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1 Meromorphic Functions and Lattices

First of all, let’s give a short review about the meromorphic functions, which
we have learned in the complex analysis.

Definition 1.1. A function f is called meromorphic on C, when there exists a
closed and discrete subset Df , such that

(i) f : C \Df → C is holomorphic and

(ii) the points in Df are poles.

A closed subset D in C is called discrete if for every c ∈ C there exists a
neighborhood U of c, such that D ∩ U is finite. In other words, it holds that
the set {z ∈ D : |z| ≤ ρ} is finite for every ρ > 0.

We denote the class of all the meromorphic functions on C by M. It’s easy
to check that for any meromorphic functions f , g and h, f + g and f · g are also
meromorphic. Clearly we have (f(g + h) = fg + fh and f + 0 = f , f · 1 = f .
Regarding the poles, it holds that

Dαf = Df (for α ̸= 0), Df+g ⊂ Df ∪Dg, Dfg ⊂ Df ∩Dg

. With the identity theorem we know that the zeros of a function 0 ̸= f ∈ M
is closed and discrete in C. Thus, 1/f is meromorphic as well. As a result, we
have the following theorem:

Theorem 1.2. The class of meromorphic functions on C forms a field over C.

Now let’s turn our eyes to a special type of meromorphic function which is
periodic. For ω ∈ C and D ⊂ C we write D + ω of C as

D + ω := {d+ ω : d ∈ D}

Definition 1.3. Let f be a meromorphic function on C. ω ∈ C is called period
of f , when the following conditions are satisfied:

(P.1) Df + ω = Df and

(P.2) f(z + ω) = f(z) for every z ∈ C \Df .

Obviously 0 is a period of any meromorphic function f . We denote the set of
all the periods of f by Perf . In case that f is a constant meromorphic function,
we have Perf = C. The following lemma describes the structural property of
Perf in the case otherwise:
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Lemma 1.4. Let f ∈ M be non-constant, then Perf is a closed, discrete
subgroup of the additive group (C,+).

Proof. Assuming that Perf is not discrete or abgeschlossen, then there exits
a sequence of distinct ωn ∈ Perf such that ω := limn→∞ ωn exists. Because
of Df + ω = Df , for any function f , which is holomorphic at c, we know that
f is also holomorphic at c + ω. And it holds that f(c) = f(c + ωn) for every
n. With the identity theorem, we conclude that f is constant which leads to a
contradiction.

The following lemma describes what Perf looks like.

Lemma 1.5 (Fundamental-Lemma). Let f ∈ M be non-constant, then exactly
one of the following cases holds:

1. Perf = 0.

2. There is a uniquely determined, up to sign, ωf ∈ C\{0} such that Perf =
Zωf := {mωf : m ∈ Z}.

3. There exist ω1, ω2 ∈ C \ {0} with the following properties:

(i) ω1 and ω2 are linearly independent over R.
(ii) Perf = Zω1 + Zω2 := {m1ω1 +m2ω2 : m1,m2 ∈ Z}.
(iii) τ := ω1/ω2 satisfies Im τ > 0, |Re τ | ≤ 1

2 and |τ | ≥ 1.

Obviously, ω1, ω2 ∈ C \ {1} are linearly independent over R if and only if
ω1/ω2 is not real.

Proof. [1] pp. 13-14.

To further investigate the third case above, we introduce the concept of
lattices.

Definition 1.6. Let V be an n-dimensional R-vector space with n ≥ 1. A
lattice of in V is a subset of the form Ω = Zω1 + Zω2 + ...+ Zωn with linearly
independent vectors ω1, ..., ωn of V . The tupel (ω1, ω2, ..., ωn) is called a basis
of Ω.

When Perf satisfies the case 3. in the fundamental-lemma, then Perf is a
lattice in the R-vector space C.

Proposition 1.7. Any lattice Ω in C is closed and discrete in C.

Proof. Let ρ be an arbitrary real number and M := {ω ∈ Ω : |ω| ≤ ρ}.
With a normalization, we assume that Ω = Zτ + Z, Im(τ) > 0 without loss
of generality([3],pp.262 and [1], pp. 14). Write τ = x + iy and consider
ω = mτ + n ∈ M with m,n ∈ Z, then we have

τ2 ≥ |mτ + n|2 = (mx+ n)2 +m2y2 ≥ m2y2,

which leads to |m| ≤ ρ/y. On the other side,

ρ ≥ |mx+ n| ≥ |n| − |mx|,

which leads to |n| ≤ ρ(1 + |x|/y). Therefore M is finite.
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Now let’s take a closer look at the basis of a lattice in C.

Lemma 1.8. Let Ω be a lattice in C and (ω1, ω2) a basis of Ω. For any
ω′
1, ω

′
2 ∈ C it holds that:

1. ω′
1, ω

′
2 ∈ Ω if and only if there exists U ∈ Mat(2,Z) such that(

ω′
1

ω′
2

)
= U

(
ω1

ω2

)
2. (ω′

1, ω
′
2) is a basis of Ω, if and only if U ∈ GL(2,Z).

Definition 1.9. Let Ω be a lattice in C and (ω1, ω2) a basis of Ω. For u ∈ C
the period parallelogram with respect to ω1, ω2 with basis point u is defined as

⋄(u;ω1, ω2) := {u+ α1ω1 + α2ω2 : 0 ≤ α1 < 1, 0 ≤ α2 < 1}.

In the case that u = 0 we write

⋄(ω1, ω2) := ⋄(u;ω1, ω2) = {α1ω1 + α2ω2 : 0 ≤ α1 < 1, 0 ≤ α2 < 1}

and ⋄(ω1, ω2) is called the fundamental mesh of the lattice.

There are many period parallelograms in every lattice, and every period
parallelogram P := ⋄(u;ω1, ω2) is a fundamental region of C with respect to Ω
in the sense of following proposition:

Proposition 1.10. For any z ∈ C there exists exactly an ω ∈ Ω with z+ω ∈ P .
If z, z + ω ∈ P , then it holds that ω = 0.

Proof. Let u be the basis point of the period parallelogram P . Then for some
ξ1, ξ2 ∈ R, it hold that z = u + ξ1ω1 + ξ2ω2. We write ξ1 = ⌊ξ1⌋ + α1 and
ξ2 = ⌊ξ2⌋+ α2 where ⌊ξ1⌋, ⌊ξ2⌋ ∈ Z and 0 ≤ α1, α2 < 1.

2 Elliptic Functions

Let Ω = Zω1 + Zω2 be a lattice in C.

Definition 2.1. A meromorphic function f on C is called elliptic or doubly
periodic with respect to Ω, if it holds that Ω ⊂ Perf . In other words, the
following conditions hold:

1. Df + ω = Df for any ω ∈ Ω,

2. f(z + ω) = f(z) for any ω ∈ Ω and z ∈ C \Df .

We denote the set of all the elliptic functions with respect to the lattice Ω
by K(Ω).

Proposition 2.2. The elliptic functions K(Ω) with respect to Ω forms a sub-
field of the field M of all the meromorphic functions on C, which includes the
constant functions. Any f ∈ K(Ω) has only finitely many poles in every period
parallelogram.
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We ignore the proof of this proposition. Instead, we make two remarks
regarding the properties of elliptic functions.

Remark 2.3. Let Ω be a given lattice. Any two complex numbers z and ω are
congruent modulo Ω if z − w ∈ Ω. From Proposition 1.10 we conclude that
every point in C is congruent to a unique point in a given period parallelogram.
Hence, f is uniquely determined by its behavior on any period parallelogram.

Remark 2.4. From complex analysis we know that, a non-zero function f ∈ M
if and only if for any c ∈ C there exists an n ∈ Z, a neighborhood U of c and a
holomorphic function g : U → C such that

f(z) = (z − c)n · g(z) for any z ∈ U \ {c} and g(c) ̸= 0.

We call n the order of f at c, denoted by ordcf . We write the Laurent series
expansion at c as

f(z) =
∑
i≥n

ai(z − c)i, an ̸= 0, n ∈ Z.

Here n is the order of f at c and the residue of f at c is defined as rescf := a−1.
Furthermore, for f ∈ K(Ω), ω in the lattice Ω and z in a proper neighborhood
of c+ ω we have

f(z) = f(z − ω) =
∑
i≥n

ai(z − ω − c)i =
∑
i≥n

ai(z − (c+ ω))i

and it follows that

ordc + ωf = ordcf and resc + ωf = rescf.

In particular, for any ω ∈ Ω and c is a pole of f , then c+ ω is also a pole of f .

In 1847, J. Liouville found several important results regarding the elliptic
functions. Here we present 4 important theorems by Liouville.

Theorem 2.5. If f ∈ K(Ω) is holomorphic, then f is constant.

Proof. Let P be a periodic parallelogram, then the closure of P is compact.
Let f ∈ K(Ω) be arbitrary and holomorphic. Since any holomorphic function
on a compact domain is bounded, we have, for some positive real number C,
|f(z)| ≤ C for any z ∈ P . Let ω ∈ C be arbitrary. From Proposition 1.10 we
know, that there exists ω′ ∈ Ω such that ω + ω′ ∈ P . Therefore we have

|f(ω)| = |f(ω + ω′)| ≤ C,

which means that f is bounded on C. Liouville’s theorem in complex analysis
states that every bounded entire function is constant. Hence, f is constant.

Theorem 2.6. Let f ∈ K(Ω) and P be a periodic parallelogram, then it holds
that ∑

c∈P

rescf = 0.
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Proof. Since the set of poles of f Df is discrete, there are only finitely many
poles in the periodic parallelogram P . Assuming that f has no poles on ∂P ,
with residue formula ([3], pp 77) we have

2πi
∑
c∈P

rescf =

∫ u+ω1

u

f(z)dz +

∫ u+ω1+ω2

u+ω1

f(z)dz

+

∫ u+ω2

u+ω1+ω2

f(z)dz +

∫ u

u+ω2

f(z)dz

=

∫ u+ω1

u

(f(z)− f(z + ω2))dz +

∫ u

u+ω2

(f(z)− f(z + ω1))dz

Because of the periodicity of f , the right side of the above equation is zero.
Therefore

∑
c∈P rescf = 0.

Theorem 2.7. Let f ∈ K(Ω) be non-constant and P be a period parallelogram,
then for any ω ∈ C ∑

c∈P

ordc(f − ω) = 0.

Proof. We first show that any non-constant elliptic functions have as many zeros
as they have poles, counted with their multiplicities. For any ω ∈ C we have

f(z + ω) = f(z) ⇒ f ′(z + ω) = f ′(z)

. Hence it holds that f ′(z) ∈ K(⊗). Thus also f ′(z)
f(z) an elliptic function w.r.t.

Ω. As argued before, without loss of generality, assume that f has no zeros or
poles on ∂P . The argument principle in complex analysis states that∫

∂P

f ′(z)

f(z)
dz = 2πi(Z − P )

where Z and P denote the number of zeros and pole of f in P , counted with

their multiplicities. From Theorem 2.6 we know that
∫
∂P

f ′(z)
f(z) dz = 0. Therefore

Z − P = 0.
For any ω ∈ C, f −ω is elliptic and has as many poles as f . Thus, the equation
f(z) = ω has as many solutions as the poles of f .

Theorem 2.8. Let f ∈ K(Ω) be non-zero and P be a period parallelogram, then
it holds that ∑

c∈P

(ordcf) · c ∈ Ω.

Proof. From complex analysis, we know that, for f ∈ M, the function f ′/f has
simple poles at the zeros and poles of f , and the residue is the order of the zero
of f or the negative of the order of the pole of f ([3], pp.90). Therefore we have∑

c∈P

(ordcf) · c =
∑
c∈P

resc
f ′

f
· c.

With residue formula([3], pp.77), it holds

2πi
∑
c∈P

resc
f ′

f
· c =

∫
∂P

z · f
′(z)

f(z)
dz.
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We calculate the integral∫
∂P

z · f
′(z)

f(z)
dz =

∫ u+ω1

u

z
f ′(z)

f(z)
− (z + ω2)

f ′(z + ω2

f(z + ω2
dz

+

∫ u

u+ω2

z
f ′(z)

f(z)
− (z + ω1)

f ′(z + ω1

f(z + ω1
dz

= (ω1

∫ u+ω2

u

f ′(z)

f(z)
− ω2

∫ u+ω1

u

f ′(z)

f(z)
)dz.

The periodicity of f with period ω1 and ω2 implies that∫ u+ωj

u

f ′(z)

f(z)
dz ∈ 2πiZ for j = 1, 2.

Combining all the equations we get the result.

3 The Construction of theWeierstrass ℘-Function

From now on, we fix a lattice Ω = Zω1+Zω2. Let P = ⋄(ω1, ω2) its fundamental
mesh. We now want to find a non-constant elliptic function with respect to Ω.
By Theorem 2.5, we must have at least one pole in P . On the other hand, there
does not exist an elliptic function having a unique simple pole in P .1

For the sake of constructing the Weierstrass ℘ function, we want a function
with exactly one double pole on each lattice point. How does a function like
this look like? The first terms of the Laurent expansion at each lattice point
ω ∈ Ω are given by

A

(z − ω)2
+

B

(z − ω)

To simplify, we assume A = 1, B = 0. To obtain such an expansion for all ω,
the idea is to take a function of the form∑

ω∈Ω

1

(z − ω)2

But we have a problem:

Lemma 3.1 (Apostol, Lemma 1.1). For α ∈ R, the sum∑
0̸=ω∈Ω

1

|ω|α

converges if and only if α > 2.

Lemma 3.2 (Apostol, Lemma 1.2). If R > 0, α ∈ N, then the series∑
|ω|>R

1

(z − ω)α

converges absolutely and uniformly in the disk |z| ≤ R if and only if α > 2.

1In the theory of Riemann surfaces, an elliptic function having a unique simple pole in P
induces a holomorphic map from the complex torus C/Ω to the Riemann sphere C ∼= S2 of
degree 1. But all maps of degree 1 between compact Riemann surfaces are biholomorphic,
thus homeomorphisms. This is impossible.
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Therefore, we start with a degree 3 map, which turns out to be the derivative
of the Weierstrass ℘-function up to a constant.

Theorem 3.3 (Apostol, Thm 1.9). Let f : C \ Ω → C be defined by

f(z) =
∑
ω∈Ω

1

(z − ω)3

Then the sum converges absolutely and uniformly in each compact set K ⊆ C\Ω
and f is an elliptic function with a pole of order 3 at each lattice point ω.

Proof. Fix any R > 0. Then the series∑
|ω|>R

1

(z − ω)3
(3.1)

converges uniformly in the disk |z| ≤ R by Lemma 3.2, therefore this part of
f is holomorphic on |z| < R (as uniform limit of holomorphic functions). The
remaining part is meromorphic only having poles of order 3 in the lattice points
in the disk. Therefore, f is meromorphic on the open disk |z| < R. Since R was
arbitrary, this shows that f is meromorphic with poles of order 3 at the lattice
points.

The convergence on compact sets K ⊆ C\Ω follows similarly by taking R big
enough such that K is contained in |z| ≤ R and using the uniform convergence
for Eq. (3.1).

It remains to proof double periodicity: By absolute convergence, the order
of summation does not matter. So since ω1 +Ω = Ω, we obtain

f(z + ω1) =
∑
ω∈Ω

1

(z + ω1 − ω)3
=

∑
ω∈ω1+Ω

1

(z + ω1 − ω)3
= f(z)

and similarly for ω2.

To obtain an elliptic function with a pole of order 2, we remove the term z−3

corresponding to ω = 0 and integrate out from 0 to z, where we can exchange
integral and sum by absolute convergence:∫ z

0

∑
0̸=ω∈Ω

1

(t− ω)3
dt =

∑
0̸=ω∈Ω

(
−1

2

)(
1

(z − ω)2
− 1

ω2

)
(3.2)

It is now an easy consequence that Eq. (3.2) must again converge absolutely and
uniformly on compact sets!2 To get back to periodicity, we simply add the term
1
z2 after removing the constant and we have found the Weierstrass ℘-function.

2Absolute convergence, since
∑

0 ̸=ω

∣∣∣∫ z
0

1
(ω−t)3

dt
∣∣∣ ≤ |z|

∑
0 ̸=ω

1
(ω−t∗)3

for some t∗, and

uniform convergence on K ⊆ (C \ Ω) ∪ 0 compact (w.l.o.g. path-connected, 0 ∈ K), since

sup
z∈K

∣∣∣∣∣∣
∑

|ω|>R

∫ z

0

1

(ω − t)3
dt

∣∣∣∣∣∣ ≤ const · sup
t∈K

∑
|ω|>R

1

(ω − t)3
→ 0

as R → ∞
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Theorem 3.4 (Construction Theorem for the ℘-function). The series defining
the Weierstrass ℘-function

℘(z) =
1

z2
+

∑
0̸=ω∈Ω

(
1

(z − ω)2
− 1

ω2

)
converges in each compact set K ⊆ C \ Ω absolutely and uniformly. We have
the following properties:

(i) ℘ is an elliptic function (with respect to Ω), holomorphic on C \ Ω, with
Laurent expansion

1

z2
+ a2z

2 +O(z4),

where a2 ∈ C.

(ii) ℘ is even, having a pole of order 2 at each lattice point

(iii) ℘′ is odd, having a pole of order 3 at each lattice point and is given by

℘′(z) = (−2)
∑
ω∈Ω

1

(z − ω)3

Proof. We already established convergence and the formula of ℘′. Since Ω =
−Ω, it is immediate by reordering of the summands that ℘ is even and ℘′ is
odd. The Laurent expansion will be given in the next section.

To show that ℘ is elliptic, we still need to prove the double periodicity. Since
℘′ is elliptic, for all z ∈ C \ Ω, ω ∈ Ω:

℘′(z + ω) = ℘′(z).

Therefore, the function
℘(z + ω)− ℘(z)

is constant. Inserting z = −ω
2 gives that the constant is

℘(
ω

2
)− ℘(−ω

2
) = 0,

since ℘ is even.

4 The Laurent Expansion

Definition 4.1 (Eisenstein series). For all k ≥ 3, define the Eisenstein series
of the lattice Ω to be

Gk =
∑

0̸=ω∈Ω

1

ωk

Remark 4.2. Since ω ∈ C is lattice point if and only if −ω is, we see immedi-
ately that Gk = (−1)kGk, meaning that Gk= 0 for odd k.

Theorem 4.3. We have the Laurent expansion at 0 given by

℘(z) = z−2 +
∞∑

n=2

(2n− 1)G2nz
2n−2
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Proof. The trick we use is to write, for |t| < 1,

1

(1− t)2
=

d

dt

(
1

1− t

)
=

∞∑
m=1

mtm−1.

Let γ := min{|ω||0 ̸= ω ∈ Ω}. Now we can write, if ω ̸= 0 and |z| < γ:

1

(z − ω)2
− 1

ω2
=

1

ω2

(
1

(1− z
w )2

− 1

)
=

∞∑
m=2

m
zm−1

ωm+1
.

Inserting this in the expression of the ℘ function gives for |z| < γ:

℘(z) = z−2 +
∑

0̸=ω∈Ω

( ∞∑
m=2

m
zm−1

ωm+1

)
.

Since
∣∣∣m zm−1

ωm+1

∣∣∣ ≤ γm
(

|z|
γ

)m−1

|ω|−3
, we have absolute convergence when sum-

ming over ω and m, so we can exchange the summation signs and obtain

℘(z) = z−2 +
∑
m≥2

mzm−1
∑

0̸=ω∈Ω

1

ωm+1

= z−2 +
∑
m≥2

mzm−1Gm+1

= z−2 +

∞∑
n=2

(2n− 1)G2nz
2n−2,

where in the last equality we used that Gm = 0 for odd m.

5 The Differential Equation

Theorem 5.1. The Weierstrass ℘-function satisfies the differential equation

℘′2 = 4℘3 − g2℘− g3,

where g2 = 60G4 and g3 = 140G6 are constants only depending on Ω, called the
Weierstrass-invariants of the lattice.

Proof. Starting from the Laurent expansion at 0

℘(z) = z−2 + 3G4z
2 + 5G6z

4 +O(z6),

we calculate

℘2(z) = z−4 + 6G4 + 10G6z
2 +O(z3),

℘3(z) = z−6 + 9G4z
−2 + 15G6 +O(z),

℘′(z) = (−2)z−3 + 6G4z + 20G6z
3 +O(z5),

℘′2(z) = 4z−6 − 24G4z
−2 − 80G6 +O(z).
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Therefore,

℘′2(z)− 4℘3(z) + 60G4 + 140G6 = O(z). (5.1)

Now Eq. (5.1) belongs to K(Ω) and only can have poles where ℘ and ℘′ also
have poles. But since we are O(z) at 0, there is no pole at 0, meaning that by
[Theorem A] Eq. (5.1) is constant. But a constant which is O(z) must be 0.

Corollary 5.2 (Uniqueness up to translation). Fix a domain G ⊆ C. Then
every meromorphic, non-constant solution f of the differential equation

f ′2 = 4f3 − g2f − g3

is given by f(z) = ℘(z + z0) for z ∈ G and some z0 ∈ C. In particular, f is an
elliptic function with respect to Ω.

Proof. Let f be a meromorphic, non-constant solution defined on G. First, note
that first order polynomials do not solve the equation, so f ′ is not constant.
Since the number of poles and zeros of f and f ′ are finite in each bounded
subset, we can choose u0 ∈ G, an open disk U ⊆ G around u, such that f is
holomorphic and f ′ never vanishes on U .

Further, we can assume that U is small enough such that

f ′ =
√
4f3 − g2f − g3 (5.2)

for some branch of the square root.
Now by Liouville’s third theorem there exists z0 ∈ C such that

℘(u0 + z0) = f(u0).

Since both ℘ and f satisfy the differential equation, we know that ℘′(u0+z0) =
±f ′(u0 + z0). But since ℘ is even and ℘′ is odd we can assume (by otherwise
replacing z0 by −z0 − 2u0) that

℘′(u0 + z0) = f ′(u0 + z0).

Note that f(z) and g(z) := ℘(z + z0) both satisfy the initial value problem

Eq. (5.2). But since h(z) =
√

4z3 − g2z − g3 is holomorphic (and thus locally
Lipschitz continuous) on f(U), by the Picard-Lindelöf theorem, we must have
a unique solution in a neighbourhood of u0 which means that f ≡ g on G by
the identity theorem.
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