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Motivation

In this talk we will present some theory of elliptic curves with complex multi-
plication. Here is a non-conclusive list of reasons to be interested in the topic:

1. Cryptography. We will present a key exchange based on isogenies between
elliptic curves.

2. Numerical phenomena. One of these phenomena:

eπ
√
163 = 262537412640768743.9999999999992... ≈ 6403203 + 744.

One can explain this phenomenon with properties of the j-invariant and
its connection to imaginary quadratic number fields.

Another one:
n2 + n+ 41

is prime for the first 40 integers n = 0, 1, 2, ..., 39. Here 163 = 4 · 41− 1.

3. Study maps. As always one studies maps between the objects to under-
stand the objects better and to discover more structure. As an example
for a map from one curve to another, we already saw transformations from
general forms into Weierstrass form. The first maps from a curve to itself
on might come up with, could be translation by a point (not an isogeny)
and multiplication by n. By playing around one might discover more maps
that work for some elliptic curves but not for others. See example below.

4. Class field theory. Kronecker’s Jugentraum, Hilbert’s 12th problem. The
theory of complex multiplication is used for an amazing (check choice of
adjective) result in the study of number fields and their extensions: a
proof of a special case of Kronecker’s Jugendtraum. The final theorem of
this talk (if enough time) will give an analogue to the Kronecker-Weber
theorem for the more general case of allowing imaginary quadratic number
fields as the base field. For a short recap of number fields and the statement
of Kronecker-Weber, see appendix B.

1 Maps between elliptic curves

We want to understand the different maps there are between elliptic curves.
This helps us to classify different kinds of curves. The structure and most of
the content of this section were taken from [2].
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1.1 Homomorphisms and Isogenies

We first want to study analytic homomorphisms ϕ : C → C/L. One can show
that all homomorphisms can be characterized by a unique linear map:

Proposition 1.1. Let L be a lattice in C. For every analytic homomorphism ϕ
like above, there exists a unique linear map λ : C → C which makes the following
diagram commute:

C C

C/L

λ

ϕ
πL

Where πL is the universal covering of any torus. (Recall: C/L is a complex
torus.)

Proof. We want to show that ϕ(x) = πL(λx). We know that for πL: πL(0) = 0
and is continuous in 0 and therefore locally injective in a neighbourhood U of
0. Thus ϕL|U : U → V is a bijection for any open set V ⊂ C/L. Defining

f := (πL|U )−1 ◦ ϕ

which is analytic and preserves addition in a neighbourhood W ⊂ C of 0, for
x, y, x+ y ∈ W . Taking the derivative with respect to y gives that f ′(x+ y) =
f ′(y). Setting y = 0 yields f ′(x) = f ′(0) = λ, i.e., the derivative is constant
and thus f(x) = λx is linear (using f(0) = 0).

This means that ϕ(x) = πL(λx) locally. But since ϕ(x)− πL(λx) is analytic
and vanishes in a neighbourhood of 0, it follows that ϕ(x) = πL(λx) everywhere.

As a direct consequence we get the following.

Proposition 1.2. Let now f : C/L → C/M be an analytic homomorphism.
Then there exists a unique linear map such that the following diagram commutes.
This means that f factors through a λ ∈ C.

C C

C/L C/M

λ

ϕ
πL πM

f

Proof. To see this, notice that for the analytic homomorphism ϕ : C → C/M ,
ϕ = f ◦ πL factors through a λ ∈ C via ϕ = πM ◦ λ which implies πM ◦ λ =
f ◦ πL.

This motivates us to have a closer look at analytic maps between elliptic
curves. Record the following properties:

Proposition 1.3. Let f : E1 −→ E2 be an analytic homomorphism of elliptic
curves. Then

i) f(E1) = O or f(E1) = E2.

ii) If f is not constant, ker(f) is finite.
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Proof. This is the idea of the proof:
i) If λ = 0, then f(E) = O. Otherwise λ ̸= 0 and x +M is the image of

λ−1x+ L.
ii) ker(f) = {z ∈ C/L : λz ∈M}. This is a discrete set in a compactum.

Definition 1.4. We call an analytic map f : C/L→ C/M as above an isogeny
if it has finite kernel. The degree of an isogeny is defined via it’s kernel:

def(f) = #ker(f)

for a non zero isogeny f and deg(f) = 0 else.

This immediately yields two properties about isogenies. With the Proposi-
tion above we get:

Proposition 1.5. If f : C/L → C/M is an isogeny, then there exists a λ ∈ C
such that f(z) = λz and λL ⊂M.

Proposition 1.6. Given two lattices such that λL ⊂M with λ ∈ C there exists
an isogeny f : C/L→ C/M , via f(x+ L) = λx+M.

In this setting there also exists an isogeny C/M → C/L since µM ⊂ L for
some µ ∈ C by property of latticies. We call this map the dual isogeny.

Definition 1.7. In the case of the above to propositions, we say that C/L and
C/M are isogenous.

Note, that being isogenous defines an equivalence relation. Also, an isogeny
does not need to be an isomorphism. The dual isogeny is not its inverse!

We want to state Tate’s isogeny theorem.

Theorem 1.8. Two elliptic curves over a finite field k are isogenous over k if
and only if the have the same number of k-rational points.

1.2 Isomorphisms

Now we let f : C/L→ C/M be an analytic isomorphism. We have seen above,
that f factors through a linear map C → C, x 7→ λx through the canonical
surjective projections πL and πM and λL ⊂ M . The inverse isomorphism f−1

factors through x 7→ λ−1x and therefore λ−1M ⊂ L. We conclude, that λL =
M .

This motivates the following definition.

Definition 1.9. Two elliptic curves C/M and C/L are called isomorphic, if
there exists an invertible isogeny between them, i.e., a map as described above.

Note: an invertible isogeny has degree 1.

Theorem 1.10. Let L and M be two lattices in C. The corresponding elliptic
curves C/M , C/L are isomorphic if and only if their j-invariant agrees.

In order to understand this theorem, we want to recall the the definition of
the j-invariant corresponding to a lattice L.

Definition 1.11. Given a lattice L, the j-invariant is defined as the function

j(L) =
1728g32(L)

∆(L)
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Where ∆ is the discriminant

∆(L) = g32(L)− 27g23(L)

defined with the Weierstrass invariants

g2 = 60G4(L) = 60
∑
w∈Lx

w−4

g3 = 140G6(L) = 140
∑
w∈Lx

w−6

We can show that for two isomorphic lattices M and L, i.e. when M = λL
for λ ∈ Cx. The j-invariant agrees:

Proposition 1.12. M = λL if and only if j(L) = j(M).

This follows from the properties from g2 and g3 as one can show with easy
calculations that

g2(λL) = λ−4g2(L)

g3(λL) = λ−6g3(L)

for any λ.

1.3 Endomorphisms

We have seen that an analytic homomorphism ϕ : E1 −→ E2 of elliptic curves
corresponds to multiplication by a complex number (when viewing the elliptic
curves as C/L and C/M respectively). We call such a map an isogeny.

Remark 1.13. I believe the reason we look at analytic homomorphisms is be-
cause C/L is a Riemann surface that has a group structure. Apparently we could
have instead required the map ϕ to be a rational map of projective varieties that
preserves O, also a natural choice considering that elliptic curves are projective
varieties with a specified point O. Such a map is then automatically a morphism
of varieties (because it is defined on smooth curves), and then automatically a
homomorphism of groups, and then again multiplication by a complex number.
The details of the latter way of arriving at isogenies are contained in [4], III.4.

We now look at the case that E1 = E2; so isogenies from an elliptic curve
C/L to itself; so the maps that correspond to λ ∈ C, such that λL ⊆ L.

Proposition 1.14. If λL ⊆ L, then

i) λ is a rational integer or an algebraic integer in an imaginary quadratic
number field.

ii) ℘L(λz) is a rational function of ℘L(z) such that the degree of the numer-
ator is λ2 if λ ∈ Z, and N(λ) if λ is imaginary quadratic; the degree of
the denominator is λ2 − 1 and N(λ)2 − 1, respectively.

4



Proof. i) If λL ⊆ L = ω1Z+ ω2Z, then{
λω1 = aω1 + bω2,

λω2 = cω1 + dω2,

with a, b, c, d ∈ Z. This implies

ω1

ω2
=
aω1

ω2
+ b

cω1

ω2
+ d

or, by putting τ = ω1/ω2:

cτ2 + (d− a)τ − b = 0.

If λ is not a rational integer, then c ̸= 0, and τ is a quadratic imaginary number
(imaginary, since ω1/ω2 cannot be real). Since λ = cτ + d, this shows that λ
is an element of Q(τ), an imaginary quadratic field. Now we confirm λ2 − (a+
d)λ+ ad− bc = 0, so λ is an algebraic integer.

ii) Since λL ⊆ L, ℘L(z) is elliptic with respect to L: ℘L(λ(z + ω)) =
℘(λz + λω) = ℘(λz) and it is even because ℘ is. The idea of the proof is
as usual: to build a function with the same poles and zeroes as ℘L(λz) out of
building blocks of the form (℘(z)−α)nα . I will not do it here but note that this
strategy works for any even elliptic function over L and actually we have the
following result: EL = C(℘) + ℘′C(℘), (where EL denotes the elliptic functions
with respect to the lattice L.)

To arrive at the degrees of numerator and denominator, note that α is a pole
of ℘(λz) iff λα is a pole of ℘ iff α ∈ 1

λL. The details can be found in [2].

Remark 1.15. Part ii) of the previous proposition can be used to construct an
explicit (yet by hand computationally unpleasant) algorithm to determine the
curves with complex multiplication by a given λ.

An example of an isogeny from an elliptic curve to itself (that exists for any
curve), is multiplication by n:

[n] : E −→ E, P 7→ nP.

Since the addition is a rational map it is a morphism of curves and so is [n]. [n]
also preserves O, so it is an isogeny. On the torus it corresponds to scaling by
n. Actually we can say more:

Proposition 1.16. End(E) is a ring and the map

[ ] : Z ↪→ End(E), n 7→ [n]

is an injective group homomorphism.
If End(E) is strictly larger than Z (so E has a non trivial isogeny to itself)

we say that E has complex multiplication.

Proof. I will sketch the proof.
End(E) is a ring: Define the addition as (ϕ+ ψ)(P ) = ϕ(P ) + ψ(P ), where

the latter addition is addition on E. Then ϕ + ψ is an isogeny, because the
addition on E is defined by a rational map that preserves O, and both ϕ and
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ψ are rational maps that preserve O. Define multiplication by composition of
maps.

That n 7→ [n] is injective and a homomorphism can be seen when thinking
about what [n] does on C/L.

Corollary 1.17. Let E be a CM-curve. Then End(E) is an order O in an
imaginary quadratic field.

Example 1.18. Take the elliptic curve E : y2 = x3 − x. Multiplication by n is
an isogeny and this always works. But there is the extra map we denote [i]

[i] : E −→ E, (x, y) 7→ (−x, iy).

Notice that
[i] ◦ [i](x, y) = (x,−y) = −(x, y) = [−1](x, y)

Note for when the fundamentals are understood: This shows that if the base field
contains i, End(E) is strictly larger than Z. Also

Z[i] −→ End(E), m+ ni 7→ [m] + [n]i

Is a ring homomorphism, that is an isomorphism in char(K) = 0. Then
AutK(E) = Z[i]× = {±1,±i}.

Which are the curves with complex multiplication by a given ring of integers?

Theorem 1.19. Let K be imaginary quadratic.

1. End(E) ∼= OK ⇒ E ∼= C/Λ, where Λ ⊆ OK is an ideal.

2. Λ ⊆ OK an ideal ⇒ End(C/Λ) ∼= OK .

3. End(E) ∼= OK ⇐⇒ E ∼= C/Λ, λ ⊆ OK ideal.

4. If Λ1,Λ2 are in the same ideal class, then C/Λ1
∼= C/Λ2.

Proof. Again, I sketch only the ideas.
1. E needs to be of the form C/L, where L is a lattice that is closed under

multiplication by OK .
2. If Λ is an ideal in OK , it is closed under multiplication by OK and

End(C/Λ) ∼= {α ∈ C : αΛ ⊆ Λ}.
3. Restatement of 1. and 2.
4. If two ideals are in the same ideal class, they are related by a principal

fractional ideal Λ1 = aΛ2, a
−1Λ1 = Λ2 (remember that non-zero fractional ideals

are invertible in number fields). But Λ1 and Λ2 are lattices and these relations
imply that each lattice can be obtained from the other by multiplication with
a complex number.

1.4 Auto

Automorphisms of an elliptic curve correspond to λ such that λL = L.
If the curve does not have complex multiplication, then End(E) ∼= Z and

λ = ±1 are the only maps that are injective and they are indeed automorphisms.
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If the curve has complex multiplication then we saw that End(E) ∼= O,
for some order O ⊆ OK in an imaginary quadratic number field K. Then the
automorphisms are the invertible elements of O, i.e. the elements in O× ⊆ O×

K .
Remember (see B.12) that for an imaginary quadratic field K

O×
K =


{±1,±i} if K = Q(i),{
±1,

±1±
√
−3

2

}
if K = Q(e2πi/3),

{±1} else.

2 Class field theory

The following theorem is a classic result in a area that is now called class field
theory.

Theorem 2.1 (Kronecker-Weber Theorem). Every finite abelian extension1 of
Q is contained in some cyclotomic field.

Remark 2.2. Note that a cyclotomic field is an extension of Q by a special
value of the exp function.

Kronecker’s Jugendtraum (and Hilbert’s twelfth problem) is the extension of
the Kronecker-Weber theorem to any number field as a base field (instead of Q).
Preferably one would like to find the maximal abelian extension of a number field
K, or perhaps all abelian extension of K, by adjoining special values of some
function to K. With the theory of complex multiplication one can show that this
is possible in the case where the number field is an imaginary quadratic field.

Example 2.3. The quadratic number field K = Q(
√
5) is galois since it is

the splitting field of x2 − 5 and the base field Q has characteristic 0. There
are two embeddings: the identity and the one that swaps

√
d and −

√
d, hence

|Gal(K/Q)| = 2 and Gal(K/Q) ∼= C2. Since C2 is abelian, K is an abelian
extension of Q and the Kronecker-Weber theorem tells us that K ⊆ Q(ζn) for
ζn some primitive n-th root of unity. It turns out that

√
5 = e2πi/5 − e4πi/5 − e6πi/5 + e8πi/5,

so
Q(

√
5) ⊂ Q(ζ5) = Q(e2πi/5).

One can go one step further and remember from the beloved algebra class that
Gal(Q(ζ5)) = C4 which has only one subgroup: C2.

In general Q(
√
d)) ⊂ Q(ζD), where D is the absolute value of the discrimi-

nant of Q(
√
d). So all quadratic fields are actually just subfields of cyclotomic

fields, which are extensions of Q by special values of the exp function.

Theorem 2.4 (Extension of Kronecker-Weber to imaginary quadratic base
fields). Let K be an imaginary quadratic number field with class number h and
let C1, ..., Ch denote the ideal classes in Cl(K). Let j denote the j-invariant.
Then

1A galois extension is called abelian if the galois group is abelian.
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i) The values j(C1), ...j(Ch) are distinct algebraic integers of degree h, they
are called singular moduli.

ii) The field H = K(j(Ci)) does not depend on i; the values j(Ci) are conju-
gated over K, and H is the Hilbert class field of K (the maximal unramified
abelian extension of K; it has degree [H : K] = h(K)).

iii) There exists a bijection between the ideal class group Cl(K) of K and the
Galois group of H/K; this bijection is in fact an isomorphism given by
a 7→ σa ∈ Gal(H/K), where σa(j(Ci)) = j([a]−1Ci).

iv) j(a) is real if and only if a has order dividing 2 in Cl(K); in particular,
j(OK) is real, and [Q(j(OK)) : Q] = h.

v) The maximal abelian extension of K is given by adjoining all elements of
the form

τ

(
1

n
(aω1 + bω2)

)
, a, b ∈ Z, n ∈ N

to the Hilbert class field H of K. Here ω1 and ω2 are the periods of the
lattice C/OK and the function τ is an expression in ℘, g2, g3 and depends
on |O×

K |. The definition of tau follows this theorem.

Definition 2.5. Let e = |O×
K | The function τ from the previous theorem is

defined as
τ(u) = (−℘(u))e/2g(e),

where one defines g(e) by

g(2) = 2735g2g3∆
−1; g(4) = 2834g22∆

−1; g(6) = 2936g3∆
−1.

The reason that one has to distinguish the cases e = 2, 4, 6 in this definition
(e = 4, 6 being the exceptional cases Q(i) and Q(

√
−3)), is somehow connected

to the zeroes of the Eisenstein series:

g2(ρ) = g3(i) = 0.

Here ρ = e2πi/3 = −1+
√
3

2 .

Now we are ready to understand why eπ
√
163 is almost an integer.

Example 2.6. Let d be an integer such that h(Q(
√
−d)) = 1 and −d ≡ 1

mod 4. By the Stark-Heegner theorem we know this is the case when d ∈
{1, 2, 3, 7, 11, 19, 43, 67, 163} and d ≥ 11.

By theorem 2.4, j(OK) = j(τK) = j( 1+
√
−d

2 ) is an algebraic integer of degree
1, i.e. an integer m ∈ Z. Remember the Laurent expansion of the j-invariant

j(τ) = q−1 + 744 + 196884q +O(q2).

Thus

m = j(
1 +

√
−d

2
) = e−πi(1+

√
−d) + 744 + 196884 · eπi(1+

√
−d) + ...

= −eπ
√
d + 744 +O

(
e−π

√
d
)
.

Now for example for d = 163 we have j( 1+
√
−d

2 ) = (−640320)3 and the linear

error term is 196884 · e−π
√
−d ≈ 0.00000000000075.
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3 Cryptography

We now want to take a look at isogenies that are relevant for cryptography. We
consider elliptic curves over Fpn where p is a prime larger than 3 and n > 0 an
integer. We write the elliptic curve in short Weierstrass form

E : y2 = x3 + ax+ b, a, b ∈ Fpn , 4a3 + 27b2 ̸= 0.

Recall that isomorphism classes of elliptic curves has the j-invariant as a
unique representative for each class.

Definition 3.1. An elliptic curve over Fpn is called supersingular if it has
pn + 1− kp many points for some integer k such that kp ∈ [−2pn/2, 2pn/2].

Generally speaking, this definition implies that the elliptic curve has complex
multiplication.

An isogeny of order l has as kernel a cyclic subgroup of order l. Important is,
that each kernel uniquely defines an isogeny, which can be computed efficiently
by Velu’s formula with complexity growing linearly in l. Velu’s formula gives an
explicit equation of the image curve and the isogeny in terms of the coordinates
of the points in the kernel.

Velu’s formulas are as follows:

Theorem 3.2. Given an elliptic curve EA and a point P with prime order l
on EA. For 1 ≤ ill let Xi be the X-coordinare of [i]P . And let

τ =

l−1∏
i=1

Xi, σ =

l−1∑
i=1

(
Xi −

1

Xi

)
, f(x) = x

l−1∏
i=1

xXi − 1

x−Xi
.

Then the l-isogeny with kernel ⟨P ⟩ is given by

φl : EA → EA′ , (X,Y ) 7→ (f(X), c0Y f
′(X))

where A′ = τ(A− 3σ), and c20 = τ .

3.1 Isogeny Graphs

We now specifically look at isomorphism classes of supersingular elliptic curves
over extensions of Fp2 . We now consider a graph G = (V,E), where the vertices
E are the isomorphism classes of elliptic curves and edges E are isogenies of
degree l between elliptic curves. Notice that this graph is undirected because of
the dual isogeny.

Again, a vertex in the graph corresponds to an isomorphism class uniquely
characterized by its j-invariant. The isomorphisms are taken over field exten-
sions of F4192 .

Choosing the parameters specifically over extensions of Fp2 gives us, that the
graph of l isogenies is (almost) l+1 connected and Ramanujan. This essentially
means that the graph is highly connected and any vertex in the graph can be
reached by using only a few edges from any other vertex. When computing a
path of isogenies, at each vertex one has a choice of l edges to go forward.
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Figure 1: This figure shows an example of an isogeny graph: the supersingular
elliptic curves over F4192 . Edges are 2 (orange) and 3 (blue) isogenies.

3.2 The SIDH system

The SIDH system is a key exchange protocol. In cryptography, key exchanges
are needed, such that two parties that wish to communicate with each other
using encrypted messages, can agree on a key under which encryption is per-
formed. In the literature, these two paries are usually refered to as Alice and
Bob. Key exchange protocols are useful, as using those Alice and Bob can agree
on a key while communicating via a potentially corrupted channel but the key
will still only be known by Alice and Bob. It is obviously a lot more convenient
to agree to a mutual key via e.g. the internet instead of physically meeting up
and agreeing on a key.

SIDH precisely uses isomorphism classes of supersingular curves over Fp2

to generate an isogeny graph like above. The general idea is to perform walks
on the isogeny graph and that Alice and Bob can, starting at the same vertex
V , then both perform different walks φA,B : V → W and end up at the same
vertex W . The vertex W then corresponds to an isomorphism class with some
j-invariant, which then is used as the input to a key-generation algorithm.

SIDH is a key exchange protocol based on the difficulty of computing iso-
genies between supersingular elliptic curves. Let E0 be a supersingular elliptic
curve over a finite field Fp2 , where p is a prime. The SIDH protocol involves the
following steps:

First, points PA, QA and PB , QB are chosen on the elliptic curve which both
are a basis of points of a specific order.

1. Key Generation + Isogeny Computation:

• Choose random secret keys a and b from a finite key space.

• Alice computes TA = PA+aQA and the isogeny ϕA with kernel ⟨TA⟩
landing at curve EA.

• Bob computes TB = PB + bQB and the isogeny ϕB with kernel ⟨TB⟩
landing at curve EB
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• Bob computes and publishes ϕB(PA) and ϕB(QA) likewise for Alice,
she publishes ϕA(PB) and ϕA(QB).

2. Secret Agreement:

• Alice computes T ′
A = ϕB(PA) + aϕB(QA) and the isogeny ϕ′B with

kernel ⟨T ′
A⟩, landing at EAB .

• Bob computes T ′
B = ϕA(PB) + bϕA(QB) and the isogeny ϕ′A with

kernel ⟨T ′
B⟩, landing at EBA.

The calculations to obtain isogenies and image curves are done using Velu’s
formula as described above.

The curves EAB and EBA are not necessarily the same curves, but they
belong to the same isomorphism class of curves and thus share the same j-
invariant.

To summarize Alice’s secret key is a and her public key is (EA, ϕA(PB), ϕA(QB))
and similarly for Bob. This corresponds to the following diagram that com-
mutes:

E EA

EB EAB

ϕA

ϕB ϕ′
B

ϕ′
A

SIDH then uses the j-invariant of the resulting curve to compute a shared
key. The security of this system relies on the hardness to compute EAB given
E,EA, EB , ϕB(PA), ϕB(QA), ϕA(PB), ϕA(QB). It has long been considered to
be hard, but in July of 2022 an efficient attack has been found using Torsion
points that makes the scheme in this form useless.
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A Collection of previous results

The following summarizes the results of the seminar up to this point.
An elliptic curve E is a non-singular projective plane curve. Without loss

of generality we may assume the elliptic curve to be given in Weierstrass form,
i.e. we may think of E(K) as the solutions in K of y2 = 4x3− g2x− g3 together
with a point O at infinity.

It turns out that E(K) has a group structure. Mordell’s theorem states that
for an elliptic curve defined over Q, E(Q) is a finitely generated abelian group.

(We have also seen results about the torsion part of E(Q) and the integer
points, but these are not immediately relevant for this topic.)

Of greater importance to this talk: E(C) ∼= C/L where L is a lattice and the
isomorphism is among other things an isomorphism of groups. One may picture
addition on the elliptic curve as addition in the fundamental parallelogram C/L.

B Recap number fields

The following results were not presented in the seminar but they are important
to understand what the talk is about.

Definition B.1. An algebraic integer is a complex root of a monic polynomial
with coefficients in Z. We denote the set of algebraic integers by A. An al-
gebraic number is a complex root of a polynomial (not necessarily monic) with
coefficients in Z (or equivalently Q). We denote the set of algebraic numbers by
Q, as it is the algebraic closure of Q.

Definition B.2. A number field K is a finite extension of Q, i.e. a field
extension of Q with [K : Q] <∞.

Remember that the degree of an extension E/F is defined as the dimension
of E as a vector space over F .

Proposition B.3. Any number field K is a simple extension of Q by an alge-
braic number, that is K = Q(α) ⊂ C, with α ∈ Q.

Definition B.4. The ring of integers OK of a number field K is the ring
OK = K ∩ A, i.e. the elements of K that are roots of a monic polynomial in
Z[X].

Definition B.5. The following definitions are equivalent and define an order
O of a number field K. O ⊂ OK is a subring of the ring of integers that

a) has rank [K : Q] when regarded as a Z-module (so the largest possible
rank);

b) has finite index in OK ;

c) contains a Q basis of K;

d) has K as its field of fractions.

OK is called the maximal order. The index f = [OK : O] is called the conductor
of O.
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Definition B.6. An integral basis is a Q-basis of K that is also a Z-basis of
OK .

Proposition B.7. Every number field K has an integral basis of size n = [K :
Q].

Example B.8. i) K = Q is a number field over Q of degree 1. Its ring of
integers are the integers: OK = Z. Any ring of the form nZ for n ∈ N is
an order in Q.

ii) K = Q(i) is a number field since it is a field extension over Q of degree 2;
in fact Q(i) = {a + ib : a, b ∈ Q} is a vector space over Q of dimension
2. Its ring of integers is OK = Z[i] = {a + ib : a, b ∈ Z} = Z + iZ,
a lattice. Notice that this implies that {1, i} is an integral basis of Q(i).
Z[2i] = Z + 2iZ is an order in K, as it has conductor 2, and it is a
sublattice of Z + iZ. Z, 2Z + 2iZ and 2Z + iZ are not orders in Z[i],
however the former two are ideals. Notice that ideals and orders of Z[i]
are sublattices of Z[i]: Both are certainly subsets of the lattice and both
are additive subgroups.

Definition B.9. A number field is called quadratic if it has degree two. It is
called imaginary quadratic if it is not contained in R.

Proposition B.10. A quadratic number field is of the form Q(
√
d) for some

square-free, non-zero integer d. It is imaginary quadratic if and only if d < 0.

The number fields that are least difficult to study are imaginary quadratic
number fields and cyclotomic fields (Q(ζn), where ζn is a root of unity). For our
talk it is helpful to understand imaginary quadratic number fields, particularly
their rings of integers.

Theorem B.11. The ring of integers in an imaginary quadratic number field
K = Q(

√
d) (i.e. for d ∈ Z<0 square-free) is OK = Z[τd], where

τd =


√
d if d ≡ 2, 3 mod 4,

1 +
√
d

2
if d ≡ 1 mod 4.

Theorem B.12. Let K = Q(
√
d) be imaginary quadratic. Then the units of

the ring of integers are

(OK)× =


{±1,±i} if d = -1,{
±1,

±1±
√
−3

2

}
if d = -3,

{±1} else.

In particular

|(OK)×| =


4 if d = -1,

6 if d = -3,

2 else.
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Proposition B.13. Let K = Q(
√
d) be imaginary quadratic. An integral basis

of K is given by {1, τK}.

Corollary B.14 (Orders are lattices). Let K = Q(
√
d) be imaginary quadratic.

By the previous proposition, OK is the lattice Z + τKZ. Since any order of K
needs to contain 1, any order of K is of the form Z+ f · τKZ for some f ∈ N.

The following concept is used in proposition 1.14.

Definition B.15. Let K/Q be a number field of degree n and σ1, ..., σn the
complex embeddings2 of K. Then the norm of an element α ∈ K is defined as

NK/Q(α) =

n∏
i=1

σi(α)

In case K = Q(
√
d) is imaginary quadratic, this reduces to

N(a+ bτK) = (a+ bτK)(a+ bσ(τK)) =


a2 − db2 if d ≡ 2, 3 mod 4,

a2 +
1− d

4
b2 if d ≡ 1 mod 4.

We see that in the case of an imaginary quadratic number field N(α) ∈ Z for
α ∈ OK .

We need one more concept about number fields: the class group. Note that
in general OK is not a unique factorization domain however factorization of
ideals into prime ideals is unique. In order to show this (we will not look at this
here) one introduces the ideal class group of a number field. It turns out that
this group is an important piece of information when handling number fields
and it will occur in the talk about complex multiplication, hence we introduce
it here.

Definition B.16. A fractional ideal a of OK is a OK-submodule of K such
that ca is an ideal of OK for some 0 ̸= c ∈ OK .

A principal fractional ideal is an OK-submodule of K that is generated by a
single element x ∈ K, i.e. a fractional ideal of the form (x) := {xy : y ∈ OK}
for some x ∈ K.

Proposition B.17. The fractional ideals of a number field form a group, denote
it by IK . The principal fractional ideals form a subgroup, denote it by PK .

Definition B.18. For a number field K, the ideal class group Cl(K) is defined
as the quotient the fractional ideals by the principal fractional ideals, Cl(K) =
IK/PK .

Proposition B.19. Cl(K) is finite and we may define the class number of the
number field as h(K) := |Cl(K)|.

Remark B.20. Notice that the class group is trivial and the class number is 1
iff every fractional ideal is principal. If every fractional ideal is principal then in
particular all ideals of OK are principal and thus OK is a unique factorization
domain.

2The homomorphisms K ↪→ C, i.e. the elements of the galois group.
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