x, y with |x − β| ≤ 1 and for any integer
0 ≤ t ≤ n we have ∣∣F (t)(x, y)

∣∣ ≤ cn1
(
|x− β|n−t + |y − β|

)
Where c1 only depends on b and does not depend on n, t, F, x, y.

Again we omit the proof, since it doesn’t provide any insight and again
is mostly technical (Finding bounds for certain expressions to get the desired
constant).

3.2.3 Auxiliary Polynomial does not vanish

So far we have obtained an auxiliary polynomial F (X,Y ) that vanishes to high
order at the point (β, β) and for rational numbers x, y close to β we have that
F (x, y) is small. The last step is to show that for rational numbers x, y, F (x, y) is
not zero. Unfortunately, we are not able to prove such a strong result. Instead,
we will show that some derivative F (t)(X,Y ), with t not too large, does not
vanish.

Theorem (Non-Vanishing). Let F (X,Y ) be an auxiliary polynomial as de-
scribed in the Auxiliary Polynomial Theorem. Let p1/q1, p2/q2 be rational num-
bers in lowest terms. Then there is a constant c2, depending only on b, and an
integer t satisfying

0 ≤ t ≤ 1 +
c2n

log q1

so that

F (t)

(
p1
q1

,
p2
q2

)
̸= 0.

By the same reasoning as in the previous section we’ve omitted the proof of this
theorem.
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3.3 Diophantine Approximation Theorem (Thue)

We have now assembled all of the tools needed to prove theDiophantine Approximation Theorem,
which is the main goal of the talk.

Theorem (Diophantine Approximation Theorem (Thue)). Let b be a fixed pos-
itive integer that is a not perfect cube, and let β = 3

√
b. Let C > 0 be a fixed

constant. Then there are only finitely many pairs of integers (p, q) with q > 0
that satisfy the inequality ∣∣∣∣pq − β

∣∣∣∣ ≤ C

q3

Even though the above theorem is the main goal of the talk, we again omit
the proof. But we mention the rough idea of the proof:

• By contradiction assume infinitely many such pairs.

• This implies that q values tend toward infinity, since otherwise both p, q
bounded and therefore only finitely many pairs, since both are integers.

• Take larger solution (p1, q1) and even larger solution (p2, q2) (large in
second coordinate). Where we get our bounds from the previous theorems
(Smallness and Non Vanishing). Here we mention, that these bounds only
depend on our fixed b.

• Then we get a bound for n in terms of q1, q2 and therefore by the Auxiliary
Polynomial Theorem a polynomial F (X,Y ).

• Next we apply the Non Vanishing Theorem to get t i.e. bound for deriva-
tives.

• Lastly computing lower and upper bounds gives the desired contradiction.

3.4 Further Developments

We have proven that an equation of the form

ax3 + by3 = c

has only finitely many integer solutions. The proof depends on a Diophantine
Approximation Theorem which says, roughly, that it is not possible to use ra-
tional numbers p/q to very closely approximate a cube root 3

√
b. Roth proved

an even stronger result.

Theorem (Roth). Let β ∈ R be the root of an irreducible polynomial f(X) ∈
Q[X] with d = deg f ≥ 3. Let ε > 0 and C > 0 be positive numbers. Then
there are only finitely many pairs of integers (p, q) with q > 0 that satisfy the
inequality ∣∣∣∣pq − β

∣∣∣∣ ≤ C

q2+ε
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Further we wanted to mention that in our concentration on proving the
Diophantine Approximation Theorem, we ignored the problem of effectivity.
That is, we proved that there are only finitely many pairs of integers (p, q)
satisfying the inequality ∣∣∣∣pq − 3

√
b

∣∣∣∣ ≤ 1

q3
.

But for any particular value of b, for example b = 2, does our proof give us a
method for finding all such pairs?
The answer is no. If one looks at the proof, one will find that it says the following.
If we can find a solution (p1, q2) to our inequality with q1 very large(where this
depends on b), then we can bound the coordinates of every other solution in
terms of b, q1. So if we can find that first large solution, then we can find all of
them. But suppose that there are no large solutions? Then one could assume
that we just take the small solutions and we are done. However, nothing in
our proof gives us a way of verifying that there are no large solutions. So if
we find one large solution, we can find all solutions, but if we cannot find a
large solution, then we have no way of proving that the set of solutions that we
already have is complete.
We therefore mention the following weaker but more effective theorem.

Theorem. Let a, b, c ∈ Z and let

H = max{|a|, |b|, |c|}.

Then every point (x, y) on the elliptic curve

y2 = x3 + ax2 + bx+ c

with integer coordinates x, y satisfies

max{|x|, |y|} ≤ exp
(
(106H)10

6)
.
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