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1 Prelimiaries

We let Q) = Zwq + Zw- be a lattice in C.

Theorem 1.1. The Weierstrass g-function

p(2) =pa(z) =27+ > (z-w)?-w?) zeC\Q,

converges absolutely and uniformly in every compact subset of C\ Q. It is an
even elliptic function with respect to Q) and has poles of second order with residue
0 in every lattice points of Q). The Laurent expansion at 0 has the form

= 2724 ag2? + ...
Moreover we have already seen that the Eisenstein series

Gr=G(Q)= Y w™* keZ,
0AweN

converges absolutely for & > 3 and that G (2) = 0 for odd k& > 3 and any lattice
€ since the terms w™* and (—w)~" cancel out in the sum.

Finally, the last thing to remember from last week and which we will need
later is a first differential equation:

Proposition 1.2. The p—function satisfies the differential equation
0 (2) = 4p(2)° — g20(2) — g (1)
with the Weierstrass invariants
g2 := g2(Q) := 60G4(9),
g3 = g3(Q) := 140G ().
Remark. The lattice 2 is uniquely determined by g2(2) and gs(£2).

2 The discriminant and the j-invariant

We are finally ready to define three three constants e, es, e3 and explore their
properties. They will help us find some rather special invariants of lattice.

Definition. Let Q2 be a lattice spanned by two numbers wy and wy. Then we set

w1
€1 = p(?)v

w2
€2 = p(?)v

w3
€3 1= @(7)7

w3 1= W1 + wa.

With these new notion we obtain a second differential equation for the Weier-
strass p-function.



Proposition 2.1. For z € C\ Q we have

0'(2)* = 4(p(2) — e1)(p(2) — e2)(p(2) — e3). (2)

Proving this Comparing the differential equation (1) and the differential
equation (2), we obtain the identity

4p° — gop — g3 = 4(p —e1)(p — e2)(p — e3).

Since the p-function takes more than three different values, we obtain the fol-
lowing identity of polynomials:

Corollary. The following equality holds true for all X € C
AX3 — o X — g3 = 4(X — 1) (X — e2)(X — e3).

In particular, we have
0=-e; + e +es,

g2 = —4(e1e2 + eze3 + ezen),
g3 = 4ejezes.

Using these identites for ey, eo, e3, we obtain the following relation.

Corollary. We have
gy —27g5 = 16(e1 — e2)*(ea — e3)?(e3 — e1)* # 0.
We define the discriminant of € by
A= A(Q) := g3 — 2795 = 16(e1 — e2)*(ea — e3)*(e3 —e1)? # 0,

and the j-invariant of {0 by

(12g2)° 4193 (e1e2 + esez + ezer)”
A (61 — 62)2(62 — 63)2(63 — 61)2

ji= (@) =

3 The dependence on the lattice

In this chapter we investigate the behaviour of G () and pq when the lattice
 varies.

3.1 Homogeneity and base change

If Q is a lattice in C, then A{) is a lattice for every 0 #£ A € C. From the series
definitions of G and g it is clear that we have

pra(A2) = A"%pa(2),
GrL(\Q) = \FGL(Q).
This also gives the identities
92(AQ) = A 1g2(9),
g3(A2) = A"Cg3(9),
ANQ) = AT2AQ),
J(AQ) = ().



Proposition 3.1. For two lattices Q and ' in C, the following are equivalent.
o We have Q' = XQ for some 0 # X € C.
e j(QV)=3(9).

Proof. We have already observed above that j(AQ) = 7(2) for A # 0. Conversely,
suppose that j(2') = j(Q2) # 0. Then we have g2(Q) # 0 and g2(Q’) # 0. Hence
there is some 0 # A € C such that

gg(ﬂ/) = )\_492(9) = gg()\ﬂ)
Using the fact that A = g5 — 27¢3 and A(AQ) = A712A(), we obtain
g3() = FA0g3(Q) = Fg3(A\Q).

Replacing A with i\ if necessary, we get g2(Q') = g2(AQ) and g3(Q) = g3(A\Q).
We have seen that go and g3 uniquely determine the lattice, so we obtain that
Q' = \Q.

If j(2) = j() = 0, then g2(Q) = ¢g2(¥) = 0, and it follows from cor (2) that
93(€2) # 0 and g3(€’) # 0. Now we can proceed in a similar way as before. O

Let (w1, ws) be basis of . Since wy,wsy are linearly independent over R, we
have 7 := % ¢ R. Replacing wy with —w; if necessary, we may assume that
Im(7) > 0. Hence, every lattice in C is of the form

Q=X\NZr+7)
for some A € C, and 7 in the upper half plane
H={r € C:Im(r) > 0}.

Since p and Gy are homogeneus in A\, it remains to study their behaviour
on lattices 2 = Z7 + Z as 7 € H varies. Hence, we will now view p and Gy, as
functions of 7 € H, that is, we define

0(27) := pzriz(z),
Gi(7) :=Gr(ZT + 7).

Proposition 3.2. For (Z b> € SLy(Z) we have

d

z  ar+b\ 2
o (g ) = e+ dPptain),

and

aT+b o k
G, (c7'—|—d> = (7 + d)"Gy(7).

Proof. Let 7/ = 22t Then we have
ct+d

ar +2—|—Z = (et +d) N Z(ar +b) +Z(cT +d)) = (et +d) " (ZT+ 7).

7' +7 =7
cT +



Where we used that the map z — (z Z) x is a bijection on Z2. By the
homogeneity of G we obtain

Gr(t") = Gp(Z7' + Z) = G((er + d) " H(Z1 4+ Z)) = (e1 + d)*Gr(7),
and similarly for . O

Remark. The group SLy(R) acts on H by fractional linear transformations

a b at +b
T= .
c d ct+d
A holomorphic function f :H — C is called a modular form of weight k € Z for
SLo(Z) if it satisfies the transformation law

() = e+ atse)

for all (Z Z) € SLa(Z) and 7 € H, and if f(r) remains bounded as Im(7) —

Q.

3.2 Eisenstein series
For even k > 4 we may write the Eisenstein series Gy (7) for 7 € H as the series

/

Gip(r)=Gr(ZT+7) = Z wk = Z (m7 +n)~F, (3)

0AwELT+Z m,nez

where the symbol ¥’ means that the summand for (m,n) = (0,0) has to be
omitted.

Since the sum converges absolutely and locally uniformly, the Eisenstein series
G (7) defines a holomorphic function on H.

Proposition 3.3. For 7 € H and even k > 4 we have the Fourier expansion
(27ri)k 2mimT
Gi(T) = 20(k) + 2 > ox1(m)2 ,
“m

where

is the Riemann zeta function and

os(m) = st, (s eR)

dlm

is a generalized divisor sum. In particular, Gg(T) is a modular form of weight
k for SLa(Z).



Proof. Since the Eisenstein series converges absolutely, we may write the series
in (3) as

Gi(1) = Znik + Z Z(mr—l—n)*k =2¢(k)+2 Z Z (m7 +n)~".

n#0 m#0 neZ m=1n inZ

We will use the so-called Lipschitz formula

— _27Tik o — TirT
Y (r+n) kz((k_l))!zzrk L™t (r € Hk € N,k > 3),

neZ s=1r=1

whose proof will omit for brevity. Then we obtain

Ti)F S — .
Gr(r) = 2¢(k) + 2((]3 >1)' ZZT’“_leQ”””.

s=1r=1

By collecting the terms with m = rs we obtain the stated Fourier expansion.

Since the Fourier expansion of Gy (7) does not have terms of negative index, we
have limy, (7) 00 Gr(7) = 2((k), that is, G¢(7) remains bounded as Im(7) — co.
We have al.ready seen above that G (7) is holomorphic on H and satisfies the
state transformation law under SLy(Z). Hence Gg(7) is a modular form of
weight k. O

4 Lattices and elliptic curves

In this section we will investigate the connection between lattices and elliptic
curves over C.

4.1 The addition Theorem

Let Q = Zw; + Zwy denote a lattice in C and p(z) = pa(z) = p(z,w1,ws) be
its Weierstrass p-function.

Recall a useful theorem from the past lesson:

Theorem 4.1. Let f € K(Q) and P be a periodic parallelogram, then it holds
that
Z rescf =0
ceP
Theorem 4.2 (Addition Theorem). Given z,w € C with z,w,z +w ¢ § it
holds )
' (2) — @/(w)>
p(z) — p(w)

To prove the Addition Theorem we need the following Proposition.

ol +0) + 0(2) + o) = ¢

Proposition 4.3. For w € C\ %Q the function



is an elliptic function w.r.t the lattice Q with first order poles at z € Q and
z€—w+Q={-w+w: weQ} with Laurent expansions:

fz)= —% — p(w)z + 0(2?) at z=0

f(z)zziw—i—c(w)—FO(z) at z=-—w

for some constant c(w) € C, which we have to find out.

Proof. Apart from the points z € 2 and z € —w + (), we see that f is also not
defined at z € w 4 2. But since

L YE ) w1
) = w2 9w)

they are removable singularities, i.e. f is holomorphic in their neighbourhood.
Note that the condition w € C\ 3€2 ensures that ¢’ (w) # 0.

The Laurent expansion of f at z = 0 becomes manifest by using the Laurent
expansion of g, namely p(z) = 272 + O(2?).
Moreover, p(z)—p(w) has a simple root at every z € —w+€Q, and p'(2)—p'(w) =
—2p(w) # 0 (recall that p is even and g’ is odd). Consequently f has a simple
poles at z € —w + €. Since the sum of the residues of f in a fundamental
parallelogram is 0 (compare Theorem 4.1), and since we have seen the residue
at z = 0 equals —1, the residues at points z € —w +  must be 1. This gives
the stated Laurent expansions. O

Proof of Theorem 4.2. Consider the elliptic function

9(2) = f(z,w)* = p(z +w) — p(2) — p(w)

with w € C\ 30

From the above proposition we see that ¢ may have poles at points z € Q
and z € —w + Q.
At z = 0 we have:

9(2) = (272 + 2p(w)) — p(w) = 2% = p(w) + O(2) = O(2)

and at z = —w:

2w 1 ony= 2 o)

z4+w)?2  z4+w (z+w)? z4w

9(z) = (

If now ¢(w) # 0 then g would have simple poles only at the points z € —w + §,
which is not possible since the sum of the residues must be 0 by Theorem 4.1.
Hence c(w) = 0.
This means that g is holomorphic, and thus constant (f elliptic and holomorphic
implies f constant). Moreover from the Laurent expansion g(z) = O(z) at z =0
we find g(z) = 0.

This concludes the proof of the addition theorem in the case that w € C\ %Q
For the remaining points the addition theorem follows by continuity. O

The following corollaries are special cases of the Addition Theorem 4.2.



Corollary. Given z € C\ 19, then

ol22) = -20) + 1

Proof. Obtained by letting w — z. O

Corollary. Given z,w € C with z,w,z + w ¢ § it holds

o' (2)p' (w)
pztw)—plk-—w) =——"—"=
( Em0 =00 - ow)?
Proof. We get the above statement by substituting w by —w. O

4.2 The factor group C/Q

For Q2 = Zwy + Zws a lattice in C, we define the equivalence relation
zew = z—weEN

The equivalence classes can be then written in the form z + 2 and the factor
group C/Q :={z+ Q : z € C}. The canonical projection is denoted by

T:C—=>C/Q , 7(z):=2+Q

From last talk we know that for a parallelogram P = o(u, wy, ws) there exists
for any z € C exactly an w € Q with z + w € P. This means that there is a
one to one correspondence between P and C/Q via 7, i.e. the restriction 7|p is
bijective.

We can therefore imagine C/) as a torus as the following picture describe:

e

Figure 1: The torus C/Q

4.3 Elliptic curves

Definition. Let Q = Zwq + Zws be a lattice in C with Weierstrass invariants
g2 and gs. The subset

E:=E(Q):={(X,Y)eCxC :Y?=4X3— X — g3}

is called the (affine) elliptic curve associated to €.
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Figure 2: Elliptic curves f and g

Example. Suppose that go,gs are real numbers. Then we may look at the
real points on E, that is, the real solutions (X,Y) € R? of the equation Y? =
4X3 — g9 X — g3. The right-hand side has either three or one real root. Typical
examples of such curves are f : Y? = 4X3 — 4X (with real roots X = 0,41)
and g : Y? = 4X3 + 4 (with real root X = —1).

The Weierstrass g-function allows a parametrisation of the elliptic curve E
trough C/Q.

Lemma 4.4. The map
: (C/\Q=EWQ) , 2(2+Q) = (p(2),¢(2))
is a bijection.

Proof. The differential equation ©'(2)? = 4p(2)% — gagp(z) — g3 shows that the
image of ® is indeed contained in E.
For (X,Y) € E we choose some z € C with p(z) = X. Then we have

Y? =4X? — g3 X — g3 = 4p(2)® — g20(2) — g3 = ¢/ (2)°

Hence we either have Y = ¢'(z) or Y = —p/(2). Since p(z) is even and ¢'(z) is
odd, we may assume that ¥ = ©'(z) by replacing z with —z if necessary. This
shows that (X,Y) lies in the image of ®, therefore ® is surjective.
Now suppose that there are 21, z2 € C\Q with (p(z1), ' (21)) = (p(22), ©'(22)).

By a property of p the identity p(z1) = p(z2) implies z1 ~ t2z5. If ©'(21) # 0,
then z; » —29 since ' is odd, so we must have 21 ~ 2. If p'(21) = 0 = p'(22)),
then each of z; and 2 is equivalent to one of %, 2, <. But since p(wi) = ex
for k = 1,2,3 are pairwise different, we must have z; ~ z5. This shows that ®
is injective. O

By a small adjustment we can extend the bijection to the whole factor group
C/Q. In fact we can consider the closure of E by adding a ”point at infinity”
O = (00, 00):

E:=E) :=Eu{0}



In this way we get the bijection:

F:C/oEQ) . Bt - {Eg)(zw(z)) i eg0

Using the bijection ® one can now carry over the natural group structure of
C/Q to the elliptic curve E: for P,@ € E we define their sum as:

P+Q:=3(3 (P)+® (Q)

We therefore directly obtain the following proposition.

Proposition 4.5. Under the above defined sum, E becomes a commutative
group with unit element O and © a group isomorphism. Moreover, for z € C/Q
the inverse element can be computed as

and for u,v € C with u,v,u +v ¢ Q the addition can be computed as

(p(u), 9" (1)) + (p(v), o' (v)) = (p(u+v), ¢’ (u+v))
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