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1 Meromorphic Functions and Lattices

First of all, let’s give a short review about the meromorphic functions, which
we have learned in the complex analysis.

Definition 1.1. A function f is called meromorphic on C, when there exists a
closed and discrete subset Dy, such that

(i) f: C\ Dy — C is holomorphic and
(ii) the points in Dy are poles.

A closed subset D in C is called discrete if for every ¢ € C there exists a
neighborhood U of ¢, such that D N U is finite. In other words, it holds that
the set {z € D : |z| < p} is finite for every p > 0.

We denote the class of all the meromorphic functions on C by M. It’s easy
to check that for any meromorphic functions f, g and h, f + g and f- g are also
meromorphic. Clearly we have (f(g +h) = fg+ fhand f+0=f, f-1= f.
Regarding the poles, it holds that

D,y = Df(for o # 0),Df+g CcDyU Dg,ng cDyND,

. With the identity theorem we know that the zeros of a function 0 # f € M
is closed and discrete in C. Thus, 1/f is meromorphic as well. As a result, we
have the following theorem:

Theorem 1.2. The class of meromorphic functions on C forms a field over C.

Now let’s turn our eyes to a special type of meromorphic function which is
periodic. For w € C and D C C we write D 4+ w of C as

D+w={d+w:de D}

Definition 1.3. Let f be a meromorphic function on C. w € C is called period
of f, when the following conditions are satisfied:

(P.1) Dy +w= Dy and
(P.2) f(z+w) = f(z) for every z € C\ Dy.

Obviously 0 is a period of any meromorphic function f. We denote the set of
all the periods of f by Perf. In case that f is a constant meromorphic function,
we have Perf = C. The following lemma describes the structural property of
Perf in the case otherwise:



Lemma 1.4. Let f € M be non-constant, then Perf is a closed, discrete
subgroup of the additive group (C, +).

Proof. Assuming that Perf is not discrete or abgeschlossen, then there exits
a sequence of distinct w, € Perf such that w = lim, . w, exists. Because
of Dy 4+ w = Dy, for any function f, which is holomorphic at ¢, we know that
f is also holomorphic at ¢+ w. And it holds that f(c) = f(c + wy) for every
n. With the identity theorem, we conclude that f is constant which leads to a
contradiction. O

The following lemma describes what Per f looks like.

Lemma 1.5 (Fundamental-Lemma). Let f € M be non-constant, then exactly
one of the following cases holds:

1. Perf =0.

2. There is a uniquely determined, up to sign, wy € C\ {0} such that Perf =
Zwy = {mwys :m € Z}.

3. There exist wy,ws € C\ {0} with the following properties:

(i) wy and wq are linearly independent over R.
(ii) Perf = Zwy + Zws = {miws + maows : my,ms € Z}.

(iif) 7 := w;/wo satisfies Im7 > 0, |[Re7| < 1 and |7 > 1.

Obviously, wy,ws € C\ {1} are linearly independent over R if and only if
w1 /ws is not real.

Proof. [1] pp. 13-14. O

To further investigate the third case above, we introduce the concept of
lattices.

Definition 1.6. Let V be an n-dimensional R-vector space with n > 1. A
lattice of in V is a subset of the form Q = Zw; + Zws + ... + Zw,, with linearly
independent vectors wy, ...,w, of V. The tupel (wi,ws,...,w,) is called a basis
of Q.

When Perf satisfies the case 3. in the fundamental-lemma, then Perf is a
lattice in the R-vector space C.

Proposition 1.7. Any lattice Q in C is closed and discrete in C.

Proof. Let p be an arbitrary real number and M = {w € Q : |w| < p}.
With a normalization, we assume that Q = Z7 + Z,Im(7) > 0 without loss
of generality([3],pp.262 and [1], pp. 14). Write 7 = = + iy and consider
w=m7+n € M with m,n € Z, then we have

2> |m7 + 0l = (mx +n)? + m?y® > m?y?,
which leads to |m| < p/y. On the other side,
p = |mx+mn| = |n| —[mazl,

which leads to |n| < p(1 + |z|/y). Therefore M is finite. O



Now let’s take a closer look at the basis of a lattice in C.

Lemma 1.8. Let  be a lattice in C and (w;,w2) a basis of Q. For any
wi,wh € C it holds that:

1. wi,wh € Qif and only if there exists U € Mat(2,Z) such that

2. (wi,w}) is a basis of Q, if and only if U € GL(2,Z).

Definition 1.9. Let  be a lattice in C and (w;,w2) a basis of Q. For u € C
the period parallelogram with respect to wy,ws with basis point u is defined as

o(uywy,we) = {u+ aqwr + asws : 0 < < 1,0 < ap < 1}
In the case that u = 0 we write
o(wr,wa) = o(u;wr,wa) = {aqwy + asws : 0 < a < 1,0 < g < 1}
and o(wy,ws) is called the fundamental mesh of the lattice.

There are many period parallelograms in every lattice, and every period
parallelogram P := o(u;wi,ws) is a fundamental region of C with respect to {2
in the sense of following proposition:

Proposition 1.10. For any z € C there exists exactly an w € Q with z+w € P.
If z,2 +w € P, then it holds that w = 0.

Proof. Let u be the basis point of the period parallelogram P. Then for some
51,52 € R, it hold that z = u + 51&11 + 520.)2. We write 51 = |_§1J + oy and
52 = Lng + ap where L§1J7 L§2J €Zand 0 < o, g < 1. O

2 Elliptic Functions

Let Q = Zw1 + Zwo be a lattice in C.

Definition 2.1. A meromorphic function f on C is called elliptic or doubly
periodic with respect to €2, if it holds that Q C Perf. In other words, the
following conditions hold:

1. Dy +w = Dy for any w € Q,
2. f(z+w) = f(z) for any w e Q and z € C\ Dy.

We denote the set of all the elliptic functions with respect to the lattice (2
by K().

Proposition 2.2. The elliptic functions IC(£2) with respect to 2 forms a sub-
field of the field M of all the meromorphic functions on C, which includes the
constant functions. Any f € IC(€2) has only finitely many poles in every period
parallelogram.



We ignore the proof of this proposition. Instead, we make two remarks
regarding the properties of elliptic functions.

Remark 2.3. Let Q be a given lattice. Any two complex numbers z and w are
congruent modulo Q if z —w € Q. From Proposition 1.10 we conclude that
every point in C is congruent to a unique point in a given period parallelogram.
Hence, f is uniquely determined by its behavior on any period parallelogram.

Remark 2.4. From complex analysis we know that, a non-zero function f € M
if and only if for any c € C there exists an n € Z, a neighborhood U of ¢ and a
holomorphic function g : U — C such that

fR)=(E-o" g(2) for any z € U\ {c} and g(c) # 0.

We call n the order of f at ¢, denoted by ord.f. We write the Laurent series
expansion at ¢ as

f(z) = Zai(z —¢o)fa"#0,n €.

>n

Here n is the order of f at c and the residue of f at c is defined as res.f == a_1.
Furthermore, for f € K(Q), w in the lattice Q and z in a proper neighborhood
of ¢+ w we have

@) =fz-w) =) az-w-0)' =) ai(z-(c+w)
i>n i>n
and it follows that
ord. +wf =ord.f and res.+wf =res.f.

In particular, for any w € Q and c is a pole of f, then c+ w is also a pole of f.

In 1847, J. Liouville found several important results regarding the elliptic
functions. Here we present 4 important theorems by Liouville.

Theorem 2.5. If f € K(Q) is holomorphic, then f is constant.

Proof. Let P be a periodic parallelogram, then the closure of P is compact.
Let f € K(2) be arbitrary and holomorphic. Since any holomorphic function
on a compact domain is bounded, we have, for some positive real number C,
|f(2)] < C for any z € P. Let w € C be arbitrary. From Proposition 1.10 we
know, that there exists w’ € Q such that w + w’ € P. Therefore we have

[f@) = flw+w) <C,

which means that f is bounded on C. Liouville’s theorem in complex analysis
states that every bounded entire function is constant. Hence, f is constant. [

Theorem 2.6. Let f € K(Q) and P be a periodic parallelogram, then it holds

that
Z rescf = 0.

ceP



Proof. Since the set of poles of f Dy is discrete, there are only finitely many
poles in the periodic parallelogram P. Assuming that f has no poles on 0P,
with residue formula ([3], pp 77) we have

u+twi utwitws2
21 Yy res.f = f(z)dz + f(z)dz
; /u /7;+w1
u+wso u
+/u+w1+w2 f(z)dz+/u+w2 f(2)dz
utwi u
= [ U@ - sz + [ (1) - fe 4wy

Because of the periodicity of f, the right side of the above equation is zero.
Therefore ) . pres.f = 0. O

Theorem 2.7. Let f € K(Q2) be non-constant and P be a period parallelogram,
then for any w € C

Zordc(f —w) =0.

ceP

Proof. We first show that any non-constant elliptic functions have as many zeros
as they have poles, counted with their multiplicities. For any w € C we have

fz4w)=f(z) = f'(z+w) = f(2)

. Hence it holds that f/(z) € K(®). Thus also % an elliptic function w.r.t.
Q. As argued before, without loss of generality, assume that f has no zeros or

poles on JP. The argument principle in complex analysis states that

f'(z)

op f(2)

where Z and P denote the number of zeros and pole of f in P, counted with

their multiplicities. From Theorem 2.6 we know that f 5P j;/((zz)) dz = 0. Therefore
Z —P=0.

For any w € C, f —w is elliptic and has as many poles as f. Thus, the equation

f(2) = w has as many solutions as the poles of f. O

dz = 2mi(Z — P)

Theorem 2.8. Let f € K(Q) be non-zero and P be a period parallelogram, then

it holds that
Z(ordcf) cce .
ceP

Proof. From complex analysis, we know that, for f € M, the function f’/f has
simple poles at the zeros and poles of f, and the residue is the order of the zero
of f or the negative of the order of the pole of f ([3], pp.90). Therefore we have

]L’/
Z(ordcf) cc= Z res.— - c.
ceP ceP f
With residue formula([3], pp.77), it holds
, ! / f'(z)
271 res.— ¢ = Z- dz.
Z f opP f(z)

ceP




We calculate the integral

/ P f/(Z)dz _ /u+wlzf/(z) B (Z«I»wQ)Mdz
oP u
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The periodicity of f with period w; and wy implies that

u+tw; /
/u J;((ZZ)) dz € 2miZ for j=1,2.

Combining all the equations we get the result. O

3 The Construction of the Weierstrass p-Function

From now on, we fix a lattice Q = Zw; +Zws. Let P = (w1, ws) its fundamental
mesh. We now want to find a non-constant elliptic function with respect to €.
By Theorem 2.5, we must have at least one pole in P. On the other hand, there
does not exist an elliptic function having a unique simple pole in P.!

For the sake of constructing the Weierstrass p function, we want a function
with exactly one double pole on each lattice point. How does a function like
this look like? The first terms of the Laurent expansion at each lattice point

w € Q) are given by
A B

G-wP  (z—w)
To simplify, we assume A = 1, B = 0. To obtain such an expansion for all w,
the idea is to take a function of the form

But we have a problem:

Lemma 3.1 (Apostol, Lemma 1.1). For a € R, the sum

3 1

ofmen 11”

converges if and only if o > 2.

Lemma 3.2 (Apostol, Lemma 1.2). If R > 0,« € N, then the series
Z 1

oo R F @)

converges absolutely and uniformly in the disk |z| < R if and only if a > 2.

n the theory of Riemann surfaces, an elliptic function having a unique simple pole in P
induces a holomorphic map from the complex torus C/€ to the Riemann sphere C = S? of
degree 1. But all maps of degree 1 between compact Riemann surfaces are biholomorphic,
thus homeomorphisms. This is impossible.



Therefore, we start with a degree 3 map, which turns out to be the derivative
of the Weierstrass p-function up to a constant.

Theorem 3.3 (Apostol, Thm 1.9). Let f : C\ Q — C be defined by

f(Z):Zﬁ

weN

Then the sum converges absolutely and uniformly in each compact set K C C\Q
and f is an elliptic function with a pole of order 3 at each lattice point w.

Proof. Fix any R > 0. Then the series

> ﬁ (3.1)

lw|>R

converges uniformly in the disk |z|] < R by Lemma 3.2, therefore this part of
f is holomorphic on |z| < R (as uniform limit of holomorphic functions). The
remaining part is meromorphic only having poles of order 3 in the lattice points
in the disk. Therefore, f is meromorphic on the open disk |z| < R. Since R was
arbitrary, this shows that f is meromorphic with poles of order 3 at the lattice
points.

The convergence on compact sets K C C\ (2 follows similarly by taking R big
enough such that K is contained in |z| < R and using the uniform convergence
for Eq. (3.1).

It remains to proof double periodicity: By absolute convergence, the order
of summation does not matter. So since w; + 2 = 2, we obtain

1 1
et =2 oo~ 2 Gra oy 1O

wEN wWEW1+N

and similarly for ws. O

To obtain an elliptic function with a pole of order 2, we remove the term z 3

corresponding to w = 0 and integrate out from 0 to z, where we can exchange
integral and sum by absolute convergence:

[rese 20 (w5 o

It is now an easy consequence that Eq. (3.2) must again converge absolutely and
uniformly on compact sets!? To get back to periodicity, we simply add the term
Z% after removing the constant and we have found the Weierstrass p-function.

2 Absolute convergence, since Y, o

1 1
Iy Wdt‘ < el Eose o for some t*, and
uniform convergence on K C (C\ ©) U0 compact (w.l.o.g. path-connected, 0 € K), since

Z 1
> EnE

|w|>R

1
< const - sup Z — =0

sup 3
teK [w]>R (w—1)

zeEK

as R — oo



Theorem 3.4 (Construction Theorem for the p-function). The series defining
the Weierstrass p-function

w5+ 3 (o)

converges in each compact set K C C\ Q absolutely and uniformly. We have
the following properties:

(i) o is an elliptic function (with respect to Q), holomorphic on C\ Q, with
Laurent ezpansion

1
o) + ag2? + O(z4),
where aq € C.
(i) p is even, having a pole of order 2 at each lattice point
(111) ¢ is odd, having a pole of order 3 at each lattice point and is given by
1
/
= —2 _—
¢'(2) = (-2) ) C_wp

we

Proof. We already established convergence and the formula of ¢’. Since Q =
—£, it is immediate by reordering of the summands that g is even and ¢’ is
odd. The Laurent expansion will be given in the next section.

To show that g is elliptic, we still need to prove the double periodicity. Since
@' is elliptic, for all z € C\ Q,w € O

O (z+w) =¢(2).
Therefore, the function
p(z +w) —p(2)

is constant. Inserting z = —% gives that the constant is
w w
Y- p(—=) =0,
p(5) - p(-3)

since g is even. O

4 The Laurent Expansion

Definition 4.1 (Eisenstein series). For all k& > 3, define the Eisenstein series
of the lattice 2 to be 1
Gy = —
k Z ok

0F£weN

Remark 4.2. Since w € C is lattice point if and only if —w is, we see immedi-
ately that Gy, = (—1)*G},, meaning that Gy= 0 for odd k.

Theorem 4.3. We have the Laurent expansion at 0 given by

p(z) =272+ 2(271 —1)Gpp2*" 2

n=2



Proof. The trick we use is to write, for [t| < 1,

1 d m— 1
(1—1)2 _dt(lt> th

Let v := min{|w||0 # w € Q}. Now we can write, if w # 0 and |z| < :

1 1 1 1 >, pml
(-w? W W <<1 — )P ) 2"

m=2

Inserting this in the expression of the g function gives for |z| < v:

p(z) =27+ D] (Z w:+11>~

0£weQ \m=2

—1
-3
<ym (‘ ‘) |w| ™7, we have absolute convergence when sum-

Since ‘m T

ming over w and m, so we can exchange the summation signs and obtain

— Y me Y

m>2 0#we
=224 E mszleH

m>2

=224 Z(?n —1)Ga,2*" 72,

n=2

where in the last equality we used that G,, = 0 for odd m. O

5 The Differential Equation

Theorem 5.1. The Weierstrass p-function satisfies the differential equation

2
=40 — g2 — g3,

where go = 60Gy and g3 = 140G are constants only depending on €2, called the
Weierstrass-invariants of the lattice.

Proof. Starting from the Laurent expansion at 0
0(2) = 272 4+ 3G422 +5Gz" + O(29),

we calculate

2

02 (2) = 271+ 6G4 4+ 10Gs 22 + O(23),

3 (2) =275+ 9G42 + 15G¢ + O(z),

@ (2) = (- ) 316Gz +20Gs2® + O(2%),
0% (2) = 4275 — 24G,22 — 80G¢ + O(2).



Therefore,
0% (2) — 49%(2) + 60Gy4 + 140Gg = O(z). (5.1)

Now Eq. (5.1) belongs to K£(£2) and only can have poles where p and ¢’ also
have poles. But since we are O(z) at 0, there is no pole at 0, meaning that by
[Theorem A] Eq. (5.1) is constant. But a constant which is O(z) must be 0. O

Corollary 5.2 (Uniqueness up to translation). Fiz a domain G C C. Then
every meromorphic, non-constant solution f of the differential equation

P =41 —gof —gs

is given by f(z) = p(z + z0) for z € G and some zy € C. In particular, f is an
elliptic function with respect to €.

Proof. Let f be a meromorphic, non-constant solution defined on G. First, note
that first order polynomials do not solve the equation, so f’ is not constant.
Since the number of poles and zeros of f and f’ are finite in each bounded
subset, we can choose ug € G, an open disk U C G around u, such that f is
holomorphic and f’ never vanishes on U.

Further, we can assume that U is small enough such that

f'=VAf3 —g2f — g3 (5.2)

for some branch of the square root.
Now by Liouville’s third theorem there exists 29 € C such that

o(uo + 20) = f(uo).

Since both p and f satisfy the differential equation, we know that ©'(ug+ z0) =
+f"(ug + z0). But since p is even and g’ is odd we can assume (by otherwise
replacing zg by —z9 — 2ug) that

' (uo + 20) = f'(uo + 20)-

Note that f(z) and g(z) := p(z + 2z9) both satisfy the initial value problem

Eq. (5.2). But since h(z) = /423 — g2z — g3 is holomorphic (and thus locally
Lipschitz continuous) on f(U), by the Picard-Lindelof theorem, we must have

a unique solution in a neighbourhood of uy which means that f = g on G by
the identity theorem.
O
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