Complex elliptic curves

N. Goldhirsch, P. Golliard

21.11.2023

Contents

1	Prelimiaries	2
2	The discriminant and the j-invariant	2
3	The dependence on the lattice	3
	3.1 Homogeneity and base change	3
	3.2 Eisenstein series	5
4	Lattices and elliptic curves	6
	4.1 The addition Theorem	6
	4.2 The factor group \mathbb{C}/Ω	8
	4.3 Elliptic curves	8

1 Prelimiaries

We let $\Omega = \mathbb{Z}w_1 + \mathbb{Z}w_2$ be a lattice in \mathbb{C} .

Theorem 1.1. The Weierstrass \wp -function

$$\wp(z) = \wp_{\Omega}(z) = z^{-2} + \sum_{0 \neq w \in \Omega} ((z - w)^{-2} - w^{-2}) \quad z \in \mathbb{C} \setminus \Omega,$$

converges absolutely and uniformly in every compact subset of $\mathbb{C} \setminus \Omega$. It is an even elliptic function with respect to Ω and has poles of second order with residue 0 in every lattice points of Ω . The Laurent expansion at 0 has the form

$$\wp = z^{-2} + a_2 z^2 + \dots$$

Moreover we have already seen that the Eisenstein series

$$G_k = G_k(\Omega) = \sum_{0 \neq w \in \Omega} w^{-k}, \quad k \in \mathbb{Z},$$

converges absolutely for $k \geq 3$ and that $G_k(\Omega) = 0$ for odd $k \geq 3$ and any lattice Ω since the terms w^{-k} and $(-w)^{-k}$ cancel out in the sum.

Finally, the last thing to remember from last week and which we will need later is a first differential equation:

Proposition 1.2. The \wp -function satisfies the differential equation

$$\wp'(z) = 4\wp(z)^3 - g_2\wp(z) - g_3 \tag{1}$$

with the Weierstrass invariants

$$g_2 := g_2(\Omega) := 60G_4(\Omega),$$

 $g_3 := g_3(\Omega) := 140G_6(\Omega).$

Remark. The lattice Ω is uniquely determined by $g_2(\Omega)$ and $g_3(\Omega)$.

2 The discriminant and the j-invariant

We are finally ready to define three three constants e_1, e_2, e_3 and explore their properties. They will help us find some rather special invariants of lattice.

Definition. Let Ω be a lattice spanned by two numbers w_1 and w_2 . Then we set

$$e_{1} := \wp(\frac{w_{1}}{2}),$$

$$e_{2} := \wp(\frac{w_{2}}{2}),$$

$$e_{3} := \wp(\frac{w_{3}}{2}),$$

$$w_{3} := w_{1} + w_{2}.$$

With these new notion we obtain a second differential equation for the Weierstrass $\wp\text{-}\mathsf{function}.$

Proposition 2.1. For $z \in \mathbb{C} \setminus \Omega$ we have

$$\wp'(z)^2 = 4(\wp(z) - e_1)(\wp(z) - e_2)(\wp(z) - e_3).$$
(2)

Proving this Comparing the differential equation (1) and the differential equation (2), we obtain the identity

$$4\wp^3 - g_2\wp - g_3 = 4(\wp - e_1)(\wp - e_2)(\wp - e_3).$$

Since the \wp -function takes more than three different values, we obtain the following identity of polynomials:

Corollary. The following equality holds true for all $X \in \mathbb{C}$

$$4X^3 - g_2X - g_3 = 4(X - e_1)(X - e_2)(X - e_3).$$

In particular, we have

$$0 = e_1 + e_2 + e_3,$$

$$g_2 = -4(e_1e_2 + e_2e_3 + e_3e_1),$$

$$g_3 = 4e_1e_2e_3.$$

Using these identities for e_1, e_2, e_3 , we obtain the following relation.

Corollary. We have

$$g_2^3 - 27g_3^2 = 16(e_1 - e_2)^2(e_2 - e_3)^2(e_3 - e_1)^2 \neq 0.$$

We define the discriminant of Ω by

$$\Delta := \Delta(\Omega) := g_2^3 - 27g_3^2 = 16(e_1 - e_2)^2(e_2 - e_3)^2(e_3 - e_1)^2 \neq 0,$$

and the *j*-invariant of Ω by

$$j := j(\Omega) := \frac{(12g_2)^3}{\Delta} = -4 \cdot 12^3 \frac{(e_1e_2 + e_2e_3 + e_3e_1)^3}{(e_1 - e_2)^2(e_2 - e_3)^2(e_3 - e_1)^2}.$$

3 The dependence on the lattice

In this chapter we investigate the behaviour of $G_k(\Omega)$ and \wp_{Ω} when the lattice Ω varies.

3.1 Homogeneity and base change

If Ω is a lattice in \mathbb{C} , then $\lambda\Omega$ is a lattice for every $0 \neq \lambda \in \mathbb{C}$. From the series definitions of G_k and \wp it is clear that we have

$$\begin{split} \wp_{\lambda\Omega}(\lambda z) &= \lambda^{-2} \wp_{\Omega}(z), \\ G_k(\lambda \Omega) &= \lambda^{-k} G_k(\Omega). \end{split}$$

This also gives the identities

$$g_2(\lambda\Omega) = \lambda^{-4}g_2(\Omega),$$

$$g_3(\lambda\Omega) = \lambda^{-6}g_3(\Omega),$$

$$\Delta(\lambda\Omega) = \lambda^{-12}\Delta(\Omega),$$

$$j(\lambda\Omega) = j(\Omega).$$

Proposition 3.1. For two lattices Ω and Ω' in \mathbb{C} , the following are equivalent.

- We have $\Omega' = \lambda \Omega$ for some $0 \neq \lambda \in \mathbb{C}$.
- $j(\Omega') = j(\Omega)$.

Proof. We have already observed above that $j(\lambda\Omega) = j(\Omega)$ for $\lambda \neq 0$. Conversely, suppose that $j(\Omega') = j(\Omega) \neq 0$. Then we have $g_2(\Omega) \neq 0$ and $g_2(\Omega') \neq 0$. Hence there is some $0 \neq \lambda \in \mathbb{C}$ such that

$$g_2(\Omega') = \lambda^{-4} g_2(\Omega) = g_2(\lambda \Omega)$$

Using the fact that $\Delta = g_2^3 - 27g_3^2$ and $\Delta(\lambda\Omega) = \lambda^{-12}\Delta(\Omega)$, we obtain

$$g_3(\Omega') = \mp \lambda^{-6} g_3(\Omega) = \mp g_3(\lambda \Omega)$$

Replacing λ with $i\lambda$ if necessary, we get $g_2(\Omega') = g_2(\lambda\Omega)$ and $g_3(\Omega') = g_3(\lambda\Omega)$. We have seen that g_2 and g_3 uniquely determine the lattice, so we obtain that $\Omega' = \lambda\Omega$.

If $j(\Omega) = j(\Omega') = 0$, then $g_2(\Omega) = g_2(\Omega') = 0$, and it follows from cor (2) that $g_3(\Omega) \neq 0$ and $g_3(\Omega') \neq 0$. Now we can proceed in a similar way as before. \Box

Let (w_1, w_2) be basis of Ω . Since w_1, w_2 are linearly independent over \mathbb{R} , we have $\tau := \frac{w_1}{w_2} \notin \mathbb{R}$. Replacing w_1 with $-w_1$ if necessary, we may assume that $\operatorname{Im}(\tau) > 0$. Hence, every lattice in \mathbb{C} is of the form

$$\Omega = \lambda(\mathbb{Z}\tau + \mathbb{Z})$$

for some $\lambda \in \mathbb{C}$, and τ in the upper half plane

$$\mathbb{H} = \{ \tau \in \mathbb{C} : \operatorname{Im}(\tau) > 0 \}.$$

Since \wp and G_k are homogeneous in λ , it remains to study their behaviour on lattices $\Omega = \mathbb{Z}\tau + \mathbb{Z}$ as $\tau \in \mathbb{H}$ varies. Hence, we will now view \wp and G_k as functions of $\tau \in \mathbb{H}$, that is, we define

$$\wp(z;\tau) := \wp_{\mathbb{Z}\tau+\mathbb{Z}}(z),$$
$$G_k(\tau) := G_k(\mathbb{Z}\tau+\mathbb{Z}).$$

Proposition 3.2. For $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ we have

$$\wp\left(\frac{z}{c\tau+d};\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^2\wp(z;\tau),$$

and

$$G_k\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k G_k(\tau).$$

Proof. Let $\tau' = \frac{a\tau + b}{c\tau + d}$. Then we have

$$\mathbb{Z}\tau' + \mathbb{Z} = \mathbb{Z}\frac{a\tau + b}{c\tau + d} + \mathbb{Z} = (c\tau + d)^{-1}(\mathbb{Z}(a\tau + b) + \mathbb{Z}(c\tau + d)) = (c\tau + d)^{-1}(\mathbb{Z}\tau + \mathbb{Z}).$$

Where we used that the map $x \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} x$ is a bijection on \mathbb{Z}^2 . By the homogeneity of G_k we obtain

$$G_k(\tau') = G_k(\mathbb{Z}\tau' + \mathbb{Z}) = G_k((c\tau + d)^{-1}(\mathbb{Z}\tau + \mathbb{Z})) = (c\tau + d)^k G_k(\tau),$$

and similarly for \wp .

Remark. The group $SL_2(\mathbb{R})$ acts on \mathbb{H} by fractional linear transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau = \frac{a\tau + b}{c\tau + d}.$$

A holomorphic function $f : \mathbb{H} \to \mathbb{C}$ is called a modular form of weight $k \in \mathbb{Z}$ for $SL_2(\mathbb{Z})$ if it satisfies the transformation law

$$f\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^k f(\tau)$$

for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ and $\tau \in \mathbb{H}$, and if $f(\tau)$ remains bounded as $Im(\tau) \to \infty$.

3.2 Eisenstein series

For even $k \geq 4$ we may write the Eisenstein series $G_k(\tau)$ for $\tau \in \mathbb{H}$ as the series

$$G_k(\tau) = G_k(\mathbb{Z}\tau + \mathbb{Z}) = \sum_{0 \neq w \in \mathbb{Z}\tau + \mathbb{Z}} w^{-k} = \sum_{m,n \in \mathbb{Z}}' (m\tau + n)^{-k}, \qquad (3)$$

where the symbol Σ' means that the summand for (m,n)=(0,0) has to be omitted.

Since the sum converges absolutely and locally uniformly, the Eisenstein series $G_k(\tau)$ defines a holomorphic function on \mathbb{H} .

Proposition 3.3. For $\tau \in \mathbb{H}$ and even $k \geq 4$ we have the Fourier expansion

$$G_k(\tau) = 2\zeta(k) + 2\frac{(2\pi i)^k}{(k-1)!} \sum_{m=1}^{\infty} \sigma_{k-1}(m) 2^{2\pi i m \tau},$$

where

$$\zeta(s) = \sum_{m=1}^{\infty} m^{-s}, \quad s \in \mathbb{C}, \operatorname{Re}(s) > 1$$

is the Riemann zeta function and

$$\sigma_s(m) = \sum_{d|m} d^s, \quad (s \in \mathbb{R})$$

is a generalized divisor sum. In particular, $G_k(\tau)$ is a modular form of weight k for $SL_2(\mathbb{Z})$.

Proof. Since the Eisenstein series converges absolutely, we may write the series in (3) as

$$G_k(\tau) = \sum_{n \neq 0} n^{-k} + \sum_{m \neq 0} \sum_{n \in \mathbb{Z}} (m\tau + n)^{-k} = 2\zeta(k) + 2\sum_{m=1}^{\infty} \sum_{n \ in\mathbb{Z}} (m\tau + n)^{-k}.$$

We will use the so-called Lipschitz formula

$$\sum_{n \in \mathbb{Z}} (\tau + n)^{-k} = \frac{(-2\pi i)^k}{(k-1)!} \sum_{s=1}^{\infty} \sum_{r=1}^{\infty} r^{k-1} e^{2\pi i r \tau}, \quad (\tau \in \mathbb{H}, k \in \mathbb{N}, k \ge 3),$$

whose proof will omit for brevity. Then we obtain

$$G_k(\tau) = 2\zeta(k) + 2\frac{(2\pi i)^k}{(k-1)!} \sum_{s=1}^{\infty} \sum_{r=1}^{\infty} r^{k-1} e^{2\pi i r s \tau}$$

By collecting the terms with m = rs we obtain the stated Fourier expansion. Since the Fourier expansion of $G_k(\tau)$ does not have terms of negative index, we have $\lim_{\mathrm{Im}(\tau)\to\infty} G_k(\tau) = 2\zeta(k)$, that is, $G_k(\tau)$ remains bounded as $\mathrm{Im}(\tau) \to \infty$. We have al.ready seen above that $G_k(\tau)$ is holomorphic on \mathbb{H} and satisfies the state transformation law under $\mathrm{SL}_2(\mathbb{Z})$. Hence $G_k(\tau)$ is a modular form of weight k.

4 Lattices and elliptic curves

In this section we will investigate the connection between lattices and elliptic curves over \mathbb{C} .

4.1 The addition Theorem

Let $\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ denote a lattice in \mathbb{C} and $\wp(z) = \wp_{\Omega}(z) = \wp(z, \omega_1, \omega_2)$ be its Weierstrass \wp -function.

Recall a useful theorem from the past lesson:

Theorem 4.1. Let $f \in \mathcal{K}(\Omega)$ and P be a periodic parallelogram, then it holds that

$$\sum_{c \in P} \operatorname{res}_c f = 0$$

Theorem 4.2 (Addition Theorem). Given $z, w \in \mathbb{C}$ with $z, w, z \pm w \notin \Omega$ it holds

$$\wp(z+w) + \wp(z) + \wp(w) = \frac{1}{4} \left(\frac{\wp'(z) - \wp'(w)}{\wp(z) - \wp(w)} \right)^2$$

To prove the Addition Theorem we need the following Proposition.

Proposition 4.3. For $w \in \mathbb{C} \setminus \frac{1}{2}\Omega$ the function

$$f(z) := f(z, w) := \frac{1}{2} \frac{\wp'(z) - \wp'(w)}{\wp(z) - \wp(w)}$$

is an elliptic function w.r.t the lattice Ω with first order poles at $z \in \Omega$ and $z \in -w + \Omega = \{-w + \omega : \omega \in \Omega\}$ with Laurent expansions:

$$f(z) = -\frac{1}{z} - \wp(w)z + O(z^2) \quad at \quad z = 0$$

$$f(z) = \frac{1}{z+w} + c(w) + O(z) \quad at \quad z = -w$$

for some constant $c(w) \in \mathbb{C}$, which we have to find out.

Proof. Apart from the points $z \in \Omega$ and $z \in -w + \Omega$, we see that f is also not defined at $z \in w + \Omega$. But since

$$\lim_{z \to w} f(z) = \frac{1}{2} \lim_{z \to w} \frac{\wp'(z) - \wp'(w)}{z - w} \frac{z - w}{\wp(z) - \wp(w)} = \frac{1}{2} \frac{\wp''(w)}{\wp'(w)}$$

they are removable singularities, i.e. f is holomorphic in their neighbourhood. Note that the condition $w \in \mathbb{C} \setminus \frac{1}{2}\Omega$ ensures that $\wp'(w) \neq 0$.

The Laurent expansion of f at z = 0 becomes manifest by using the Laurent expansion of \wp , namely $\wp(z) = z^{-2} + O(z^2)$.

Moreover, $\wp(z) - \wp(w)$ has a simple root at every $z \in -w + \Omega$, and $\wp'(z) - \wp'(w) = -2\wp(w) \neq 0$ (recall that \wp is even and \wp' is odd). Consequently f has a simple poles at $z \in -w + \Omega$. Since the sum of the residues of f in a fundamental parallelogram is 0 (compare Theorem 4.1), and since we have seen the residue at z = 0 equals -1, the residues at points $z \in -w + \Omega$ must be 1. This gives the stated Laurent expansions.

Proof of Theorem 4.2. Consider the elliptic function

$$g(z) := f(z,w)^2 - \wp(z+w) - \wp(z) - \wp(w)$$

with $w \in \mathbb{C} \setminus \frac{1}{2}\Omega$.

From the above proposition we see that g may have poles at points $z \in \Omega$ and $z \in -w + \Omega$.

At z = 0 we have:

$$g(z) = (z^{-2} + 2\wp(w)) - \wp(w) - z^{-2} - \wp(w) + O(z) = O(z)$$

and at z = -w:

$$g(z) = \frac{1}{(z+w)^2} + \frac{2c(w)}{z+w} - \frac{1}{(z+w)^2} + O(1) = \frac{2c(w)}{z+w} + O(1)$$

If now $c(w) \neq 0$ then g would have simple poles only at the points $z \in -w + \Omega$, which is not possible since the sum of the residues must be 0 by Theorem 4.1. Hence c(w) = 0.

This means that g is holomorphic, and thus constant (f elliptic and holomorphic implies f constant). Moreover from the Laurent expansion g(z) = O(z) at z = 0 we find g(z) = 0.

This concludes the proof of the addition theorem in the case that $w \in \mathbb{C} \setminus \frac{1}{2}\Omega$. For the remaining points the addition theorem follows by continuity.

The following corollaries are special cases of the Addition Theorem 4.2.

Corollary. Given $z \in \mathbb{C} \setminus \frac{1}{2}\Omega$, then

$$\wp(2z) = -2\wp(z) + \frac{1}{4} \left(\frac{\wp''(z)}{\wp'(z)}\right)^2$$

Proof. Obtained by letting $w \to z$.

Corollary. Given $z, w \in \mathbb{C}$ with $z, w, z \pm w \notin \Omega$ it holds

$$\wp(z+w) - \wp(z-w) = -\frac{\wp'(z)\wp'(w)}{(\wp(z) - \wp(w))^2}$$

Proof. We get the above statement by substituting w by -w.

4.2 The factor group \mathbb{C}/Ω

For $\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ a lattice in \mathbb{C} , we define the equivalence relation

$$z \sim w \iff z - w \in \Omega$$

The equivalence classes can be then written in the form $z + \Omega$ and the factor group $\mathbb{C}/\Omega := \{z + \Omega : z \in \mathbb{C}\}$. The canonical projection is denoted by π :

$$\pi : \mathbb{C} \to \mathbb{C}/\Omega \quad , \quad \pi(z) := z + \Omega$$

From last talk we know that for a parallelogram $P = \diamond(u, \omega_1, \omega_2)$ there exists for any $z \in \mathbb{C}$ exactly an $\omega \in \Omega$ with $z + \omega \in P$. This means that there is a one to one correspondence between P and \mathbb{C}/Ω via π , i.e. the restriction $\pi|_P$ is bijective.

We can therefore imagine \mathbb{C}/Ω as a torus as the following picture describe:

Figure 1: The torus \mathbb{C}/Ω

4.3 Elliptic curves

Definition. Let $\Omega = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$ be a lattice in \mathbb{C} with Weierstrass invariants g_2 and g_3 . The subset

$$\mathbb{E} := \mathbb{E}(\Omega) := \{ (X, Y) \in \mathbb{C} \times \mathbb{C} : Y^2 = 4X^3 - g_2 X - g_3 \}$$

is called the (affine) elliptic curve associated to Ω .

Figure 2: Elliptic curves f and g

Example. Suppose that g_2, g_3 are real numbers. Then we may look at the real points on \mathbb{E} , that is, the real solutions $(X, Y) \in \mathbb{R}^2$ of the equation $Y^2 = 4X^3 - g_2X - g_3$. The right-hand side has either three or one real root. Typical examples of such curves are $f: Y^2 = 4X^3 - 4X$ (with real roots $X = 0, \pm 1$) and $g: Y^2 = 4X^3 + 4$ (with real root X = -1).

The Weierstrass \wp -function allows a parametrisation of the elliptic curve \mathbb{E} trough \mathbb{C}/Ω .

Lemma 4.4. The map

 $\Phi : (\mathbb{C}/\Omega) \setminus \Omega \to \mathbb{E}(\Omega) \quad , \quad \Phi(z+\Omega) := (\wp(z), \wp'(z))$

is a bijection.

Proof. The differential equation $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$ shows that the image of Φ is indeed contained in \mathbb{E} .

For $(X, Y) \in \mathbb{E}$ we choose some $z \in \mathbb{C}$ with $\wp(z) = X$. Then we have

 $Y^{2} = 4X^{3} - g_{2}X - g_{3} = 4\wp(z)^{3} - g_{2}\wp(z) - g_{3} = \wp'(z)^{2}$

Hence we either have $Y = \wp'(z)$ or $Y = -\wp'(z)$. Since $\wp(z)$ is even and $\wp'(z)$ is odd, we may assume that $Y = \wp'(z)$ by replacing z with -z if necessary. This shows that (X, Y) lies in the image of Φ , therefore Φ is surjective.

Now suppose that there are $z_1, z_2 \in \mathbb{C} \setminus \Omega$ with $(\wp(z_1), \wp'(z_1)) = (\wp(z_2), \wp'(z_2))$. By a property of \wp the identity $\wp(z_1) = \wp(z_2)$ implies $z_1 \sim \pm z_2$. If $\wp'(z_1) \neq 0$, then $z_1 \nsim -z_2$ since \wp' is odd, so we must have $z_1 \sim z_2$. If $\wp'(z_1) = 0 = \wp'(z_2)$, then each of z_1 and z_2 is equivalent to one of $\frac{\omega_1}{2}, \frac{\omega_2}{2}, \frac{\omega_3}{2}$. But since $\wp(\omega_k) = e_k$ for k = 1, 2, 3 are pairwise different, we must have $z_1 \sim z_2$. This shows that Φ is injective.

By a small adjustment we can extend the bijection to the whole factor group \mathbb{C}/Ω . In fact we can consider the closure of \mathbb{E} by adding a "point at infinity" $\mathcal{O} := (\infty, \infty)$:

$$\overline{\mathbb{E}} := \overline{\mathbb{E}}(\Omega) := \mathbb{E} \cup \{\mathcal{O}\}$$

In this way we get the bijection:

$$\overline{\Phi} \,:\, \mathbb{C}/\Omega \to \overline{E}(\Omega) \quad, \quad \overline{\Phi}(z+\Omega) := \begin{cases} (\wp(z), \wp'(z)) & \text{ if } z \notin \Omega \\ \mathcal{O} & \text{ if } z \in \Omega \end{cases}$$

Using the bijection $\overline{\Phi}$ one can now carry over the natural group structure of \mathbb{C}/Ω to the elliptic curve $\overline{\mathbb{E}}$: for $P, Q \in \overline{\mathbb{E}}$ we define their sum as:

$$P + Q := \overline{\Phi}(\overline{\Phi}^{-1}(P) + \overline{\Phi}^{-1}(Q))$$

We therefore directly obtain the following proposition.

Proposition 4.5. Under the above defined sum, $\overline{\mathbb{E}}$ becomes a commutative group with unit element \mathcal{O} and $\overline{\Phi}$ a group isomorphism. Moreover, for $z \in \mathbb{C}/\Omega$ the inverse element can be computed as

$$-(\wp(z), \wp'(z)) = (\wp(-z), \wp'(-z)) = (\wp(z), -\wp'(z))$$

and for $u, v \in \mathbb{C}$ with $u, v, u + v \notin \Omega$ the addition can be computed as

$$(\wp(u), \wp'(u)) + (\wp(v), \wp'(v)) = (\wp(u+v), \wp'(u+v))$$

References

- M. Koecher and A. Krieg, *Elliptische Funktionen und Modulformen*, Springer, 2007
- [2] M. Schwagenscheidt, *Elliptic Functions and Elliptic Curves*, Spring Term 2022 (update: May 28, 2022)