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1 Prelimiaries

We let Ω = Zw1 + Zw2 be a lattice in C.

Theorem 1.1. The Weierstrass ℘-function

℘(z) = ℘Ω(z) = z−2 +
∑

0̸=w∈Ω

((z − w)−2 − w−2) z ∈ C \ Ω,

converges absolutely and uniformly in every compact subset of C \ Ω. It is an
even elliptic function with respect to Ω and has poles of second order with residue
0 in every lattice points of Ω. The Laurent expansion at 0 has the form

℘ = z−2 + a2z
2 + ...

Moreover we have already seen that the Eisenstein series

Gk = Gk(Ω) =
∑

0̸=w∈Ω

w−k, k ∈ Z,

converges absolutely for k ≥ 3 and that Gk(Ω) = 0 for odd k ≥ 3 and any lattice
Ω since the terms w−k and (−w)−k cancel out in the sum.

Finally, the last thing to remember from last week and which we will need
later is a first differential equation:

Proposition 1.2. The ℘−function satisfies the differential equation

℘′(z) = 4℘(z)3 − g2℘(z)− g3 (1)

with the Weierstrass invariants

g2 := g2(Ω) := 60G4(Ω),

g3 := g3(Ω) := 140G6(Ω).

Remark. The lattice Ω is uniquely determined by g2(Ω) and g3(Ω).

2 The discriminant and the j-invariant

We are finally ready to define three three constants e1, e2, e3 and explore their
properties. They will help us find some rather special invariants of lattice.

Definition. Let Ω be a lattice spanned by two numbers w1 and w2. Then we set

e1 := ℘(
w1

2
),

e2 := ℘(
w2

2
),

e3 := ℘(
w3

2
),

w3 := w1 + w2.

With these new notion we obtain a second differential equation for the Weier-
strass ℘-function.
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Proposition 2.1. For z ∈ C \ Ω we have

℘′(z)2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3). (2)

Proving this Comparing the differential equation (1) and the differential
equation (2), we obtain the identity

4℘3 − g2℘− g3 = 4(℘− e1)(℘− e2)(℘− e3).

Since the ℘-function takes more than three different values, we obtain the fol-
lowing identity of polynomials:

Corollary. The following equality holds true for all X ∈ C

4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3).

In particular, we have
0 = e1 + e2 + e3,

g2 = −4(e1e2 + e2e3 + e3e1),

g3 = 4e1e2e3.

Using these identites for e1, e2, e3, we obtain the following relation.

Corollary. We have

g32 − 27g23 = 16(e1 − e2)
2(e2 − e3)

2(e3 − e1)
2 ̸= 0.

We define the discriminant of Ω by

∆ := ∆(Ω) := g32 − 27g23 = 16(e1 − e2)
2(e2 − e3)

2(e3 − e1)
2 ̸= 0,

and the j-invariant of Ω by

j := j(Ω) :=
(12g2)

3

∆
= −4 · 123 (e1e2 + e2e3 + e3e1)

3

(e1 − e2)2(e2 − e3)2(e3 − e1)2
.

3 The dependence on the lattice

In this chapter we investigate the behaviour of Gk(Ω) and ℘Ω when the lattice
Ω varies.

3.1 Homogeneity and base change

If Ω is a lattice in C, then λΩ is a lattice for every 0 ̸= λ ∈ C. From the series
definitions of Gk and ℘ it is clear that we have

℘λΩ(λz) = λ−2℘Ω(z),

Gk(λΩ) = λ−kGk(Ω).

This also gives the identities

g2(λΩ) = λ−4g2(Ω),

g3(λΩ) = λ−6g3(Ω),

∆(λΩ) = λ−12∆(Ω),

j(λΩ) = j(Ω).
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Proposition 3.1. For two lattices Ω and Ω′ in C, the following are equivalent.

• We have Ω′ = λΩ for some 0 ̸= λ ∈ C.

• j(Ω′) = j(Ω).

Proof. We have already observed above that j(λΩ) = j(Ω) for λ ̸= 0. Conversely,
suppose that j(Ω′) = j(Ω) ̸= 0. Then we have g2(Ω) ̸= 0 and g2(Ω

′) ̸= 0. Hence
there is some 0 ̸= λ ∈ C such that

g2(Ω
′) = λ−4g2(Ω) = g2(λΩ).

Using the fact that ∆ = g32 − 27g23 and ∆(λΩ) = λ−12∆(Ω), we obtain

g3(Ω
′) = ∓λ−6g3(Ω) = ∓g3(λΩ).

Replacing λ with iλ if necessary, we get g2(Ω
′) = g2(λΩ) and g3(Ω

′) = g3(λΩ).
We have seen that g2 and g3 uniquely determine the lattice, so we obtain that
Ω′ = λΩ.
If j(Ω) = j(Ω′) = 0, then g2(Ω) = g2(Ω

′) = 0, and it follows from cor (2) that
g3(Ω) ̸= 0 and g3(Ω

′) ̸= 0. Now we can proceed in a similar way as before.

Let (w1, w2) be basis of Ω. Since w1, w2 are linearly independent over R, we
have τ := w1

w2
/∈ R. Replacing w1 with −w1 if necessary, we may assume that

Im(τ) > 0. Hence, every lattice in C is of the form

Ω = λ(Zτ + Z)

for some λ ∈ C, and τ in the upper half plane

H = {τ ∈ C : Im(τ) > 0}.

Since ℘ and Gk are homogeneus in λ, it remains to study their behaviour
on lattices Ω = Zτ + Z as τ ∈ H varies. Hence, we will now view ℘ and Gk as
functions of τ ∈ H, that is, we define

℘(z; τ) := ℘Zτ+Z(z),

Gk(τ) := Gk(Zτ + Z).

Proposition 3.2. For

(
a b
c d

)
∈ SL2(Z) we have

℘

(
z

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)2℘(z; τ),

and

Gk

(
aτ + b

cτ + d

)
= (cτ + d)kGk(τ).

Proof. Let τ ′ = aτ+b
cτ+d . Then we have

Zτ ′+Z = Z
aτ + b

cτ + d
+Z = (cτ+d)−1(Z(aτ+b)+Z(cτ+d)) = (cτ+d)−1(Zτ+Z).
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Where we used that the map x 7→
(
a b
c d

)
x is a bijection on Z2. By the

homogeneity of Gk we obtain

Gk(τ
′) = Gk(Zτ ′ + Z) = Gk((cτ + d)−1(Zτ + Z)) = (cτ + d)kGk(τ),

and similarly for ℘.

Remark. The group SL2(R) acts on H by fractional linear transformations(
a b
c d

)
τ =

aτ + b

cτ + d
.

A holomorphic function f : H → C is called a modular form of weight k ∈ Z for
SL2(Z) if it satisfies the transformation law

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ)

for all

(
a b
c d

)
∈ SL2(Z) and τ ∈ H, and if f(τ) remains bounded as Im(τ) →

∞.

3.2 Eisenstein series

For even k ≥ 4 we may write the Eisenstein series Gk(τ) for τ ∈ H as the series

Gk(τ) = Gk(Zτ + Z) =
∑

0̸=w∈Zτ+Z
w−k =

′∑
m,n∈Z

(mτ + n)−k, (3)

where the symbol Σ′ means that the summand for (m,n) = (0, 0) has to be
omitted.
Since the sum converges absolutely and locally uniformly, the Eisenstein series
Gk(τ) defines a holomorphic function on H.

Proposition 3.3. For τ ∈ H and even k ≥ 4 we have the Fourier expansion

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
m=1

σk−1(m)22πimτ ,

where

ζ(s) =

∞∑
m=1

m−s, s ∈ C,Re(s) > 1

is the Riemann zeta function and

σs(m) =
∑
d|m

ds, (s ∈ R)

is a generalized divisor sum. In particular, Gk(τ) is a modular form of weight
k for SL2(Z).
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Proof. Since the Eisenstein series converges absolutely, we may write the series
in (3) as

Gk(τ) =
∑
n̸=0

n−k +
∑
m ̸=0

∑
n∈Z

(mτ + n)−k = 2ζ(k) + 2

∞∑
m=1

∑
n inZ

(mτ + n)−k.

We will use the so-called Lipschitz formula

∑
n∈Z

(τ + n)−k =
(−2πi)k

(k − 1)!

∞∑
s=1

∞∑
r=1

rk−1e2πirτ , (τ ∈ H, k ∈ N, k ≥ 3),

whose proof will omit for brevity. Then we obtain

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
s=1

∞∑
r=1

rk−1e2πirsτ .

By collecting the terms with m = rs we obtain the stated Fourier expansion.
Since the Fourier expansion of Gk(τ) does not have terms of negative index, we
have limIm(τ)→∞ Gk(τ) = 2ζ(k), that is, Gk(τ) remains bounded as Im(τ) → ∞.
We have al.ready seen above that Gk(τ) is holomorphic on H and satisfies the
state transformation law under SL2(Z). Hence Gk(τ) is a modular form of
weight k.

4 Lattices and elliptic curves

In this section we will investigate the connection between lattices and elliptic
curves over C.

4.1 The addition Theorem

Let Ω = Zω1 + Zω2 denote a lattice in C and ℘(z) = ℘Ω(z) = ℘(z, ω1, ω2) be
its Weierstrass ℘-function.

Recall a useful theorem from the past lesson:

Theorem 4.1. Let f ∈ K(Ω) and P be a periodic parallelogram, then it holds
that ∑

c∈P

rescf = 0

Theorem 4.2 (Addition Theorem). Given z, w ∈ C with z, w, z ± w /∈ Ω it
holds

℘(z + w) + ℘(z) + ℘(w) =
1

4

(
℘′(z)− ℘′(w)

℘(z)− ℘(w)

)2

To prove the Addition Theorem we need the following Proposition.

Proposition 4.3. For w ∈ C \ 1
2Ω the function

f(z) := f(z, w) :=
1

2

℘′(z)− ℘′(w)

℘(z)− ℘(w)
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is an elliptic function w.r.t the lattice Ω with first order poles at z ∈ Ω and
z ∈ −w +Ω = {−w + ω : ω ∈ Ω} with Laurent expansions:

f(z) = −1

z
− ℘(w)z +O(z2) at z = 0

f(z) =
1

z + w
+ c(w) +O(z) at z = −w

for some constant c(w) ∈ C, which we have to find out.

Proof. Apart from the points z ∈ Ω and z ∈ −w + Ω, we see that f is also not
defined at z ∈ w +Ω. But since

lim
z→w

f(z) =
1

2
lim
z→w

℘′(z)− ℘′(w)

z − w

z − w

℘(z)− ℘(w)
=

1

2

℘′′(w)

℘′(w)

they are removable singularities, i.e. f is holomorphic in their neighbourhood.
Note that the condition w ∈ C \ 1

2Ω ensures that ℘′(w) ̸= 0.
The Laurent expansion of f at z = 0 becomes manifest by using the Laurent

expansion of ℘, namely ℘(z) = z−2 +O(z2).
Moreover, ℘(z)−℘(w) has a simple root at every z ∈ −w+Ω, and ℘′(z)−℘′(w) =
−2℘(w) ̸= 0 (recall that ℘ is even and ℘′ is odd). Consequently f has a simple
poles at z ∈ −w + Ω. Since the sum of the residues of f in a fundamental
parallelogram is 0 (compare Theorem 4.1), and since we have seen the residue
at z = 0 equals −1, the residues at points z ∈ −w + Ω must be 1. This gives
the stated Laurent expansions.

Proof of Theorem 4.2. Consider the elliptic function

g(z) := f(z, w)2 − ℘(z + w)− ℘(z)− ℘(w)

with w ∈ C \ 1
2Ω.

From the above proposition we see that g may have poles at points z ∈ Ω
and z ∈ −w +Ω.
At z = 0 we have:

g(z) = (z−2 + 2℘(w))− ℘(w)− z−2 − ℘(w) +O(z) = O(z)

and at z = −w:

g(z) =
1

(z + w)2
+

2c(w)

z + w
− 1

(z + w)2
+O(1) =

2c(w)

z + w
+O(1)

If now c(w) ̸= 0 then g would have simple poles only at the points z ∈ −w+Ω,
which is not possible since the sum of the residues must be 0 by Theorem 4.1.
Hence c(w) = 0.
This means that g is holomorphic, and thus constant (f elliptic and holomorphic
implies f constant). Moreover from the Laurent expansion g(z) = O(z) at z = 0
we find g(z) = 0.

This concludes the proof of the addition theorem in the case that w ∈ C\ 1
2Ω.

For the remaining points the addition theorem follows by continuity.

The following corollaries are special cases of the Addition Theorem 4.2.
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Corollary. Given z ∈ C \ 1
2Ω, then

℘(2z) = −2℘(z) +
1

4

(
℘′′(z)

℘′(z)

)2

Proof. Obtained by letting w → z.

Corollary. Given z, w ∈ C with z, w, z ± w /∈ Ω it holds

℘(z + w)− ℘(z − w) = − ℘′(z)℘′(w)

(℘(z)− ℘(w))2

Proof. We get the above statement by substituting w by −w.

4.2 The factor group C/Ω
For Ω = Zω1 + Zω2 a lattice in C, we define the equivalence relation

z ∼ w ⇐⇒ z − w ∈ Ω

The equivalence classes can be then written in the form z + Ω and the factor
group C/Ω := {z +Ω : z ∈ C}. The canonical projection is denoted by π:

π : C → C/Ω , π(z) := z +Ω

From last talk we know that for a parallelogram P = ⋄(u, ω1, ω2) there exists
for any z ∈ C exactly an ω ∈ Ω with z + ω ∈ P . This means that there is a
one to one correspondence between P and C/Ω via π, i.e. the restriction π|P is
bijective.

We can therefore imagine C/Ω as a torus as the following picture describe:

Figure 1: The torus C/Ω

4.3 Elliptic curves

Definition. Let Ω = Zω1 + Zω2 be a lattice in C with Weierstrass invariants
g2 and g3. The subset

E := E(Ω) := {(X,Y ) ∈ C× C : Y 2 = 4X3 − g2X − g3}

is called the (affine) elliptic curve associated to Ω.
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Figure 2: Elliptic curves f and g

Example. Suppose that g2, g3 are real numbers. Then we may look at the
real points on E, that is, the real solutions (X,Y ) ∈ R2 of the equation Y 2 =
4X3 − g2X − g3. The right-hand side has either three or one real root. Typical
examples of such curves are f : Y 2 = 4X3 − 4X (with real roots X = 0,±1)
and g : Y 2 = 4X3 + 4 (with real root X = −1).

The Weierstrass ℘-function allows a parametrisation of the elliptic curve E
trough C/Ω.

Lemma 4.4. The map

Φ : (C/Ω) \ Ω → E(Ω) , Φ(z +Ω) := (℘(z), ℘′(z))

is a bijection.

Proof. The differential equation ℘′(z)2 = 4℘(z)3 − g2℘(z) − g3 shows that the
image of Φ is indeed contained in E.

For (X,Y ) ∈ E we choose some z ∈ C with ℘(z) = X. Then we have

Y 2 = 4X3 − g2X − g3 = 4℘(z)3 − g2℘(z)− g3 = ℘′(z)2

Hence we either have Y = ℘′(z) or Y = −℘′(z). Since ℘(z) is even and ℘′(z) is
odd, we may assume that Y = ℘′(z) by replacing z with −z if necessary. This
shows that (X,Y ) lies in the image of Φ, therefore Φ is surjective.

Now suppose that there are z1, z2 ∈ C\Ω with (℘(z1), ℘
′(z1)) = (℘(z2), ℘

′(z2)).
By a property of ℘ the identity ℘(z1) = ℘(z2) implies z1 ∼ ±z2. If ℘′(z1) ̸= 0,
then z1 ≁ −z2 since ℘′ is odd, so we must have z1 ∼ z2. If ℘

′(z1) = 0 = ℘′(z2)),
then each of z1 and z2 is equivalent to one of ω1

2 , ω2

2 , ω3

2 . But since ℘(ωk) = ek
for k = 1, 2, 3 are pairwise different, we must have z1 ∼ z2. This shows that Φ
is injective.

By a small adjustment we can extend the bijection to the whole factor group
C/Ω. In fact we can consider the closure of E by adding a ”point at infinity”
O := (∞,∞):

E := E(Ω) := E ∪ {O}
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In this way we get the bijection:

Φ : C/Ω → E(Ω) , Φ(z +Ω) :=

{
(℘(z), ℘′(z)) if z /∈ Ω

O if z ∈ Ω

Using the bijection Φ one can now carry over the natural group structure of
C/Ω to the elliptic curve E: for P,Q ∈ E we define their sum as:

P +Q := Φ(Φ
−1

(P ) + Φ
−1

(Q))

We therefore directly obtain the following proposition.

Proposition 4.5. Under the above defined sum, E becomes a commutative
group with unit element O and Φ a group isomorphism. Moreover, for z ∈ C/Ω
the inverse element can be computed as

−(℘(z), ℘′(z)) = (℘(−z), ℘′(−z)) = (℘(z),−℘′(z))

and for u, v ∈ C with u, v, u+ v /∈ Ω the addition can be computed as

(℘(u), ℘′(u)) + (℘(v), ℘′(v)) = (℘(u+ v), ℘′(u+ v))
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