Complex elliptic curves

N. Goldhirsch, P. Golliard

21.11.2023

Contents

1 Prelimiaries 2
2 The discriminant and the j-invariant 2
3 The dependence on the lattice 3
3.1 Homogeneity and base change 3
3.2 Eisenstein series 5
4 Lattices and elliptic curves 6
4.1 The addition Theorem 6
4.2 The factor group \mathbb{C} / Ω 8
4.3 Elliptic curves 8

1 Prelimiaries

We let $\Omega=\mathbb{Z} w_{1}+\mathbb{Z} w_{2}$ be a lattice in \mathbb{C}.
Theorem 1.1. The Weierstrass $\wp-$ function

$$
\wp(z)=\wp_{\Omega}(z)=z^{-2}+\sum_{0 \neq w \in \Omega}\left((z-w)^{-2}-w^{-2}\right) \quad z \in \mathbb{C} \backslash \Omega,
$$

converges absolutely and uniformly in every compact subset of $\mathbb{C} \backslash \Omega$. It is an even elliptic function with respect to Ω and has poles of second order with residue 0 in every lattice points of Ω. The Laurent expansion at 0 has the form

$$
\wp=z^{-2}+a_{2} z^{2}+\ldots
$$

Moreover we have already seen that the Eisenstein series

$$
G_{k}=G_{k}(\Omega)=\sum_{0 \neq w \in \Omega} w^{-k}, \quad k \in \mathbb{Z},
$$

converges absolutely for $k \geq 3$ and that $G_{k}(\Omega)=0$ for odd $k \geq 3$ and any lattice Ω since the terms w^{-k} and $(-w)^{-k}$ cancel out in the sum.

Finally, the last thing to remember from last week and which we will need later is a first differential equation:

Proposition 1.2. The $\wp-$ function satisfies the differential equation

$$
\begin{equation*}
\wp^{\prime}(z)=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3} \tag{1}
\end{equation*}
$$

with the Weierstrass invariants

$$
\begin{aligned}
g_{2} & :=g_{2}(\Omega):=60 G_{4}(\Omega) \\
g_{3} & :=g_{3}(\Omega):=140 G_{6}(\Omega)
\end{aligned}
$$

Remark. The lattice Ω is uniquely determined by $g_{2}(\Omega)$ and $g_{3}(\Omega)$.

2 The discriminant and the j-invariant

We are finally ready to define three three constants e_{1}, e_{2}, e_{3} and explore their properties. They will help us find some rather special invariants of lattice.

Definition. Let Ω be a lattice spanned by two numbers w_{1} and w_{2}. Then we set

$$
\begin{aligned}
e_{1} & :=\wp\left(\frac{w_{1}}{2}\right), \\
e_{2} & :=\wp\left(\frac{w_{2}}{2}\right), \\
e_{3} & :=\wp\left(\frac{w_{3}}{2}\right), \\
w_{3} & :=w_{1}+w_{2} .
\end{aligned}
$$

With these new notion we obtain a second differential equation for the Weierstrass \wp-function.

Proposition 2.1. For $z \in \mathbb{C} \backslash \Omega$ we have

$$
\begin{equation*}
\wp^{\prime}(z)^{2}=4\left(\wp(z)-e_{1}\right)\left(\wp(z)-e_{2}\right)\left(\wp(z)-e_{3}\right) . \tag{2}
\end{equation*}
$$

Proving this Comparing the differential equation (1) and the differential equation (2), we obtain the identity

$$
4 \wp^{3}-g_{2} \wp-g_{3}=4\left(\wp-e_{1}\right)\left(\wp-e_{2}\right)\left(\wp-e_{3}\right)
$$

Since the \wp-function takes more than three different values, we obtain the following identity of polynomials:

Corollary. The following equality holds true for all $X \in \mathbb{C}$

$$
4 X^{3}-g_{2} X-g_{3}=4\left(X-e_{1}\right)\left(X-e_{2}\right)\left(X-e_{3}\right)
$$

In particular, we have

$$
\begin{gathered}
0=e_{1}+e_{2}+e_{3} \\
g_{2}=-4\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right), \\
g_{3}=4 e_{1} e_{2} e_{3}
\end{gathered}
$$

Using these identites for e_{1}, e_{2}, e_{3}, we obtain the following relation.
Corollary. We have

$$
g_{2}^{3}-27 g_{3}^{2}=16\left(e_{1}-e_{2}\right)^{2}\left(e_{2}-e_{3}\right)^{2}\left(e_{3}-e_{1}\right)^{2} \neq 0
$$

We define the discriminant of Ω by

$$
\Delta:=\Delta(\Omega):=g_{2}^{3}-27 g_{3}^{2}=16\left(e_{1}-e_{2}\right)^{2}\left(e_{2}-e_{3}\right)^{2}\left(e_{3}-e_{1}\right)^{2} \neq 0
$$

and the j-invariant of Ω by

$$
j:=j(\Omega):=\frac{\left(12 g_{2}\right)^{3}}{\Delta}=-4 \cdot 12^{3} \frac{\left(e_{1} e_{2}+e_{2} e_{3}+e_{3} e_{1}\right)^{3}}{\left(e_{1}-e_{2}\right)^{2}\left(e_{2}-e_{3}\right)^{2}\left(e_{3}-e_{1}\right)^{2}} .
$$

3 The dependence on the lattice

In this chapter we investigate the behaviour of $G_{k}(\Omega)$ and \wp_{Ω} when the lattice Ω varies.

3.1 Homogeneity and base change

If Ω is a lattice in \mathbb{C}, then $\lambda \Omega$ is a lattice for every $0 \neq \lambda \in \mathbb{C}$. From the series definitions of G_{k} and \wp it is clear that we have

$$
\begin{aligned}
& \wp_{\lambda \Omega}(\lambda z)=\lambda^{-2} \wp_{\Omega}(z), \\
& G_{k}(\lambda \Omega)=\lambda^{-k} G_{k}(\Omega) .
\end{aligned}
$$

This also gives the identities

$$
\begin{gathered}
g_{2}(\lambda \Omega)=\lambda^{-4} g_{2}(\Omega), \\
g_{3}(\lambda \Omega)=\lambda^{-6} g_{3}(\Omega), \\
\Delta(\lambda \Omega)=\lambda^{-12} \Delta(\Omega), \\
j(\lambda \Omega)=j(\Omega) .
\end{gathered}
$$

Proposition 3.1. For two lattices Ω and Ω^{\prime} in \mathbb{C}, the following are equivalent.

- We have $\Omega^{\prime}=\lambda \Omega$ for some $0 \neq \lambda \in \mathbb{C}$.
- $j\left(\Omega^{\prime}\right)=j(\Omega)$.

Proof. We have already observed above that $j(\lambda \Omega)=j(\Omega)$ for $\lambda \neq 0$. Conversely, suppose that $j\left(\Omega^{\prime}\right)=j(\Omega) \neq 0$. Then we have $g_{2}(\Omega) \neq 0$ and $g_{2}\left(\Omega^{\prime}\right) \neq 0$. Hence there is some $0 \neq \lambda \in \mathbb{C}$ such that

$$
g_{2}\left(\Omega^{\prime}\right)=\lambda^{-4} g_{2}(\Omega)=g_{2}(\lambda \Omega) .
$$

Using the fact that $\Delta=g_{2}^{3}-27 g_{3}^{2}$ and $\Delta(\lambda \Omega)=\lambda^{-12} \Delta(\Omega)$, we obtain

$$
g_{3}\left(\Omega^{\prime}\right)=\mp \lambda^{-6} g_{3}(\Omega)=\mp g_{3}(\lambda \Omega) .
$$

Replacing λ with $i \lambda$ if necessary, we get $g_{2}\left(\Omega^{\prime}\right)=g_{2}(\lambda \Omega)$ and $g_{3}\left(\Omega^{\prime}\right)=g_{3}(\lambda \Omega)$. We have seen that g_{2} and g_{3} uniquely determine the lattice, so we obtain that $\Omega^{\prime}=\lambda \Omega$.
If $j(\Omega)=j\left(\Omega^{\prime}\right)=0$, then $g_{2}(\Omega)=g_{2}\left(\Omega^{\prime}\right)=0$, and it follows from cor (2) that $g_{3}(\Omega) \neq 0$ and $g_{3}\left(\Omega^{\prime}\right) \neq 0$. Now we can proceed in a similar way as before.

Let $\left(w_{1}, w_{2}\right)$ be basis of Ω. Since w_{1}, w_{2} are linearly independent over \mathbb{R}, we have $\tau:=\frac{w_{1}}{w_{2}} \notin \mathbb{R}$. Replacing w_{1} with $-w_{1}$ if necessary, we may assume that $\operatorname{Im}(\tau)>0$. Hence, every lattice in \mathbb{C} is of the form

$$
\Omega=\lambda(\mathbb{Z} \tau+\mathbb{Z})
$$

for some $\lambda \in \mathbb{C}$, and τ in the upper half plane

$$
\mathbb{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} .
$$

Since \wp and G_{k} are homogeneus in λ, it remains to study their behaviour on lattices $\Omega=\mathbb{Z} \tau+\mathbb{Z}$ as $\tau \in \mathbb{H}$ varies. Hence, we will now view \wp and G_{k} as functions of $\tau \in \mathbb{H}$, that is, we define

$$
\begin{gathered}
\wp(z ; \tau):=\wp_{\mathbb{Z} \tau+\mathbb{Z}}(z), \\
G_{k}(\tau):=G_{k}(\mathbb{Z} \tau+\mathbb{Z}) .
\end{gathered}
$$

Proposition 3.2. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ we have

$$
\wp\left(\frac{z}{c \tau+d} ; \frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} \wp(z ; \tau),
$$

and

$$
G_{k}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} G_{k}(\tau)
$$

Proof. Let $\tau^{\prime}=\frac{a \tau+b}{c \tau+d}$. Then we have
$\mathbb{Z} \tau^{\prime}+\mathbb{Z}=\mathbb{Z} \frac{a \tau+b}{c \tau+d}+\mathbb{Z}=(c \tau+d)^{-1}(\mathbb{Z}(a \tau+b)+\mathbb{Z}(c \tau+d))=(c \tau+d)^{-1}(\mathbb{Z} \tau+\mathbb{Z})$.

Where we used that the map $x \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) x$ is a bijection on \mathbb{Z}^{2}. By the homogeneity of G_{k} we obtain

$$
G_{k}\left(\tau^{\prime}\right)=G_{k}\left(\mathbb{Z} \tau^{\prime}+\mathbb{Z}\right)=G_{k}\left((c \tau+d)^{-1}(\mathbb{Z} \tau+\mathbb{Z})\right)=(c \tau+d)^{k} G_{k}(\tau)
$$

and similarly for \wp.
Remark. The group $\mathrm{SL}_{2}(\mathbb{R})$ acts on \mathbb{H} by fractional linear transformations

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \tau=\frac{a \tau+b}{c \tau+d}
$$

A holomorphic function $f: \mathbb{H} \rightarrow \mathbb{C}$ is called a modular form of weight $k \in \mathbb{Z}$ for $\mathrm{SL}_{2}(\mathbb{Z})$ if it satisfies the transformation law

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathbb{H}$, and if $f(\tau)$ remains bounded as $\operatorname{Im}(\tau) \rightarrow$ ∞.

3.2 Eisenstein series

For even $k \geq 4$ we may write the Eisenstein series $G_{k}(\tau)$ for $\tau \in \mathbb{H}$ as the series

$$
\begin{equation*}
G_{k}(\tau)=G_{k}(\mathbb{Z} \tau+\mathbb{Z})=\sum_{0 \neq w \in \mathbb{Z} \tau+\mathbb{Z}} w^{-k}=\sum_{m, n \in \mathbb{Z}}^{\prime}(m \tau+n)^{-k} \tag{3}
\end{equation*}
$$

where the symbol Σ^{\prime} means that the summand for $(m, n)=(0,0)$ has to be omitted.
Since the sum converges absolutely and locally uniformly, the Eisenstein series $G_{k}(\tau)$ defines a holomorphic function on \mathbb{H}.

Proposition 3.3. For $\tau \in \mathbb{H}$ and even $k \geq 4$ we have the Fourier expansion

$$
G_{k}(\tau)=2 \zeta(k)+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{m=1}^{\infty} \sigma_{k-1}(m) 2^{2 \pi i m \tau}
$$

where

$$
\zeta(s)=\sum_{m=1}^{\infty} m^{-s}, \quad s \in \mathbb{C}, \operatorname{Re}(s)>1
$$

is the Riemann zeta function and

$$
\sigma_{s}(m)=\sum_{d \mid m} d^{s}, \quad(s \in \mathbb{R})
$$

is a generalized divisor sum. In particular, $G_{k}(\tau)$ is a modular form of weight k for $\mathrm{SL}_{2}(\mathbb{Z})$.

Proof. Since the Eisenstein series converges absolutely, we may write the series in (3) as

$$
G_{k}(\tau)=\sum_{n \neq 0} n^{-k}+\sum_{m \neq 0} \sum_{n \in \mathbb{Z}}(m \tau+n)^{-k}=2 \zeta(k)+2 \sum_{m=1}^{\infty} \sum_{n}(m \tau \mathbb{Z}
$$

We will use the so-called Lipschitz formula

$$
\sum_{n \in \mathbb{Z}}(\tau+n)^{-k}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{s=1}^{\infty} \sum_{r=1}^{\infty} r^{k-1} e^{2 \pi i r \tau}, \quad(\tau \in \mathbb{H}, k \in \mathbb{N}, k \geq 3)
$$

whose proof will omit for brevity. Then we obtain

$$
G_{k}(\tau)=2 \zeta(k)+2 \frac{(2 \pi i)^{k}}{(k-1)!} \sum_{s=1}^{\infty} \sum_{r=1}^{\infty} r^{k-1} e^{2 \pi i r s \tau}
$$

By collecting the terms with $m=r s$ we obtain the stated Fourier expansion. Since the Fourier expansion of $G_{k}(\tau)$ does not have terms of negative index, we have $\lim _{\operatorname{Im}(\tau) \rightarrow \infty} G_{k}(\tau)=2 \zeta(k)$, that is, $G_{k}(\tau)$ remains bounded as $\operatorname{Im}(\tau) \rightarrow \infty$. We have al.ready seen above that $G_{k}(\tau)$ is holomorphic on \mathbb{H} and satisfies the state transformation law under $\mathrm{SL}_{2}(\mathbb{Z})$. Hence $G_{k}(\tau)$ is a modular form of weight k.

4 Lattices and elliptic curves

In this section we will investigate the connection between lattices and elliptic curves over \mathbb{C}.

4.1 The addition Theorem

Let $\Omega=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ denote a lattice in \mathbb{C} and $\wp(z)=\wp_{\Omega}(z)=\wp\left(z, \omega_{1}, \omega_{2}\right)$ be its Weierstrass \wp-function.

Recall a useful theorem from the past lesson:
Theorem 4.1. Let $f \in \mathcal{K}(\Omega)$ and P be a periodic parallelogram, then it holds that

$$
\sum_{c \in P} r e s_{c} f=0
$$

Theorem 4.2 (Addition Theorem). Given $z, w \in \mathbb{C}$ with $z, w, z \pm w \notin \Omega$ it holds

$$
\wp(z+w)+\wp(z)+\wp(w)=\frac{1}{4}\left(\frac{\wp^{\prime}(z)-\wp^{\prime}(w)}{\wp(z)-\wp(w)}\right)^{2}
$$

To prove the Addition Theorem we need the following Proposition.
Proposition 4.3. For $w \in \mathbb{C} \backslash \frac{1}{2} \Omega$ the function

$$
f(z):=f(z, w):=\frac{1}{2} \frac{\wp^{\prime}(z)-\wp^{\prime}(w)}{\wp(z)-\wp(w)}
$$

is an elliptic function w.r.t the lattice Ω with first order poles at $z \in \Omega$ and $z \in-w+\Omega=\{-w+\omega: \omega \in \Omega\}$ with Laurent expansions:

$$
\begin{array}{ll}
f(z)=-\frac{1}{z}-\wp(w) z+O\left(z^{2}\right) & \text { at } \quad z=0 \\
f(z)=\frac{1}{z+w}+c(w)+O(z) & \text { at } \quad z=-w
\end{array}
$$

for some constant $c(w) \in \mathbb{C}$, which we have to find out.
Proof. Apart from the points $z \in \Omega$ and $z \in-w+\Omega$, we see that f is also not defined at $z \in w+\Omega$. But since

$$
\lim _{z \rightarrow w} f(z)=\frac{1}{2} \lim _{z \rightarrow w} \frac{\wp^{\prime}(z)-\wp^{\prime}(w)}{z-w} \frac{z-w}{\wp(z)-\wp(w)}=\frac{1}{2} \frac{\wp^{\prime \prime}(w)}{\wp^{\prime}(w)}
$$

they are removable singularities, i.e. f is holomorphic in their neighbourhood. Note that the condition $w \in \mathbb{C} \backslash \frac{1}{2} \Omega$ ensures that $\wp^{\prime}(w) \neq 0$.

The Laurent expansion of f at $z=0$ becomes manifest by using the Laurent expansion of \wp, namely $\wp(z)=z^{-2}+O\left(z^{2}\right)$.
Moreover, $\wp(z)-\wp(w)$ has a simple root at every $z \in-w+\Omega$, and $\wp^{\prime}(z)-\wp^{\prime}(w)=$ $-2 \wp(w) \neq 0$ (recall that \wp is even and \wp^{\prime} is odd). Consequently f has a simple poles at $z \in-w+\Omega$. Since the sum of the residues of f in a fundamental parallelogram is 0 (compare Theorem 4.1), and since we have seen the residue at $z=0$ equals -1 , the residues at points $z \in-w+\Omega$ must be 1 . This gives the stated Laurent expansions.

Proof of Theorem 4.2. Consider the elliptic function

$$
g(z):=f(z, w)^{2}-\wp(z+w)-\wp(z)-\wp(w)
$$

with $w \in \mathbb{C} \backslash \frac{1}{2} \Omega$.
From the above proposition we see that g may have poles at points $z \in \Omega$ and $z \in-w+\Omega$.
At $z=0$ we have:

$$
g(z)=\left(z^{-2}+2 \wp(w)\right)-\wp(w)-z^{-2}-\wp(w)+O(z)=O(z)
$$

and at $z=-w$:

$$
g(z)=\frac{1}{(z+w)^{2}}+\frac{2 c(w)}{z+w}-\frac{1}{(z+w)^{2}}+O(1)=\frac{2 c(w)}{z+w}+O(1)
$$

If now $c(w) \neq 0$ then g would have simple poles only at the points $z \in-w+\Omega$, which is not possible since the sum of the residues must be 0 by Theorem 4.1. Hence $c(w)=0$.
This means that g is holomorphic, and thus constant (f elliptic and holomorphic implies f constant). Moreover from the Laurent expansion $g(z)=O(z)$ at $z=0$ we find $g(z)=0$.

This concludes the proof of the addition theorem in the case that $w \in \mathbb{C} \backslash \frac{1}{2} \Omega$. For the remaining points the addition theorem follows by continuity.

The following corollaries are special cases of the Addition Theorem 4.2.

Corollary. Given $z \in \mathbb{C} \backslash \frac{1}{2} \Omega$, then

$$
\wp(2 z)=-2 \wp(z)+\frac{1}{4}\left(\frac{\wp^{\prime \prime}(z)}{\wp^{\prime}(z)}\right)^{2}
$$

Proof. Obtained by letting $w \rightarrow z$.
Corollary. Given $z, w \in \mathbb{C}$ with $z, w, z \pm w \notin \Omega$ it holds

$$
\wp(z+w)-\wp(z-w)=-\frac{\wp^{\prime}(z) \wp^{\prime}(w)}{(\wp(z)-\wp(w))^{2}}
$$

Proof. We get the above statement by substituting w by $-w$.

4.2 The factor group \mathbb{C} / Ω

For $\Omega=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ a lattice in \mathbb{C}, we define the equivalence relation

$$
z \sim w \Longleftrightarrow z-w \in \Omega
$$

The equivalence classes can be then written in the form $z+\Omega$ and the factor group $\mathbb{C} / \Omega:=\{z+\Omega: z \in \mathbb{C}\}$. The canonical projection is denoted by π :

$$
\pi: \mathbb{C} \rightarrow \mathbb{C} / \Omega \quad, \quad \pi(z):=z+\Omega
$$

From last talk we know that for a parallelogram $P=\diamond\left(u, \omega_{1}, \omega_{2}\right)$ there exists for any $z \in \mathbb{C}$ exactly an $\omega \in \Omega$ with $z+\omega \in P$. This means that there is a one to one correspondence between P and \mathbb{C} / Ω via π, i.e. the restriction $\left.\pi\right|_{P}$ is bijective.

We can therefore imagine \mathbb{C} / Ω as a torus as the following picture describe:

Figure 1: The torus \mathbb{C} / Ω

4.3 Elliptic curves

Definition. Let $\Omega=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ be a lattice in \mathbb{C} with Weierstrass invariants g_{2} and g_{3}. The subset

$$
\mathbb{E}:=\mathbb{E}(\Omega):=\left\{(X, Y) \in \mathbb{C} \times \mathbb{C}: Y^{2}=4 X^{3}-g_{2} X-g_{3}\right\}
$$

is called the (affine) elliptic curve associated to Ω.

Figure 2: Elliptic curves f and g

Example. Suppose that g_{2}, g_{3} are real numbers. Then we may look at the real points on \mathbb{E}, that is, the real solutions $(X, Y) \in \mathbb{R}^{2}$ of the equation $Y^{2}=$ $4 X^{3}-g_{2} X-g_{3}$. The right-hand side has either three or one real root. Typical examples of such curves are $f: Y^{2}=4 X^{3}-4 X$ (with real roots $X=0, \pm 1$) and $g: Y^{2}=4 X^{3}+4$ (with real root $X=-1$).

The Weierstrass \wp-function allows a parametrisation of the elliptic curve \mathbb{E} trough \mathbb{C} / Ω.

Lemma 4.4. The map

$$
\Phi:(\mathbb{C} / \Omega) \backslash \Omega \rightarrow \mathbb{E}(\Omega) \quad, \quad \Phi(z+\Omega):=\left(\wp(z), \wp^{\prime}(z)\right)
$$

is a bijection.
Proof. The differential equation $\wp^{\prime}(z)^{2}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}$ shows that the image of Φ is indeed contained in \mathbb{E}.

For $(X, Y) \in \mathbb{E}$ we choose some $z \in \mathbb{C}$ with $\wp(z)=X$. Then we have

$$
Y^{2}=4 X^{3}-g_{2} X-g_{3}=4 \wp(z)^{3}-g_{2} \wp(z)-g_{3}=\wp^{\prime}(z)^{2}
$$

Hence we either have $Y=\wp^{\prime}(z)$ or $Y=-\wp^{\prime}(z)$. Since $\wp(z)$ is even and $\wp^{\prime}(z)$ is odd, we may assume that $Y=\wp^{\prime}(z)$ by replacing z with $-z$ if necessary. This shows that (X, Y) lies in the image of Φ, therefore Φ is surjective.

Now suppose that there are $z_{1}, z_{2} \in \mathbb{C} \backslash \Omega$ with $\left(\wp\left(z_{1}\right), \wp^{\prime}\left(z_{1}\right)\right)=\left(\wp\left(z_{2}\right), \wp^{\prime}\left(z_{2}\right)\right)$. By a property of \wp the identity $\wp\left(z_{1}\right)=\wp\left(z_{2}\right)$ implies $z_{1} \sim \pm z_{2}$. If $\wp^{\prime}\left(z_{1}\right) \neq 0$, then $z_{1} \nsim-z_{2}$ since \wp^{\prime} is odd, so we must have $z_{1} \sim z_{2}$. If $\left.\wp^{\prime}\left(z_{1}\right)=0=\wp^{\prime}\left(z_{2}\right)\right)$, then each of z_{1} and z_{2} is equivalent to one of $\frac{\omega_{1}}{2}, \frac{\omega_{2}}{2}, \frac{\omega_{3}}{2}$. But since $\wp\left(\omega_{k}\right)=e_{k}$ for $k=1,2,3$ are pairwise different, we must have $z_{1} \sim z_{2}$. This shows that Φ is injective.

By a small adjustment we can extend the bijection to the whole factor group \mathbb{C} / Ω. In fact we can consider the closure of \mathbb{E} by adding a "point at infinity" $\mathcal{O}:=(\infty, \infty)$:

$$
\overline{\mathbb{E}}:=\overline{\mathbb{E}}(\Omega):=\mathbb{E} \cup\{\mathcal{O}\}
$$

In this way we get the bijection:

$$
\bar{\Phi}: \mathbb{C} / \Omega \rightarrow \bar{E}(\Omega) \quad, \quad \bar{\Phi}(z+\Omega):=\left\{\begin{array}{lll}
\left(\wp(z), \wp^{\prime}(z)\right) & \text { if } & z \notin \Omega \\
\mathcal{O} & \text { if } & z \in \Omega
\end{array}\right.
$$

Using the bijection $\bar{\Phi}$ one can now carry over the natural group structure of \mathbb{C} / Ω to the elliptic curve $\overline{\mathbb{E}}$: for $P, Q \in \overline{\mathbb{E}}$ we define their sum as:

$$
P+Q:=\bar{\Phi}\left(\bar{\Phi}^{-1}(P)+\bar{\Phi}^{-1}(Q)\right)
$$

We therefore directly obtain the following proposition.
Proposition 4.5. Under the above defined sum, $\overline{\mathbb{E}}$ becomes a commutative group with unit element \mathcal{O} and $\bar{\Phi}$ a group isomorphism. Moreover, for $z \in \mathbb{C} / \Omega$ the inverse element can be computed as

$$
-\left(\wp(z), \wp^{\prime}(z)\right)=\left(\wp(-z), \wp^{\prime}(-z)\right)=\left(\wp(z),-\wp^{\prime}(z)\right)
$$

and for $u, v \in \mathbb{C}$ with $u, v, u+v \notin \Omega$ the addition can be computed as

$$
\left(\wp(u), \wp^{\prime}(u)\right)+\left(\wp(v), \wp^{\prime}(v)\right)=\left(\wp(u+v), \wp^{\prime}(u+v)\right)
$$

References

[1] M. Koecher and A. Krieg, Elliptische Funktionen und Modulformen, Springer, 2007
[2] M. Schwagenscheidt, Elliptic Functions and Elliptic Curves, Spring Term 2022 (update: May 28, 2022)

