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1 Introduction

1.1 Elliptic integrals

The theory of elliptic functions historically emerged from the study of elliptic integrals. These
integrals appear in the computation of the arc lenght of an ellipse and similar curves.

Example 1.1.1 (Arc length of an ellipse). For a,b > 0 with a > b we consider the ellipse
given by all (z,y) € R? with
22 2
2 e
a b
The points (+¢,0) with ¢ := va? — b? are its foci, that is, for any point on the ellipse, the
sum of the two distances to the foci is a constant. The ellipse is centered at the origin, with
width 2a and height 2b.

= 1.

center

We would like to compute the arc length of the ellipse. For example, if r = a = b, then the
ellipse is just a circle and it is well-known that its arc length is 27r. However, for a general
ellipse there is no such simple closed formula.

Due to the symmetry of the ellipse, its arc length is 4 times the arc length of the part of
the ellipse in the first quadrant. Recall that the arc length of a smooth curve C' is given by
/ f |7/ (t)|dt, where « : [a,b] — C is a parametrization of C'. we can take the parametrization
v(p) = (acos(p), bsin(p)) with ¢ € [0,7/2] for the arc of the ellipse in the first quadrant, so
the arc length of the ellipse is given by

w/2
4/ \/a2 sin(p)? + b2 cos(p)?dp.
0
Replacing ¢ = sin(p), we obtain the arc length
242 b2 1—¢2
/ Vart? + ) dt,
V1—1t2
which is an integral of a rational function in square roots of polynomials. This is an example

of an elliptic integrals (are more precise definition will be given soon), which typically does
not have a nice closed form.




1 Introduction

Example 1.1.2 (Arc length of the lemniscate). The lemniscate is given by the equation
(@2 4+ 42)% = 2% — 2.

0.4 1

0.2 1

0.2

0.4 1

-1.5 -1 -0.5 0 0.5 1 1.5

Again, by symmetry its arc length is 4 times the arc length of its part in the first quadrant.
This piece is parametrized by

) = (ol D) el

A short computation now shows that the arc length of the lemniscate is given by

1 1
4/ = a
0 V1—tt

which is again an integral of a rational function in square roots of polynomials. This integral
can in fact be written in terms of special values of the Gamma function. However, it would
be desirable to also compute the arc length of a piece of the lemniscate. For example, the arc
length from the origin to a point v(z) with = € [0, 1] is given by

1
[
0o Vv1—tt
and this function does not have a closed expression in terms of simpler functions.

These examples lead to the following definition.

Definition 1.1.3. An elliptic integral is an integral of the form

/R(x, M) da

where R(x,y) is a rational function of two variables, and p(x) is a polynomial of degree 3 or
4 without multiple roots.

1.2 Fagnano’s elliptic integral

For z € [0, 1] put

z 1
F(x) /0 et
which measures the arc length the of the lemniscate from the origin to the point v(x), com-
pare Example This elliptic integral has some unexpected properties, which were first
observed by Fagnano around 1750.



1.2 Fagnano’s elliptic integral

Theorem 1.2.1 (Fagnano ~ 1750). For all sufficiently small x > 0 we have

.Vl—ﬁ>

2F(£L')ZF<2£L‘ T

Put 0 := F(1). The function F : [0,1] — [0, 0] is strictly increasing and continuous, and
hence has a strictly increasing inverse function G : [0,0] — [0, 1]. It satisfies the differential
equation

G?=1-G* G0)=0, G'(0)=1. (1.2.1)
Fagnano’s Theorem can be restated for G as follows.

Theorem 1.2.2. For all u small enough we have

2G(u)G' (u
G@”:1i&éﬂ

Euler generalized Fagnano’s duplication formula and obtained the following addition law
for F'(x).

Theorem 1.2.3 (Euler 1761). For sufficiently small z,y > 0 we have

x\/l—y4—|—y\/1—x4>

1+ x2y2

ﬂ@+F@:F<

This translates into an addition law for G(u) as follows.
Theorem 1.2.4. For sufficiently small u,v > 0 we have

G(u)G' (v) + G(v)G'(u)
1+ G?(w)G?(v)

Gu+v) = (1.2.2)
Although the function G was only defined on the interval [0, 0], one may extend it to a

meromorphic function on C, by taking GG as the unique solution to the differential equation
(1.2.1). The differential equation also implies that

G(iu) = iG(u). (1.2.3)

Moreover, Euler’s Theorem for G(u) shows that G is doubly periodic. Indeed, for v € C
with G'(v) = 1 we have G(v) = 0 by the differential equation (1.2.1)), hence G(u +v) = G(u)
for any u € C by Euler’s addition law . Moreover, by ([1.2.3]), for any such v, we will
also have G(u + iv) = G(u) for any u € C.

This led to the definition of elliptic functions.

Definition 1.2.5. A meromorphic function f on C is called elliptic (or doubly periodic) if
there are wi, wy € C which are linearly independent over R, such that f(u+ w;) = f(u) and
f(u+ws) = f(u) for all u € C.

It follows that an elliptic function satisfies the periodicity f(u + w) = f(u) for all w €
Zawy + Zaws. The set Zwy + Zws is called a lattice in C. They typically look as follows:



1 Introduction

In this lecture, we will closely study elliptic functions, their period lattices, and the con-
nection to elliptic curves.



2 Periods and lattices

We will closely follow the first part of the book FElliptische Funktionen und Modulformen by
Koecher and Krieg.

2.1 Periods of meromorphic functions

Definition 2.1.1. A function f : H — C is meromorphic on C if there exists a closed, discrete
subset Dy C C such that

1. f:C\ Dy — C is holomorphic, and
2. f has poles at the points of Dy.

Recall that a closed subset D C C is called discrete if every ¢ € D has a neighbourhood U
such that D N U is finite.

If f # 0 is meromorphic on C, then for each point ¢ € C there exists a neighbourhood U of
c such that f has a Laurent expansion

fG) = 3 apeln)le ="
on U\ {c}, with af.(ng) # 0. We call
ord.(f) :=ng

the order of f at c. If ng is positive, we say that f has a root of order ng at ¢, and if ng is
negative, we say that f has a pole of order |ng| at c¢. The residue of f at c is defined by

resc(f) == agpc(—1).

The meromorphic functions on C form a field. Moreover, every meromorphic function f on
C can be written as a quotient f(z) = g(z)/h(z) with holomorphic functions g,k on C.
For w € C and D C C we write

D+w={d+w:de D}.

Definition 2.1.2. Let f be a meromorphic function on C with set of poles Dy. Then w € C
is called a period of f if

1. Dy +w = Dy, and
2. f(z4+w) = f(z) for all z € C\ Dy.

We denote by Per(f) the set of all periods of f.



2 Periods and lattices

Note that 0 is always a period of f. Moreover, the sum of two periods of f is again a
period of f, so Per(f) is a subgroup of the additive group (C,+). For constant f we have
Per(f) =C.

Lemma 2.1.3. If f is a non-constant meromorphic function, then Per(f) is a closed, discrete
subgroup of C.

Proof. If Per(f) is not discrete or not closed, then there is a sequence w,, € Per(f) of pairwise
different complex numbers such that w = lim, . w;, exists. Since Dy is closed we have
Dy +w = Dy. Hence, if f is holomorphic in ¢, then f is holomorphic in ¢+ w as well, and
we have f(c) = f(c+ wy,) for all n. By the identity theorem f must be constant. O

Now we can describe all possible sets of periods.

Lemma 2.1.4. If f is a non-constant meromorphic function, then precisely one of the fol-
lowing three cases occurs:

1. Per(f)=0.

2. The exists a (uniquely determined up to sign) wy € C\ {0} such that

Per(f) = Zw; = {mwy : m € Z}.

3. There exist wi,we € C\ {0} with the following properties:
a) Per(f) = Zwy + Zws = {miwy + mawsy : my,ma € Z},
b) wy,wy are linearly independent over R,

c) T = wi/ws satisfies Im(7) > 0, |Re(7)] < % and |T| > 1.

Proof. Let Per(f) # {0}. Since Per(f) is closed and discrete, there exists some wy € Per(f)
with

0 < |wy| = inf{|w|: 0 # w € Per(f)}. (2.1.1)
We first investigate the periods on the line Rwy. We claim that
Per(f) NRwy = Zwy. (2.1.2)

We obviously have Zwy C Per(f) NRwy. Conversely, for w € Per(f) "Rwy we have w = awy
for some o € R. We choose m € Z with | —m| < 1 and obtain

jw —mwg| = a —m|-|wg| < |wg|.

Since w —mawy belongs to Per(f)NRwy, and by we must have w = mwy, which implies
Per(f) NRwy C Zwy.

If Per(f) lies on a line through 0, that is, on Rwy, then we find Per(f) = Zwy, and we are
in part 2. of the lemma.

Let us now assume Per(f) # Zwy. Then there exists an element wy € Per(f) \ Zwy with

|lwi| = inf{|w| : w € Per(f) \ Zwy}. (2.1.3)

10



2.2 Lattices in C

Put wy = wy. Then we have 7 = wy/wa ¢ R since we assumed that Per(f) does not lie on a
line through the origin. In particular, w;,wo are linearly independent over R. Replacing w;
with —wy if necessary, we can assume that Im(7) > 0. Now ([2.1.1)) implies

]wﬂ Z \w2|, i.e. |7" Z 1,

and (2.1.3) yields

jwi £ wa| = Jun|, i |7 E1[ =7,

and hence |Re(7)| < 1/2.

It is clear that Zw; + Zws C Per(f). Conversely, let w € Per(f). Since wi,ws form an
R-basis of C, we can write w = ajwi + asws with ag, s € R. We choose m; € Z such that
Bj = a; — mj satisfy |B;] < 1/2 for j = 1,2. Then we have

w' = w — mywy — mows = Brwy + Bowsy € Per(f).

If f1 =0 then w’ = 0 (i.e. w =miw; + mows) follows from (2.1.2)). If B; # 0, then we have
w' € Per(f) \ Zwy and

(W' = |Brwy + Bowa|* = (BF|7]* + 2B182Re(T) + B3) - |wa?
3
< (BY+|B1l|Ba2| + B3) - [T - Jwa]* < 1’“’1\27

where we used that 7 = w;/wy satisfies |[7| > 1 and |[Re(7)| < 1/2. If follows from ([2.1.3])
that w’ = 0, i.e. w = myw; + mows. This finishes the proof that Per(f) = Zw; + Zws. O

2.2 Lattices in C
Let V be a real vector space of dimension n > 1, e.g. V = R"™. A subset 2 C V is called a
lattice in V' if there exists an R-basis (wy,...,w,) of V such that

Q=Zw; + - + Zw,,.

We also call (wy,...,w,) as basis of Q. Note that for 0 # X\ € C the set A() is again a lattice.

We see that in case 3. of Lemma the set Per(f) is a lattice in C = R?. Moreover, we
have seen that Per(f) is a closed and discrete subgroup of (C,+). More generally, we have
the following result.

Lemma 2.2.1. Every lattice  in C is closed and discrete in C.

Proof. Let (w1, w2) be a basis for €2, that is, Q = Zw; + Zws, and w;,wy are linearly inde-

pendent over R. Replacing ) with ‘w—lﬂQ and w; with —w; if necessary, we can assume that

O=Zr+7Z witht=x+1iy € C,y > 0.
For p > 0 we put M, = {w € Q: |w| < p}. We want to show that M, is finite. Indeed, let
w=mT7+n € M, with m,n € Z, then we have

p? > |m7 4+ n|? = (mx +n)? + m?y® > m?y?
which implies |m| < p/y. Moreover, we have
p > |ma +n| > |n] — [mal

which shows |n| < p(1 + |z|/y). This show that M, is finite, and finishes the proof of the
lemma. O

11



2 Periods and lattices

Next, we would like to descibe the possible change-of-basis matrices of lattices 2 in C. To
this end, we consider the set

Mat(Z) = {U: <‘C‘ Z) ca,b,c,d € Z}

of integral 2 by 2 matrices. It is a ring under matrix addition and multiplication, with unit
element E = (}¢). The group of units of Maty(Z) is given by the general linear group

GL2(Z) = {U € Mata(Z) : there is V € Maty(Z) with UV = VU = E}.
Lemma 2.2.2. For U € Maty(Z) the following are equivalent.
1. U € GLy(Z).
2. det(U) = £1.
8. U is invertible over Q and U~ € Maty(Z).
4. The map U : 7> — 72, x — Ux is bijective.
5. The map U : Z? — 72, x — Ux is surjective.
Proof. Exercise. O
We will also consider the special linear group
SLo(Z) = {U € GLa(Z) : det(U) = 1}.

Lemma 2.2.3. If ¢,d € Z are coprime, then there is a matrizc

U= (2 2) € SLy(Z).

Moreover, U is determined uniquely up to multiplication from the left by a factor of the form

(§%) withk € Z
Proof. Exercise. O

Lemma 2.2.4. Let Q2 be a lattice in C and let (w1, ws) be a basis of Q. Let wi,w) € C. Then
we have wi, why € Q if and only if there is U € Maty(Z) with

'U)Q w2
Moreover, (wh,wh) is a basis of Q if and only if U € GLa(Z).

Proof. Exercise. 0

Let Q be a lattice in C and let (wy, w2) be a basis of Q. For u € C we define the fundamental
parallelogram w.r.t to (wy,ws) and base point u by

P(u;wy,w2) = {u+aw; +awy : 0 < a3 < 1,0 < ag < 1}.

For u = 0 we also write P(wy,ws) = P(0;wi,wz). The following result is clear from the
definition.

12



2.2 Lattices in C

Proposition 2.2.5. Let P be a fundamental parallelogram for Q. For each z € C there is a
unique w € ) such that z + w € P. In particular, if z and z + w with w €  both belong to
P, then w = 0.

There are many different bases and hence different period parallelograms for €2, but their
volume is an invariant of €2, called the volume of (2.

Lemma 2.2.6. The volume of any fundamental parallelogram P(u;wy,ws) for 0 equals
vol(Q) := [Im(w1w3)|, and is independent of the basis (w1, ws) and the base point .

Proof. An elementary consideration shows that the volume of P(u;wi,ws) is given by

Rew; Imwq\| —
'det (Rewg Imw2>‘ = |Im (w1 @3)|.

If (w},wh) is a different basis of 2, then there exists a matrix U = (24) € GL2(Z) with

(Z:l =U (), and hence
2

Rews Imws

N~

— Rew’, Imw)
1T\ 1 1 _
Im (wjwh)| = ‘det <Rew Imwé)‘ =

det <U~ (Rewl Imwl))‘ — | det(U)| - |Tm(wyw3)].

Using | det(U)| = 1 we see that the volume is independent of the basis. O

Let Q be a lattice in C. Since 2 is a subgroup of the abelian group (C, +), is is a normal
subgroup, and the factor group

C/Q={a+Q:aeC}
is an abelian group under the addition
(a+Q)+ b+ Q) =(a+b)+ .

Let w : C — C/Q be the canonical projection. By restricting it to a fundamental parallelogram
P = P(u;w;,ws), we obtain a bijection

tlp: P S C/Q. (2.2.1)

Since 7| p identifies the opposite edges of the fundamental parallelogram P, we may view C/<

U&=

13



2 Periods and lattices

2.3 Eisenstein series

Let €2 be a lattice in C with basis (wy,w2). We have already seen that the volume vol(Q2) =
vol(P) of a fundamental parallelogram P = P(u;wi,ws) for € is invariant under the choice
of the basis of ). In this section we introduce other invariants of 2, the so-called Eisenstein
series. They will be defined as certain infinite series, and in order to study their convergence,
we need some preparation.
We let
§ = 0(wy,wa) =sup{|z —w| : z,w € P(wy,ws2)}

be the diameter of the fundamental parallelogram P(wi,ws). For p > 0 we let
4,(9) = #{w € Qs Jul < p)
be the number of lattice points in a closed disc with radius p.

Lemma 2.3.1. For p > § we have

7 7
—8)? < A,(Q) < 5)2.
VOI(Q) (:0 ) — P( ) — VOI(Q) (p+ )
Proof. We compare the two sets
K,={2¢€C:|z| <p}, M, = U P(w;wy,ws).
weQ,|w|<p

Note that M, is a disjoint union. Since p > ¢, we have
](p,5 Cﬁﬂ4ﬁ Cﬁ}(p+5.
Taking volumes yields the result, since vol(K,) = mp* and

vol(Mp) = Y~ vol(P(w;wi,wz)) = vol(Q2) - A,(€).

we,[w|<p

In the following, we will say that a multiple series

Z ag, (ag € C),

geL™

converges absolutely if there is some C' > 0 such that > cp lag| < C for every finite subset
E CZ"™. In this case, the series } jcn 1) converges absolutely for every bijection ¢ : N —
Z™ and is independent of the choice of ¢. In particular, the value of the series does not change
if we rearrange the terms.

Lemma 2.3.2. Let o € R. The series

> fwl™

0F£we

converges if and only if a > 2.

14



2.3 FEisenstein series

Proof. Let o > 2 and let E C Q\ {0} with E # ) be a finite subset. Put M = max{|w|: w €
E}. By the preceeding lemma, there is a constant co > 0 such that

vol(©2)

A () = 4,(Q) < (41467 = (n—6)) < eom

for all n > §. Define another consant

€= Z |w| ™.

0Awe, |w|<d+1

Then we find

Z jw|™ < e+ Z (An1(Q) = Ap())n"* <1+ Z ntm < 00
werR neN,d<n<M el

since o > 2.

Now let o < 2. The series in question trivially diverges for a < 0, so we may assume
0 < a < 2. Pick some N € N with N > 2§. The preceeding lemma gives a constant cg > 0
such that

™

Apn () = Ag—yn(2) > ol

(EN —6)* — ((k — 1)N +0)?) > c3k

for all k € Z with k > 2. Let E,, = {w € Q:0 < |[w] <nN}. Then we have

S wlT =D (An(Q) — Ao nyn(Q) - (kN)™* > egN~* > k.
webk, k=2 k=2

Since the series 3.1 k1™ diverges for a < 2, the series > ozwen |w| ™ diverges for a < 2,
as well. This finishes the proof. O

The above lemma implies that the Fisenstein series

Gr=Gp(Q) = > w™, kez,
0#we)

converges absolutely for k > 3. Note that G () = 0 for odd k£ > 3 and any lattice 2 since
the terms w™* and (—w)~* cancel out in the sum. On the other hand, we will later see that
G () is typically non-vanishing for even k > 4. The Eisenstein series will be important for
us later since they appear in the Taylor expansions of elliptic functions.

Moreover, we will see the surprising fact that every Gy can be written as a polynomial over
Q in G4 and Gg. For example, we have 7Gg = 3G?1 and 11G19 = 5G4Gg. This also has some
interesting number theoretical applications.

15






3 Elliptic functions

3.1 Basic definitions

We have seen in Lemma that the set of periods Per(f) of a meromorphic function f on
C is either {0}, or of the form Zw; for some wy € C, or a lattice in C. In this section we
will study elliptic functions and use them to show that for any lattice €2 in C, there exists a
meromorphic function f with Per(f) = Q. Throughout, we let Q = Zw; + Zws be a lattice
in C.

Definition 3.1.1. A meromorphic function f on C is called elliptic (or doubly periodic) with
respect to Q if Q@ C Per(f), that is, if

1. Dy +w = Dy for all w € €2, and
2. f(z+w) = f(z) forallwe N and z € C\ Dy.
We let K(£2) be the set of all elliptic functions with respect to 2.

Note that it suffices to check the above two conditions for a basis of 2. For an elliptic
function f € IC(Q2) we have

ordeyw(f) = ord.(f), and resety(f) = resc(f) (3.1.1)

for all w € Q. The following basic results are easy to prove from the definition of elliptic
functions.

Proposition 3.1.2. The elliptic functions IC(2) with respect to ) form a subfield of the field
of all meromorphic functions on C which contains the constant functions. Every f € K(Q)
only has finitely many poles in each fundamental parallelogram for ).

Lemma 3.1.3. Let f € K(Q). Then we have f' € K(Q) and g(z) := f(nz + z) € K(Q) for
every fited 0 #n € Z and x € C.

3.2 The four theorems of Liouville

In 1847 Liouville noticed that elliptic functions satisfy some strong conditions which are not
obvious from the definition.

Theorem 3.2.1. If f € K(Q2) is holomorphic on C, then f is constant.

Proof. Let P be a fundamental parallelogram for €. Since the closure of P is compact, f is
bounded on P, i.e. there is some C' > 0 with |f(z)| < C for z € P. For arbitrary z € C there
exists some w € § such that z +w € P. This implies

[f(2) = [f(z+w)| <C,

so f is bounded on C, hence constant. 0

17



3 Elliptic functions

Theorem 3.2.2. For f € K(Q) and any fundamental parallelogram P for Q0 we have
Z resc(f) = 0.
ceEP
Proof. Using and Proposition we see that the sum is finite and independent of
the choice of the fundamental parallelogram P. Hence we may choose a base point u € C
such that the boundary 0P of P = P(u;wi,w2) does not contain any poles of f.
Now we integrate f over the boundary dP. By the residue theorem we have

utwi +wsa utw2 u

+27i Z resc(f) = /uu+w1 f(z)dz + / f(z)dz + f(z)dz + f(z)dz

ceP u+wi utwitwsz u+ws

u

= [T G@ - s [1 (6 - 5+ w)

u+wso
where the sign £+ depends on the orientation of P. Note that the right-hand side vanishes
for f € (), which finishes the proof. O

Theorem 3.2.3. For f € K(Q2) non-constant, any fundamental parallelogram P for Q, and
any x € C we have

Z ord.(f —z) = 0. (3.2.1)
ceP
Hence, if we count with multiplicities, we have
Number of poles of f in P = Number of zeros of f in P
= Number of z € P with f(z) =
Moreover, every non-constant f € k() takes every value in P.
Proof. By Lemma the function
f'(=
9(2) = =)
flz) —x
is an elliptic function for €2, and we have res.(g) = ord.(f — x). Here we used that f is non-
constant, hence f(z) — x is not vanishing identically. Now the formula (3.2.1)) follows from
Theorem In order to see that f takes any value x in P, note that f(z) — z € K(Q) is

non-constant and hence must have a pole in P by Theorem Hence, by (3.2.1)), f(2) —
must also have a root in P. O

Theorem 3.2.4. For f € K(Q) and any fundamental parallelogram P for Q we have

Z(ordc(f)) -c e

ceP

Proof. Similarly as in the proof of Theorem |3.2.2] we integrate the function z/}((z)) over the

boundary 9P of a suitable fundamental parallelogram P = P(u;wy,ws) of 2. We obtain

. f( )
271 Zordc(f) cc= dz

ceP or f( )
_ Ut f’(Z) Y w f'(z +w) Zf’(Z)_ tw f'(z +wn) 3
([ e [y G e )

.
oo [ [ )

18



3.3 First properties of the Weierstrass g-function

Using f(u) = f(u+ w;) we find

/u B '}}I((ZZ)) dz € 2miZ

for 7 = 1,2, which finishes the proof. O

Theorem implies that there are no elliptic functions with only one first order pole in
P. There must either be at least two poles of order one, or a pole of order two with residue
Z€ero.

If we count the zeros and poles of a non-constant elliptic function f € K(Q2) with multiplic-
ities, then Theorem [3.2.3| says that there are points ai,...,a, and by,...,b. € P, such the
roots of f in P are precisely at the points aq, ..., a, and the poles of f in P are at the points
bi,...,b,. Here the multiplicity of a root or pole is indicated by a repetition of the a; or b;.
Now Theorem B.2.4] can be written as

a1+--+a =b+---+b (mod Q). (3.2.2)

We call r the order of f. Theorems [3.2.1] and [3.2.2] say that every elliptic function of order
0 is constant, and that there are no elliptic functions of order 1. On the other hand, we will
see that for » > 2 and ay,...,a,,b1,...,b. € P satisfying there is a suitable elliptic
function having roots in ai, ..., a, and poles in by, ..., b,.

3.3 First properties of the Weierstrass g-function

Theorem 3.3.1. There exists an elliptic function p = pq € (), which has poles of order 2
precisely at the lattice points in €2, and is holomorphic everywhere else. Its Laurent expansion
at 0 is of the form

p(z) =22 4az+.... (3.3.1)

The proof will be given in the next section, where we will explicitly construction g as an
infinite series. The function g is called the Weierstrass g function for 2.

By it is clear that g has residue 0 at all poles (i.e. lattice points of §2). Moreover,
by Theorem the elliptic function g is uniquely determined by the above conditions.

Proposition 3.3.2. 1. p is an even function, that is, p(—z) = @(z). Hence we have
a1 = 0 in the Laurent expansion (3.3.1)).

2. ¢ is an odd function which has poles of order 3 precisely at the lattice points of Q and
is holomorphic everywhere else.

Proof. For the first part, consider the elliptic function f(z) = p(—2)—g(z). Using the Laurent
expansion (3.3.1]), we see that f is holomorphic on C, hence constant by Theorem [3.2.1]
The second part immediately follows from the first part and Theorem [3.3.1 0

We can now already determine the roots of ¢’

Lemma 3.3.3. The roots of ¢ are of order 1 and lie precisely at the points w/2 for which
w € Q but w/2 ¢ Q.
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3 Elliptic functions

Proof. Since ' is an odd elliptic function, we have
9'(z+w) =¢'(z) = —p'(-2)
for w € Q. If w/2 ¢ Q, then w/2 is not a pole of ¢, and we can take z = —w/2 to get
¢ (w/2) = —¢'(w/2),

hence ¢'(w/2) = 0. Let wy,wy be a basis of Q and P = P(w;,ws) the corresponding
fundamental parallelogram. Then ¢’ has at least the tree roots

w1/2, ’11}2/2, (’11}1 +w2)/2

in P, and we want to show that those are all possible roots of @’ in P. From the Laurent
expansion we see that @’ has precisely one pole in P, which is of order 3. Hence, by
Theorem the three roots that we found above must have order 1, and there can be no
other roots in P. For an arbitrary point z € C we can find w’ € Q such that z —w' € Q. If 2
is a root of ', then z — w’ is one of the three roots in P above, so z is of the form w/2 with
w € Q but w/2 ¢ Q. O

Lemma 3.3.4. Let P = P(w1,w2) be a fundamental parallelogram for Q0 and put
er:=p(wi/2), e2:=p(w2/2), e3:=p(ws/2),  w3:=wi+ws (3.3.2)
Then
©(z) — ex has precisely one double root in P, at z = wy /2, (3.3.3)
fork=1,2,3, and
©(2) — x has precisely two simple roots in P if x # ey, e2, e3. (3.3.4)

Proof. We apply Theorem to p. Since p has precisely one pole of order 2 in P (namely,
at z = 0), the function p(z) — = has two roots (counted with multiplicty) in P. Now there
are two cases:

1. There is only one u € P with p(u) = x. Then p(2) — « must have a double zero at u,
so ©'(u) = 0. By Lemma this implies that u € {w1/2,w2/2,ws/2}.

2. There are two different u,v € P with p(u) = p(v) = z. Then p(z) — x must have two
simple roots at u and v, so p'(u) # 0 and @' (v) # 0, which by Lemma means that

u,v & {wy/2,we/2,ws/2}.
O

Since wy /2, ws/2,ws/2 are pairwise different, we see from ([3.3.3)) that
e1, €9, ez are pairwise different. (3.3.5)

Note that taking a different basis for €2 only permutes the values ey, e, €3.
We obtain a first differential equation for the Weierstrass p-function.
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3.4 The field of elliptic functions

Proposition 3.3.5. For z € C\ Q2 we have

9'(2)* =4+ (p(2) = e1) - (p(2) — e2) - (p(2) — e3).

Proof. We consider the elliptic function
f(z) =4-(p(2) —e1) - (p(2) — e2) - (p(2) — e3).
By (3.3.3) the function f has double roots precisely at the points wi/2,ws/2,ws/2, and by
3.3.3

Lemma [3.3.3| the same is true for ©'(z)2. Moreover, the only pole of f in P is a at 0, and is
of order 6. From the Laurent expansions

p(z)=2"2+..., 022 =425+ ...

(compare (3.3.1))) we see that ¢/(z)? also has a pole of order 6 at 0, and no other poles in
P. We obtain that (2)%/f(2) is an elliptic function without any poles, hence constant by
Theorem Comparing the coefficients at 275 in the Laurent expansions of ¢'(z)? and
f(2) around 0, we find that this constant is equal to 1. O

3.4 The field of elliptic functions

From the Laurent expansion it is clear that in any polynomial in g, the poles cannot
cancel out. In particular, g is not algebraic, i.e. there is no non-zero polynomial p(z) with
p(p) = 0. Hence the field C(gp) consisting of all rational functions in p is isomorphic to the
field of all rational functions over C.

We can now describe the field () of elliptic function with respect to a lattice Q in terms
of the Weiestrass p-function and its derivative g'.

Proposition 3.4.1.
1. The even elliptic functions in K(2) are precisely the rational functions in .
2. We have K(Q) = C(p)[¢'].
3. The degree of the field extension of K(2) over C(p) is 2.

In other words, every f € K(£2) can be written in a unique way as

f=R(p)+Qp) ¢ (3.4.1)
with rational functions R, Q) over C, and for even f we have @ = 0.

Proof. 1. For the proof, we will use the following helpful auxiliary result:

Claim: For each m € Ny there ezists a unique elliptic function g, € K(Q) which has
poles of order 2m at the points in  and is holomorphic otherwise, and which has a
Laurent expansion at z = 0 of the shape

om(2) = 272 + 0(2?).

Moreover, @, is a polynomial in @.

21



3 Elliptic functions

22

Proof. We can clearly take pg = 1 and p; = p. For m = 2 we consider the Laurent
expansion of p? at z = 0,

0 (2) = (272 + a2 + 0(2Y) - (272 4+ ap2® + O(2%) = 274 + 2a2 + O(2?).

Hence we may take po(2) = ©?(z) — 2as. We can continue like this and recursively
define g,, by subtracting from " suitable multiples of pg, @1, - ., @m—1. This shows
that p,, can be constructed as a polynomial in p.

The uniqueness of @, follows from Theorem [3.2.1] since the difference of two elliptic
functions with the above Laurent expansions would be entire and vanishing at z = 0,
hence equal to 0. O

Now we come back to the proof of Proposition Let c1,...,c, be the poles of f in
a fundamental parallelogram P for €2 which do not already lie in 2. Then the function

k
g9(2) = [ (p(2) — p(c;) ") - f(2)
j=1

is an even elliptic function with poles only at the lattice points in . Now g(z) has a
Laurent expansion at z = 0 of the form

9(z) = a_gqz 2+ a—2d+22_2d+2 + - daoz l4ag+ O(z2),

with constants a; € C, and —2d = ordg(g). Here we used that g is even. Hence, by
Theorem B.2.7] we obtain

d
9(z) = D aompm(2),
m=0

since the difference of both sides is an entire elliptic function which vanishes at 0.
Putting everything together, we find

k d
£(2) = [T (0lz) — ple))™ D - (Z aZmpm<z>> |
j=1 m=0

Recall that each g, is a polynomial in @, so f is a rational function in g. This finishes
the proof of part 1.

. For f € K(Q) we may write

f=g+hg, where  g(z) = 1(f(z) + f(=2)), h(z)= 2@’1(z)

2
Then g, h € () are even elliptic functions, and hence are rational functions in p by
the first part of the proposition.

(f(2) = f(=2)).

. Since ' is an odd function, we have g’ ¢ C(p), so the degree of K(2) over C(p) is at

least 2. By Proposition we have o2 € C(p), so the degree is equal to 2.
O



4 The Weierstrass @-function
Throughout this chapter we let Q2 = Zw; + Zws be a lattice in C.

4.1 Construction of the p-function

In order to prove Theorem we will now construct the p-function explicitly as an infinite
series. Since g should be elliptic with respect to €2, and should have poles of second order at
lattice points in 2, it is tempting to take as a candidate the series

Z(z—w)_z.

we

Unfortunately, by Lemma this series does not converge absolutely. To overcome this
problem, the summation needs to be modified.

Theorem 4.1.1. The Weierstrass p-function

p(z) =pa(z) =272+ > (z-w)?-w™), zeC\Q,
0£weN

converges absolutely and uniformly in every compact subset of C\ Q. It is an even elliptic

function with respect to Q) and has poles of second order with residue 0 in every lattice point
of Q. The Laurent expansion at 0 has the form

p(z) =224 a2® +...

This result also implies Theorem [3.3.1] Before we come to the proof, we remark that one
can show the convergence of the following series in a similar way:

Lemma 4.1.2. For k € N with k > 3 the series

Z (z — w)*k

we
converges absolutely and uniformly on every compact subset of C\ €.

Proof of Theorem |4.1.1] The proof consists of four steps. For brevity, we set
fu(z) = (z —w) 2 —w™

for 0 Fwe N, and K, ={z€ C:|z| <p} for p> 0.
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4 The Weierstrass g-function

1. Convergence: Let K C C\ Q be a compact set, and let p > 0 big enough such that

K C K,. The finite sum over the terms with |w| < p + 1 converges absolutely and
locally uniformly, so we can assume |w| > p+ 1 in the following. Then we can estimate

1 1 2
(z —w)?

2—z/w
‘ (1—z/w)?
24+p/(p+1) p
T (A=p/(p+ 1) |w
The convergence now follows from the convergence of the Eisenstein series G3, see
Lemma 2.3.2]

22w — 2z |z

w?

w?(z — w?) o]

. Claim: The series defining p is meromorphic in C and has poles precisely at the lattice

points 2, which are of order 2 and have residue 0.
Proof: Let p > 0, and write

p(2) =277+ > fu)+ Y. ful2).
|w|<p+1 |w|>p+1

The first sum is meromorphic on K, with poles of second order and residue 0 at lattice
points in K, and the second series is holomorphic on K, since it converges absolutely
and locally uniformly.

. Claim: @ is an even function and has the Laurent expansion o(z) = 272 +agz® +....

Proof: We replace w by —w in the sum and use the absolute convergence of the series
to see that p(—z) = p(z). Above we have shown that p has a pole of second order with
residue 0 at z = 0, so it has the Laurent expansion p(z) = 272 + ag + a22% +.... But
since f,(0) = 0 for w # 0, we have ag = 0.

. Claim: We have p(z +w) = p(z) for allw € Q and z € C\ Q.

Proof: By the absolute and locally uniform convergence of the series defining g, and
Lemma we can differentiate p(z) termwise to get the absolutely convergent series

representation
p'(z)=-2 (z—w)™
we
for z € C\ Q. We see that ©'(z + w) = @'(z) for w € Q. Hence, we have p(z + w) =
o(z) + Cy for some constant C,, (possibly depending on w, but not on z). Setting
z = —w/2 we see that Cy, = 0 since p is even. This shows that p is elliptic.

O]

4.2 The Laurent expansion

Recall that for k¥ € N with £ > 3 we defined the Eisenstein series

G := Gi(Q) := Z wF,
0£weN

By Lemma [2.3.2] it converges absolutely. Moreover, it vanishes identically for odd k. We let

v :=(Q) := min{|w| : 0 # w € Q}.

The Weierstrass p-function has the following Laurent expansion around z = 0:
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4.3 FEisenstein series, the discriminant, and the j-invariant

Proposition 4.2.1. For z € C with 0 < |z| < () we have
oo
o(z) =272+ Z(2n — 1G22 =272 4 3Gy - 22 +5Gs - 21 + ... (4.2.1)
n=2
Proof. First note that we have

1 d d - m - m—1

m=0 m=1

Hence, for 0 # w € 2 we may write

1 1 1 1 O gl
e (1) = S <),
(z—w)? w? w? ((1 —z/w)? ) Z mw””r1 (Il <)

m=2

and thus we get

plz) =22+ ) <Z mwm+1> (0 < |z] < 7). (4.2.2)

0£weN
|’ m—1
<m (E)7
%

we see from Lemma that the double series in (4.2.2]) converges absolutely. Hence, we
can change the order of summation and obtain

Since

zm—l

,wm+1

m

o 1 o
= 272 + Z m ( Z W) . mel = 272 + Z me+1 . szl
m=2

0£we m=2

for 0 < |z| < 7. Recall that G, = 0 for odd k, which gives the stated Laurent expansion. [

4.3 Eisenstein series, the discriminant, and the j-invariant

We have seen in Proposition that the p-function satisfies the differential equation
§(2) = 4p(2) — e1)(p(2) — e)(p() —es), (2 €C\Q),

where e1 = p(w1/2),e2 = p(w2/2), and e3 = p((w1 + w2)/2) for a basis (w1, ws) of 2. Using

the Laurent expansion (4.2.1)) of p in terms of Eisenstein series, we now derive a second
differential equation.

Proposition 4.3.1. The p-function satisfies the differential equation

0'(2)* = 4p(2)° — gap(2) — g3
with the Weierstrass invariants

g2 := g2(Q) :=60G4(Q), and g3:= g3(Q) :=140Gs(Q).
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4 The Weierstrass g-function

Proof. Starting from
o(2) = 272 4+3G4 - 22 4+ 5Gg - 2* + O(2°)

(see (4.2.1)) we compute

©2(2) = 271+ 6G4 + 10Gs - 22 + O(23),
©3(2) = 270+ 9G, - 272 + 15Gs + O(2),
©'(2) = =223 +6Gy - 2+ 20G - 22 + O(2%),
02(2) =4-275-24G, - 272 — 80Gs + O(2).

This implies that
0% (2) — 49" (2) + g20(2) + g3 = O(2). (4.3.1)

The left-hand side is an elliptic function for 2 which can only have poles at the same points as
o and ¢/, i.e., at lattice points in . But show that the left-hand side is holomorphic
at 0, hence holomorphic everywhere and thus a constant by Theorem Again by ,
this constant is 0. 0

Conversely, the p-function gives all solutions of the above differential equation.

Proposition 4.3.2. Let Q) be a lattice in C with Weierstrass invariants go = 60G4 and
g3 = 140Gg. Then the non-constant meromorphic solutions (on some domain G C C) of the
differential equation

2 =4~ gof — g3

are given by f(z) = p(z + w),z € G, for w € C.
If, in addition, f is meromorphic on C, then we have Per(f) = Q. The lattice Q is uniquely
determined by g2(Q2) and g3(£2).

Proof. Suppose that f is a non-constant meromorphic solution of the differential equation on
a domain G. Pick some u € G and some disc U C G around u such that f is holomorphic
on U and f’ is non-vanishing on U. Then f satisfies also satisfies the first order differential

equation
=43 = gof — g3

on U, for an appropriate choice of the square root. By Lemma [3.3.4] there exists a w € C
such that p(w 4+ u) = f(u). By replacing w with —w — 2u if necessary we can also assume
@' (w+u) = f(u). Now the functions f(z) and g(z) = p(z + w) satisfy the same first order
differential equation and agree at u, hence they agree for all z € U by the existence and
uniqueness theorem for first order differential equations. The identity theorem then yields
f(z) =g(z) for all z € G.

If f is meromorphic on C, then we have f(z) = p(z+w) for all z where neither f nor p has
a pole. By the identity theorem, f(z) has poles precisely at the points —w + Q. Moreover,
we see that Per(f) = Per(p(- + w)) = Q. If two lattices 2,9 have the same Weierstrass
invariants gs, gs, then their corresponding Weierstrass g-functions g and pq satisfy the
same differential equation, and we have pq(z) = po/(z + w) for some w € C by the statement
of the corollary. This implies Q = Per(pq) = Per(pq/ (- +w)) = . O
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4.3 FEisenstein series, the discriminant, and the j-invariant

Comparing the differential equations from Proposition [3.3.5] and Proposition we ob-
tain the identity

40° — gop — g3 = 4(p — e1)(p — e2)(p — e3).

Since the p-function takes more than three different values, we obtain the following identity
of polynomials:

Corollary 4.3.3. We have
4X% — o X — g3 = 4(X —e1)(X — e2)(X — e3).
In particular, we have

0=-e; +e2 +es3,
g2 = —4(e1e2 + e2e3 + eseyq),

g3 = 4erezes.
Using these identities for ej, eo, e3, we obtain the following relation.
Corollary 4.3.4. We have
g5 — 27g% = 16(e1 — e2)*(ea — e3)?(e3 — e1)? # 0.
We define the discriminant of Q0 by
A= AQ) = g5 — 279> = 16(e1 — e2)*(eg — e3)(e3 — e1)% # 0,
and the j-invariant of Q2 by

(e1e2 + ezez + 636’1)3

D — 3 = _4.1923.
Ji= () = (1202)° /A = —4 120 G PR

5
Corollary 4.3.5. For n > 4 we have the recursion

(n=3)2n+1)(2n —1)Gan =3 > (2p—1)(2q — 1)G2pGa. (4.3.2)
p>2,>2
ptg=n

Proof. By differentiating the formula from Proposition we obtain g” + 30G, = 6p?. If
we plug in the Laurent expansion of p given in (4.2.1]) we get

> (20 —1)(2n — 2)(2n — 3)G2pz™ " + 30G,

n>2
=123 (20— 1)Gonz™ 1463 > (20— 1)(2g — 1)GaplGiagz 7",
n22 p>2¢>2
Comparing coefficients at z™ gives the stated recursion. O

Example 4.3.6. We have the identities

7Gs = 3G3, 11G1o = 5G4Gg, 143G = 42G4Gy + 25G2 = 18G5 + 25G2.
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4 The Weierstrass g-function

It is easy to see from the above recursions that every G can be written as a polynomial

over Q in G4 and Gg.
Corollary 4.3.7. We have Gy, € Q[G4, Gg).

This result yields another proof of the fact that the lattice €2 is already determined by its
Weierstrass invariants go, gs. Indeed, every Gy is a rational polynomial in go, g3, hence the
Laurent expansion at z = 0 is determined by g2, g3. By the identity theorem, p is
determined by its Laurent expansion at 0, and € is uniquely determined by its Weierstrass
p-function.
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5 The dependence on the lattice

So far, we viewed the Eisenstein series GG and the Weierstrass p-function as quantities at-
tached to a fixed lattice . In this chapter, we investigate the behaviour of G;(€2) and pq
when the lattice 2 varies.

5.1 Homogeneity and base change

If Q is a lattice in C, then A2 is a lattice for every 0 £ X\ € C. From the series definitions of
G and p it is clear that we have

oaa(A2) = A 2pq(2), and GL(A\Q) = A FGL(Q). (5.1.1)

This also gives the identities

G2(AQ) = A0 (), (5.1.2)
g3(A2) = A"0g3(92), (5.1.3)
ANQ) = AT2A(Q), (5.1.4)
F(AQ) = j(Q). (5.1.5)

Proposition 5.1.1. For two lattices Q and € in C, the following are equivalent.

1. We have Q' = XQ for some 0 # X € C.
2. j(&) = j(Q).

Proof. We already observed above that j(AQ) = j(Q2) for A # 0. Conversely, suppose that
J(€) = j(2) # 0. Then we have g2(£2) # 0 and g2(©2) # 0. Hence there is some 0 # X € C
such that

92() = A2 (Q) = g2(AQ).

Using A = g3 — 27¢3 and A(\Q) = A12A(Q), we obtain
gg(Q,) = :E)\_Ggg(Q) = igg(AQ)

Replacing A with i)\ if necessary, we get g2(2) = g2(AQ) and ¢3(Q') = g3(AQ2). We have seen
in Proposition that g2 and g3 uniquely determine the lattice, so we obtain ' = \(Q.

If 5(Q) = j() = 0, then ¢g2(Q) = ¢2(Q') = 0, and it follows from Corollary that
93(€2) # 0 and g3(Q') # 0. Now we can proceed in a similar way as before. O

Let (w1, w2) be a basis of Q. Since wy,wy are linearly independent over R, we have 7 :=
% ¢ R. Replacing wy with —wy if necessary, we may assume that Im(7) > 0. Hence, every
lattice in C is of the form

Q=\N2Zr+172)
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5 The dependence on the lattice

for some A € C, and 7 in the upper half-plane
H = {7 € C: Im(7) > 0}.
Since p and G} are homogeneous in A, it remains to study their behaviour on lattices 2 =
Z7+ 7, as T € H varies. Hence, we will now view g and Gy, as functions of 7 € H, that is, we
define
p(2;7) = pzriz(2), Gi(7) := Gy(Zt + Z).
Proposition 5.1.2. For (2Y) € SLy(Z) we have

< at+b

_ 2 .
et +d’ c7‘—|—d> = (e +d)"p(z7),

and

at +b\ &
G (S210) = er + )G,

Proof. Let 7/ = “Tj_'s Then we have

at +b
ct +d

Zr'+7Z =7 +7Z = (et +d) N (Z(aT +b) + Z(cT + d)) = (e7 + d) " (Z7 + 7).

Here we used that the map = — (‘C‘ g) x is a bijection on Z2. By the homogeneity of G} we
obtain

Gi(r') = Gy(Z7' + Z) = Gy((cT + d) (Z1 + Z)) = (cr + d)FGi(7),
and similarly for p. O

Remark 5.1.3. The group SLy(R) acts on H by fractional linear transformations
a b _art+b
c d) 7T o +d
A holomorphic function f : H — C is called a modular form of weight k € Z for SLo(Z) if it

satisfies the transformation law
ar +b k
£(E00) = e+ a)tsto)

forall (¢%) € SLy(Z) and 7 € H, and if f(7) remains bounded as Im(7) — oco. If, in addition,
f(7) goes to 0 as Im(7) — oo, then f is called a cusp form. We will show that Gi(7) is a
modular form of weight k, and A(7) = A(Z7 + Z) is a cusp form of weight 12.

5.2 Eisenstein series

For even k > 4 we may write the Eisenstein series G(7) for 7 € H as the series

G =CzZr+2)= 3 wh= S (mr4n)F, (5.2.1)
0AWELTHL m,neZ

were the symbol 3 means that the summand for (m,n) = (0,0) has to be omitted. Since
the sum converges absolutely and locally uniformly, the Eisenstein series G (7) defines a
holomorphic function on H.
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5.2 FEisenstein series

Proposition 5.2.1. For 7 € H and even k > 4 we have the Fourier expansion

i)k & .
Gr(1) =2C(k) + 2 (;2_ )1)‘ Z_l Op—1(m)e2mmT

where ((s) = > 7_1m™ %, (s € C,Re(s) > 1), is the Riemann zeta function and
=Y d°, (s€R),
d|m

is a generalized divisor sum. In particular, Gi(7) is a modular form of weight k for SLa(Z).

Proof. Since the Eisenstein series converges absolutely, we may write the series in (5.2.1)) as

:Zn_k+ZZ(mT+n + 2¢(k +222m7—|—n

n#0 m#0neZ m=1n€Z

We will use the so-called Lipschitz formula

2
S (r+n) mi) Z h=lg2mirt  (r cH k€ N,k > 3), (5.2.2)
ne’

whose proof will omit here for brevity. Then we obtain

(271)

l ZZ k— 127rzrsr
_1|

s=1r=1

Gr(m) = 2¢(k) +2

By collecting the terms with m = rs we obtain the stated Fourier expansion.

Since the Fourier expansion of G(7) does not have terms of negative index, we have
limyy, (7500 G(T) = 2¢(k), that is, Gi(7) remains bounded as Im(7) — co. We have already
seen above that G (7) is holomorphic on H and satisfies the stated transformation law under
SL2(Z). Hence Gi(7) is a modular form of weight k& (but it is not a cusp form since 2¢(k) #
0). O]

Since ((k) # 0 for even k > 4, we see that G (7) does not vanish identically as a function
of 7.

Example 5.2.2. Using the formulas ((4) = 79% and ((6) = 9%65 we obtain

4 .
Gy(1) = T (1 + 240 Z o3(m 27”””) :

m=1

276 )
Ge(1) = o5 (1 — 504 Z os(m 27”””) .

m=1

Using the identity 7Gs = 3G one can now show that
7((8) = 6¢*(4)

and

07(m):03(m)—|—120 Z Jg(T’)O’g(S)

r,seN
r+s=m

for every m € N. We leave this as an exercise for the reader.
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5 The dependence on the lattice

5.3 The discriminant
Recall the definition of the discriminant,
A= gg’ — 27g§, where go = 60G4, g3 = 140Gs.
Again, we may view A as a function on H by setting
A(T) = A(ZT + 7).

Proposition 5.3.1. For 7 € H the discriminant A(T) has a Fourier expansion of the shape

o0

A(r) = (2m)*2 > 7(m)e?™mT (5.3.1)

with coefficients 7(m) € Z and 7(1) = 1. The discriminant A(T) defines a holomorphic
function on H with A(T) # 0 for all T € H. Moreover, it satisfies the functional equation

at +b
A(m’—{—d

> = (cr + d)"2A(T)

for every (¢8%) € SLy(Z). In particular, A(T) is a cusp form of weight 12.

Proof. The holomorphicity of A(7) on H and the transformation law immediately follow
from the corresponding properties of the Eisenstein series, see Proposition We have
also already seen in Corollary that A(Q2) # 0 for every lattice © in C, which implies
A(1) # 0 for every 7 € H. Hence it remains to show that A(7) has a Fourier expansion as
stated above.

We abbreviate

00 00
A= Z O_g(m)e27rim7" B = Z o5 (m)eQﬂ'im‘r,
m=1

which are (up to the missing constant terms) multiples of the Fourier expansions of the
Eisenstein series G4(7) and G¢(7), see Example Hence, we find

(2 )12 12 e?

T (1 1 mm 3
A(r) = 1728 (1+ 240A) —( 504B)> mE 17' (5.3.2)
where 7(1) = 1, and coefficients J(m) S 1728Z It remains to show that the coefficients

7(m) are integers, that is, the denominator 1728 cancels out. To see this, note that d* = d°
(mod 12) for d € Z, and hence o3(m) = o5(m) (mod 12) for m € N. This implies A = B
(mod 12) coefficient-wise. If we work modulo 1728 = 123, we find

(14 240A4)% — (1 — 504B)? = 122(5A+7B) =0 (mod 123),

which means that the denominator 1728 is cancelled in each coefficient in , that is,
7(m) € Z for every m € N.

From the shape of the Fourier expansion we see that limyy,(r)—oc A(T) = 0, so A(7) is a
cusp form. This finishes the proof. ]

Remark 5.3.2. One can show that there are no non-zero cusp forms of weight less than 12,
and that every cusp form of weight 12 is a constant multiple of A.
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5.4 The j-invariant

Remark 5.3.3. Set ¢ := e*™ for brevity. Then the first few coefficients of the Fourier
expansion of (27) 12A(7) are given by

q— 24 4 252¢> — 1472¢" 4 4830¢° — 60484¢° — 16744¢" 4 84480¢° — 113643¢° — 115920¢'° + . . .

The discriminant A(7) is sometimes referred to as the Ramanujan A-function, and its coef-
ficients 7(m) are called Ramanujan’s 7-function. Using the theory of modular forms one can
show that the 7(m) are multiplicative, that is, they satisfy 7(m)7(n) = 7(mn) if gcd(m,n) =
1. They have many other interesting and deep properties, some of which are still only con-
jectured to be true. For example, Ramanujan conjectured in 1916 that the 7(p) for primes
p satisfy the estimate |7(p)| < 2p''/2, which was proved in 1974 by Deligne as a corollary to
his celebrated proof of the Riemann hypothesis for zeta functions of algebraic varieties over
finite fields. Moreover, Lehmer conjectured in 1947 that 7(m) # 0 for all m € N, which is
still an open problem.

5.4 The j-invariant

Finally, we can also view the j-invariant as a function on H,

i(r) = (1292(7))° _ (720G4(7))?
A(7) A(r)

Proposition 5.4.1. For 7 € H the j-invariant j(T) has a Fourier expansion of the shape
J(r) = 2T Y e (5.4.1)
m=0

with coefficients j,, € Z. The j-invariant j(7) defines a holomorphic function on H and
satisfies the functional equation

j (Z::S) = j(r) (5.4.2)

for every (¢5) € SLy(Z).

Proof. The holomorphicity and the transformation law of j(7) follow from the corresponding
properties of G4(7) and A(7), and the fact that A(7) # 0 for all 7 € H. The shape of the
Fourier expansion and the integrality of the coefficients j,, can easily be derived using the
following general principle: if f(q) = >,,>0anq™ and g(q) = >,,>0bng"™ with an, b, € Z are
convergent power series for |g| < 1, with by = 1 and g(q) # 0 for all |¢| < 1, then f(q)/g(q) is
given by a convergent power series >, <o cpg” for |¢| < 1 with coefficients ¢, € Z and ¢y = ao.
The proof is easy and will be left as an exercise to the reader. O

Remark 5.4.2. Since the Fourier expansion of j(7) has the term =277 it does not remain

bounded as Im(7) — o0, so strictly speaking it is not a modular form of weight 0. However, it
is holomorphic on H, transforms like a modular form of weight 0 under SLy(Z), and its Fourier
expansion only has finitely many terms of negative index. Such a function is called a weakly
holomorphic modular form of weight 0. In a similar way as we showed that every elliptic
function is a rational function in @ and ', one can show that every weakly holomorphic
modular form of weight 0 is a polynomial in j(7).
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5 The dependence on the lattice

Remark 5.4.3. Let ¢ = €2>™7. The first few coefficients of the Fourier expansion of the
j-invariant j(7) are given by

G(7) = ¢~ 4 744 + 196884 + 2149376042 + 8642999704¢° + . . .

One can show that all the coefficients j,, are positive. Also note that, in comparison to
the coefficients 7(m) of A(7), the coefficients j,, of j(7) seem to grow much faster. Indeed,
using the theory of modular forms one can show that the 7(m) grow (at most) like m®, but
the j, grow (at most) like V™ for some C' > 0, as m — oo. The coefficients j,, have
a deep interpretation as (linear combinations of) dimensions of irreducible represenations of
the monster group. This result, known as monstrous moonshine and proved by Borcherds in
1992, is one of the most celebrated (relatively) recent results in number theory.

Proposition 5.4.4. If 7,7 satisfy j(1) = j(7'), then there exists a matriz (¢Y) € SLa(Z)

such that
, ar+b

et +d’

Proof. The assumption j(7) = j(7') means that j(Zr + Z) = j(Z7' + Z). Proposition
shows that Z7’' + Z = XN(Z1 + Z) for some 0 # A € C. Hence (7/,1) and (A7, \) are two bases
of the lattice Z7' + Z. By Lemma there is some matrix U = (2Y) € GL2(Z) such that

T =a M +bland 1 = cAT +d)\, so 7 = ‘C‘:ig Since 7 and 7’ both lie in H, and we have

Im (Z;ig) = det(U) Igﬁll)” so we must have det(U) > 0, i.e. U € SLy(Z). O

Proposition 5.4.5. For every c € C, there exists some 7 € H with j(1) = c.

Proof. Suppose that j(7) # ¢ for all 7 € H, for some fixed ¢ € C. Then the function

is holomorphic on C. We consider the integral
/F(T)dT» Y=7 Tt Y2 93+ 74+ s,
gl

with the path v = 0G as in the following picture.

Y2

V3 il
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5.4 The j-invariant

It follows from the transformation law (5.4.2)) of j(7) that
F(r+1)=F(r), F(-1/7)=7"F(7).

This implies

/71 F(r)dr + /% F(r)dr = /M F(r)+ /75 F(r)dr = 0.

From the shape of the Fourier expansion of the j-invariant we see that F'(7) has a Fourier
expansion of the form A
F(r)= Z A €27 ap = —2mi.
m>0

This yields [, F(r)dr = 2mi. By the residue theorem we have

2mi Z ord,(j —c¢) = /yF(T)dT = 27i.

TEG

But this is a contradiction since j(7) — ¢ has no poles, and no zeros by our assumption. This

finishes the proof. O
Remark 5.4.6. Recall that the group SLy(Z) acts on H by fractional linear transformations
(@ 3) T = g:r"s Since j (g:is = j(7), the j-function can be viewed as a function on the

quotient SLo(Z)\H. Then Propositions [5.4.4] and [5.4.5say that the map

j:SLo(Z)\H — C
is a bijection.

Corollary 5.4.7. For each ca,c3 € C with ¢3 — 27c5 # 0, there exists precisely one lattice
such that

c2 = g2(9) and  c3 = g3(Q).

Proof. By Proposition [5.4.5| there exists a lattice Q such that j(2) = (12¢2)°

= 3 _ o972
cy—27cy

We distinguish

two cases:

1. ¢ = 0. Then we have j(2) = 0, hence g2(2) = 0 and g3(2) # 0. Choose some
0 # A € C such that g3(Q2) = AS¢c3. The homogeneity of go, g3 shows that

g3(A2) = A0g3(2) = ¢35 and  ga(AQ) = A1 g2(Q) = 0 = 3,

so A(1 is the lattice we are looking for.

2. ¢a # 0. Then we have j(2) # 0, hence g2(£2) # 0. Choose 0 # A € C such that
g2(2) = Meg. We find go(AQ) = ¢2, and from j(AQ) = j(Q) we get 3 = g3(\Q). If
c3 = —g3(AQ), we can replace A by i\ to obtain the desired lattice.

The uniqueness of 2 follows from the fact that a lattice is uniquely determined by g2(£2) and
93(€2), compare Proposition [4.3.2} O
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6 Product expansions

In this chapter we discuss the Weierstrass o-function and (-function, in order to construct
elliptic functions with prescribed zeros and poles. Moreover, we will discuss the Jacobi theta
function, and prove Euler’s pentagonal number theorem. Throughout, we let 2 be a lattice
in C.

6.1 The Weierstrass o, (- and 7-function

The Weierstrass o-function is defined as an infinite product. Hence, e first recall some of the
necessary facts about infinite products. Let a1, as,as,... be a sequence of complex numbers
which converges to 0. Then there is some N € N such that |a,| < 1 for n > N. We define
the infinite product of the sequence (1 + ap)pen as

ﬁ L+ag):=(1+ar)-- (1+aN)-eXp( i log(1+an)>,

n=N+1

where we choose the principal branch of the logarithm. We say that the infinite product
converges absolutely if the series Y 7 | |a,| converges. In this case, the sum Y > | log(1+
ap) converges absolutely. Moreover, a convergent infinite product equals 0 if and only if one
of the factors 1 + a,, equals 0.

If f1, fa,... is a sequence of holomorphic functions on some domain D C C, we say that the
infinite product [[52 (1 + f,) converges absolutely and locally uniformly if the series > 02 | fn
converges absolutely and locally uniformly. In this case, the infinite product [[02 (1 + f,)
defines a holomorphic function on D.

Proposition 6.1.1. For z € C the Weierstrass o-function
Z Z 2
o(z) i =0(zQ) =2z H (1—> +3(3)
w
0#£weN

converges abolutely and uniformly on every compact subset of C, and hence defines and entire
function. It has zeros of first order precisely at the points in Q. Moreover, o(z) is an odd
function.

Proof. To prove the convergence, let K C C be a compact set. A short computation using

‘1 B <1 _ Z) eS+3(2)
w

with some constant only depending on K. Since the series >, |w| ™3 converges, we find
that the infinite product converges absolutely and locally uniformly.

G GIEHDEE SR

w w n—3
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6 Product expansions

The o-function vanishes if and only if z = 0 or one of the factors (1 — Z) 65+%(5)2 for
some 0 # w € ) vanishes, which happens precisely at z = w. Hence ¢ has zeros of order 1
precisely at the points in €.

To see that o(z) is odd, replace z with —z and then replace w with —w in the infinite
product. O

Proposition 6.1.2. For z € C\ Q the Weierstrass (-function
o'(2)

(@) == = 0 =+ T (Cutute)

0#we

converges absolutely and uniformly on every compact subset of C\ Q. It has poles of first
order and residue 1 precisely at the points in Q. Moreover, ((z) is an odd function.

Proof. For z in a compact subset K C C we estimate

1 1 z

) S CK”LU‘iB,
zZ— W w w

w2(z — w)

where the constant C'x only depends on K. Now the absolute and uniform convergence of
¢(z) on compact subsets of C \ © follows from the convergence lemma The statement
about the poles is clear, and the fact that ((z) is odd can either be seen from the series
definition, of from the fact that o(z) is odd (hence o'(z) is even). O

The (-function is closely related to the p-function.

Corollary 6.1.3. For z € C\ Q we have

('(2) = —p(2).
Proof. This follows by comparing the infinite series representation of p from Proposition [4.1.1
with the infinite series obtained by differentiating { termwise. O

Corollary 6.1.4. We have the Laurent expansion
1 o
C(2:9) =~ = >~ Gar(Q)*
k=

around z = 0.
Proof. This can be proved in the same way as the analogous result for p, Propositiond.2.1] [
The (-function is not elliptic. However, we have the following result.
Lemma 6.1.5. For w € ) the Weierstrass n-function
n(w) :=n(w; Q) := ((z +w) — ((2)
is independent of the choice of z € C\ Q. In particular, we have
n(w + w') = n(w) +n(w'), w,w € Q,

that is, n :  — C is a group homomorphism.
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6.1 The Weierstrass o, (- and n-function

Proof. Using that p is elliptic, we find
(e +w) = C(2)) = —plz +w) — plz) =0,
50 ((z +w) — ((z) is independent of z. We can now compute

n(w+w') = {(z +w+w') = ((2) = ((z +w) = ((z +w) + {(z +w+w) - ((2)
= (C(z +w) = ((2) + (2 +w) +w') = {(z +w)) = n(w) +n(w).

This finishes the proof. O
The homomorphism 7 satisfies the so-called Legendre relation:
Proposition 6.1.6. Let Q = Zw; + Zwa with Im(wy /wa) > 0. Then we have
n(wg)wy — n(wy)wg = 27i.
In particular, for w,w' € Q we have
n(w)w —n(w)w € 2riZ.
Proof. Let P = P(u;w1,ws) be a fundamental parallelogram, where the base point u € C is

chosen such that 0 lies in the interior of P. We integrate ((z) over the positively oriented
boundary of P and use the residue theorem to get

((z)dz = 2mi,

since ((z) has precisely one pole of first order and residue 1 in P, namely at z = 0. On the
oter hand, we have

u—i—wg u+wi+wo u+w1 u
+ / + ) ¢(2)dz
u

u+ws2 +wi+w2 u+wy

/sz —((z+w1) dz+/ . C(2) = ¢(z +w2))dz
n(wi)wz — n(wz)w,

where we used that the parallelogram (0, we, w; + wa, wy) is positively oriented. Using that
n: Q — C is a homomorphism we also get n(w)w’ — n(w')w € 2miZ for w,w' € Q. O

Finally, note that for 0 # A € C we have

o(Az; AQ) = Ao (z; ),

COA0) = 1¢(=0),
n(Aw; AQ) = %n(w;ﬁ)-
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6 Product expansions

6.2 The transformation law for o

Since o(z; ) is entire, it cannot be an elliptic function for Q. However, it satsifies an inter-
esting transformation law under z — z 4+ w for w € Q.

Theorem 6.2.1. For w € Q and z € C we have
oz +w) = x(w)e W EF g (),

where
RS if w/2 € Q,
x(w) = {—1, ifw/2 ¢ Q.

Proof. Since o vanishes at points in €2, both sides of the above equation vanish for z € ,
so we can assume z ¢ Q for the rest of the proof. In this case, we have o/(2) = o(2){(2) by
definition of the (-function. Moreover, using the definition of n(w) we obtain

d <a(z + w)> ' (z+w)o(z) —o(z +w)o'(2)
dz o(2) o(2)?
o(z+w)((z+w)o(z) —o(z+ w)o(z)((z)
o(2)?

)

Hence, the value

T W) @) twr2)
¢(w) T O'(Z) €
is independent of z. We want to show that it equals x(w). If w/2 ¢ Q, we may choose

z = —w/2 and use that o is odd, to obtain ¥ (w) = —1 = x(w). If 0 # w/2 € Q, we first
write (for any w € )

o(z+2w)o(z +w)

G100l e~ 2W)ET) = ()2, (6.2.1)

P(2w) =

where we used that 1 is a homomorphism. Since €2 is discrete, there is some natural number
n > 1such that w’ = 27"w € Q but 2w’ = 27" 1w ¢ Q. Above we have seen that ¢ (w') = —1.

We obtain from (6.2.1)

Y(w) = (2"') = Y(')? = (-1)* =1,

since n > 1. This shows ¢ = x, and finishes the proof. O

Corollary 6.2.2. If we put f(z) = Z_(é:'g)) with a,b € C, then we have for w €  and
z2€C,z ¢ b+ Q the transformation law

flz+w) = en(w)(b—a)f(z),
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6.3 Existence of elliptic functions with prescribed zeros and poles

6.3 Existence of elliptic functions with prescribed zeros and poles

Let f be a non-constant elliptic function for a lattice €2 with fundamental parallelogram P.
If we list the zeros ai,...,a, and poles by,...,b, of f in P (with repetitions to account for
multiplicities; compare Theorem [3.2.3), then Abel’s relation (Theorem [3.2.4)) says that

ar+---+a=b+---+b (mod Q).
Conversely, we have the following existence theorem.

Theorem 6.3.1. Let ay,...,a, and by,...,b, be two finite sequences in C, such that the sets
{a1 +Q,...;a, +Q} and {b1 + Q,...,b. + Q} are disjoint, and such that

wo := (by + -+ +0b;) — (a1 +---+ay)

lies in Q. Then

2) = e—n(wo)za(z — al) e O'(Z - a'f’)
JG): o(z—0b1)--o(z—b)

is an elliptic function which has zeros precisely at the points a1 + €2, ...,a, + Q and poles
precisely at the points by + Q,...,b, + Q (where the order at such a point is given by the
number of repetitions). Moreover, every elliptic function with zeros at ay, .. .,a, and poles at
bi,...,by is a constant multiple f(z).

Proof. 1f we put fq(2) = ZEE:Z)), then we may write

f(z) = e~ M(wo)z H Fazb; (2),
j=1
and it follows from Corollary that

flz +w) = e Mwo)zg—n(wo)w H eN(w)(bj—aj) H Fay b, (2)
j=1 j=1

= enwoywtn(wwo £,y = £(3),

where we used that —n(wo)w + n(w)wy € 2miZ by the Legendre relation, Proposition
The statement about the order immediately follows from the fact that o(z) is entire and has
zeros of order 1 precisely at the points in ).

Since two elliptic functions with the same zeros and poles (and the same multiplicities) only
differ by a constant factor (compare Theorem , every elliptic function with the same
zeros and poles as f(z) is a constant multiple of f(z) as defined in the theorem. O

6.4 The Jacobi theta function and the pentagonal number theorem
The Jacobi theta function for the lattice 2 = Z7 4+ Z for 7 € H is defined by

.5 .
19(2;7_) = Z eTin T+27F7,?’LZ.
nez
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6 Product expansions

Lemma 6.4.1. The Jacobi theta function converges absolutely and locally uniformly on CxH.
For every fized T € H it defines an entire function in z, which has zeros (at least) at the points
TH + Q. Moreover, it satisfies the transformation laws

Yz +1;7) =9(2;7) and — V(z+7;7) = e TTT2TEY (25 7).

Proof. Let K C C x H be compact. Then there exists some € > 0 such that |[Im(z)| < 1/¢
and Im(7) > ¢ for all (z,7) € K. We find

0o 0o
2 ; 2 _ 2

2 : ’efrzn ‘r+27r1nz’ _ } :6 wn?Im(7)—27nlm(z) <142 E :6 mne+2nn/e

nez nez n=1

for all (z,7) € K. The series on the right-hand side can be estimated by > o2 ; e~ O for a
suitable C' > 0, and this series converges as a subseries of the geometric series. In particular,
¥(z;7) defines an entire function in z, and a holomorphic function in 7 € H.

The rule ¥(z + 1;7) = ¥(z; 7) is clear from the definition, and we have

19(,2 + 7 7_) _ Z em'nQT-l—ZTrin(z—f—T) _ €—7ri7'—27riz Z eTri(n+1)2T+27ri(n+1)z _ e—ﬂ"i’T—Zﬂ'iZ,lg(Z;T)‘
neZ nez

Moreover, we compute
19(7—7—517 7_) — Z(il)nem'n(n—i—l)T — Z (71)—m—167ri(—m—1)(—m)7— — 719(%—4-1; 7_)’
nez meZ

(T+1

hence ¥ 7) = 0. From the transformation law we get that 9(z; 7) has zeros at T +Q. O

We prove the Jacobi triple product identity, which is an infinite product expansion for the
Jacobi theta function.

Theorem 6.4.2. We put ¢ = €™ and & = €™ with 7 € H and z € C. Then we have

o0

= [T a—a™a+em )@+ gm 2.

m=1
. . . . 41
In particular, z — 9(z;7) has roots of first order precisely at the points 5= + ().

Proof. The left-hand side is just the Jacobi theta function J(z; 7). We denote the right-hand
side by g(z;7). It is an entire function which has simple zeros in the points z € TTH + Q.
Moreover, one may check directly that we have

g(z+1;7) = g(z;7)

and
g(Z + 75 T) _ 1 + E_lq_l/Q _ 6771'7:7'7271'7:2
g(zT) 14+&2 ’

which means that . .
gz +77) =TT g (7).

Comparing this with the transformation rules of the Jacobi theta function from the last
lemma, we see that for each fixed 7 € H the function ¢(z;7) := 9¥(2;7)/g(z;7) is an entire
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6.4 The Jacobi theta function and the pentagonal number theorem

elliptic function in z, and hence constant in z. Thus we may just write ¢(7) for ¢(z;7). It is
now useful to view ¢ as a function of ¢ € C with 0 < |g| < 1, by setting

ZnEZ gnqn2/2
[T=1 (1 = g™) (1 +&gm=12) (1 + € 1gm1/2)
The right-hand side is holomorphic in ¢, and extends to a holomorphic function at ¢ = 0, with

value ¢(0) = 1. Moreover, a direct but tedious computation (which we leave as an exercise)
shows that

w(q) =

V(1/47)  9(1/2;47)
g(1/47)  g(1/2;47)

which translates into

and inductively to
olq) = (q™), for all k£ € N.

Since |¢| < 1, we see that ¢** tends to 0 for k — co. Hence the identity theorem gives ¢(q) = 1
for all ¢ € C with |g| < 1, which shows that J(z;7) = g(z; 7). O

We can use the Jacobi theta function to construct elliptic functions.

Corollary 6.4.3. Foray,...,a,,by,...,b, € C with (a1 +---4+a,) — (by + -+ b,) € Z the
function
Nz —ay;7)- -z —apT

Yz —0by;7) -0z — by 1)
is an elliptic function for the lattice Q = Zt + Z. If the sets {a1 + Q,...,a, + Q} and
{bi + Q,....b, + Q} are disjoint, then f(z) has zeros at the points z € T3 + a; + Q and
poles in the points z € TTH +b; +Q for 1 < j <r, where the order is given by the number of
repetitions of the a; and b;.

Replacing 7 by 37/2 and setting z = (7 + 2)/4 in the Jacobi triple product identity, we
obtain Euler’s pentagonal number theorem.

Theorem 6.4.4. Put ¢ = e*™7 for 7 € H. Then we have

ﬁ (1 o qm) _ Z(_l)nq(3n2—n)/2_

m=1 ne”

Remark 6.4.5. 1. The m-th pentagonal number is the number of distinct edges of m
regular pentagons of side lengths 0, 1,2, ..., (m—1), which are overlaid as in the following
pictures:

m=1 m=2 m=3 m=4
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6 Product expansions

The pentagonal numbers are obtained by the formula (3m? —m)/2 with m = 1,2,3,....
The first few pentagonal numbers are 1,5,12,22,.... If we allow all m € Z, we obtain
the generalized pentagonal numbers (3m? — m)/2, the first few of which are given by
0,1,2,5,7,12,.... These are exactly the exponents at ¢ in the series

2_
Z(_l)mq(i’)m m)/2:1_q_q2+q5_’_q7_q12_’_.”
meZ

appearing in Euler’s pentagonal theorem above.

2. A partition of m € N is a tuple (A1,..., \x) of positive integers with A; < -+ < A such
that m = Ay 4+ --- + A;. The \; are called the parts of the partition. For example, the
partitions of m = 4 are (4),(1,3),(2,2),(1,1,2),(1,1,1,1). Its partitions into distinct
parts are (4), (1,3).

Let p™(m) and p~(m) denote the number of partitions of m into distinct parts with an

even and odd number of parts, respectively. For example, for m = 4 the partitions into
different parts are (4) and (1, 3), so we have p*(4) = 1 and p~(4) = 1. By multiplying

out
[a-¢m=0-9->1=¢*) =D (pt(m)—p (m)q™,
m=1 m=0

we see that Euler’s pentagonal theorem is equivalent to the combinatorial identity

(=)™ if m = (3n? —n)/2 for some n € Z,

0, otherwise.

pr(m) —p~(m) = {

3. Let p(n) denote the number of all partitions of n (possibly with repeating parts), and
let p(0) = 1. For example, we have seen above that p(4) = 5. Using the geometric series
it is not hard to show that

IO_O[ 1—g¢™ "= ip(n)q”-
n=0

m=1

6.4.1 The Four Squares Theorem

In this section, we briefly sketch a proof of Lagrange’s Four Squares Theorem, using the
modularity properties of the Jacobi theta function.

Theorem 6.4.6 (Lagrange 1770). Every natural number n € N can be written as a sum of
four squares.

In other words, if we let
ra(n) := {(a,b,c,d) € Z* : > + V* + 2 + d* = n}

denote the number of ways to write n as a sum of four squares, then Lagrange’s Theorem
says that r4(n) > 1 for every n € N. The so-called representation number r4(n) is related to
the Theta Nullwert

1) :=09(0;7) = Z T

nez

44



6.4 The Jacobi theta function and the pentagonal number theorem

by
00
19(7_)4 — Z em’(a2+b2+c2+d2)7 _ Z ?”4(71)6“”7,
a,b,c,dEZ n=0

that is, r4(n) is the n-th Fourier coefficient of ¥(7)*. The first important ingredient for the
proof of the Four Squares Theorem is the theta transformation formula.

Proposition 6.4.7. For 7 € H we have

(1) =0

where we take the principal branch of the square root.

The proof uses the Poisson summation formula, but we will skip it for brevity. The im-
portant observation is that the theta transformation law resembles the transformation law
of a modular form of weight % under the matrix (9 '). More precisely, using the theta
transformation formula, one can show:

Corollary 6.4.8. The function 9(27)* is a modular form of weight 2 for the group

I'o(4) = {(Z 2) :c¢=0 (mod 4)}

Using the general theory of modular forms (for subgroups of SL2(Z)) one can show that the
space of all modular forms of weight 2 for I'g(4) is finite-dimensional (in fact, it has dimension
2). Moreover, one can construct an explicit basis using certain Eisenstein series. In this case,
one can show that

I(2r)t = %(4E2(4T) — Ey(7))

with the (non-modular) Eisenstein series
0 .
Eyr)=1-24 Z o1(n)e*mn,
n=1

A short computation now yields the Fourier expansion

der)t =14> (82 d) eZminT
n=1 d|n
4J‘(d

If we recall from above that the n-th Fourier coefficient of 9(27)% is given by r4(n), we obtain
a refined version of Lagrange’s Four Squares Theorem.

Theorem 6.4.9. For every n € N we have

ra(n) =8 Z d
dn
4d
In particular, every n € N can be written as a sum of four squares.

By looking at 9(7)¥, one can get explicit formulas for rj(n), the number of ways to write
n as a sum of k squares, for many values of k.
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7 Elliptic curves and the addition theorem for
the p-function

In this chapter we will discuss the connection between lattices in C and elliptic curves over
the complex numbers.

7.1 The addition theorem for the p-function

Let Q = Zw; + Zws be a lattice in C, and let p(z) = pa(z) be its Weierstrass-p function.
Theorem 7.1.1 (Addition Theorem). For z,w € C with z,w,z + w ¢ Q we have

'(2) — o (w 2
p(z +w) + p(z) + p(w) = : (W) '

4
For the proof of the addition theorem, we collect some properties of the function on the
right-hand side.
Proposition 7.1.2. For fized w € C\ %Q the function
1¢'(2) — p'(w)
2 p(z) — p(w)

is an elliptic function with respect to Q) with poles of first order precisely at the points z € 2
and z € —w + Q, with Laurent expansions

f(2) = f(zw) :=

fzyw) = —% — p(w)z +0(2%), around z =0, (7.1.1)

flzw) =

o +c(w) +0(z+w), around z=—w, (7.1.2)

with a constant c(w) € C (we will see in the proof of the addition theorem that we have
c(w) =0).

Proof. Note that f is not defined at the points z €  and z € —w + €, but also at the points
z € w+ ). But since

s J(or) = Ly ) =@/ =0) _19"(w)

Hw 2 5 (o) — p(w) /(= —w) 2 p(w)
the points z € w + § are removable singularities, that is, f(z) is holomorphic there (here
we used that w ¢ 10, hence p/(w) # 0). In order to determine the shape of the Laurent
exansion of f(z) around z = 0, we can use the Laurent expansions p(z) = 272 + O(2?%) and
¢ (2) = —2273 + O(2). Moreover, p(z) — p(w) has a simple root at every z € —w + €, and
o' (2) — o' (w) = —2¢'(w) # 0 (since p is even, ¢ is odd, and w ¢ £Q; compare Lemma .
Hence f(z) has a simple pole at every z € —w + €. Since the sum of the residues of f in a
fundamental parallelogram is 0 (compare Theorem, and the residue at z = 0 equals —1,
the residues at points z € —w + 2 must be 1. This gives the stated Laurent expansions. [
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7 Elliptic curves and the addition theorem for the p-function

Proof of Theorem|[7.1.1. We consider the elliptic function

9(2) = f(zw)* = p(z +w) — p(2) — p(w),  weC\ 3z

Then g(z) is holomorphic apart from possible poles at the points z € Q and z € —w + Q. At
z = 0 we have

9(2) = (72 + 2p(w)) — p(w) — 272 = p(w) + O(2) = O(2),
and at z = —w we have

1 2¢(w) 1 _ 2¢(w)
9(2) = (z —w)? * z+w (24 w)? +0) = z+w +O(L)-

If c(w) # 0 then g(z) would have simple poles only at the points z € —w + €, which is im-
possible since the sum of the residues in a fundamental domain must be 0 by Theorem [3.2.2
This implies ¢(w) = 0. Hence g(z) is holomorphic everywhere, and thus constant by Theo-
rem From the Laurent expansion g(z) = O(z) at z = 0 we find g(z) = 0, which finishes
the proof of the addition theorem in the case that w ¢ %Q But both sides of the addition
theorem are holomorphic near w € %Q \ ©, so for these points w the addition theorem follows
by continuity. O

As a special case, we obtain the following duplication formula for the p-function.
Corollary 7.1.3. For z € C\ 1Q we have
1 (120(2)% — g2\
p(22) = 1 (W) —2p(2).

Proof. First, by letting w — z in the addition theorem, we obtain

o(22) = © (Z(())) ~2p(2).

Now the duplication formula follows from the differential equation

20" (2) = 120(2)* — g2,
which in turn follows by differentiating the differential equation '(2)? = 4p(2)3 — g2p(2) — g3
from Proposition O
7.2 Elliptic curves over C

Let Q = Zw; + Zws be a lattice in C with Weierstrass invariants go = ¢2(£2) and g3 = g3(2).
The subset
E:=EQ):={(X,Y)eCxC:Y*=4X> - g X — g3}

of C x C is called the (affine) elliptic curve associated to €.
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7.2 Elliptic curves over C

Example 7.2.1. Let us suppose that gs, g3 are real numbers (recall from Corollary
that every pair (g2, g3) of complex numbers with g5 — 27g3 # 0 appears as the Weierstrass
invariants of a unique lattice in C). Then we may look at the real points on E, that is, the
real solutions (X,Y) € R? of the equation Y2 = 4X3 — g9 X — g3. The right-hand side has
either three or one real root. Typical examples of such curves are Y2 = 4X3 — 4X (with real
roots X = 0,%1) and Y? = 4X3 + 4 (with real root X = —1). Their real points look as
follows.

Using the Weierstrass p-function, we obtain a parametrization of E.

Proposition 7.2.2. The map
O (C/D\{Q} = B(Q), @(z+Q) = (p(2),¢(2))
is a bijection.

Proof. First note that ® is well-defined since p and g’ are elliptic. Moreover, the differential
equation '(2)? = 4p(2)? — g2p(2) — g3 from Proposition shows that the image of ® is
indeed contained in E.
For (X,Y) € E we choose some z € C with p(z) = X, compare Lemma [3.3.4 Then we
have
Y? = 4X? — go X — g3 = 49(2)* — g20(2) — g3 = ¢/ (2)?,

where we again used the differential equation for p(z). Hence we either have Y = ©/(z) or
Y = —¢/(2). Since p(2) is even and ¢'(2) is odd, we may assume that Y = ¢/(2) by replacing
z with —z if necessary. This shows that (X,Y) lies in the image of ®, so ® is surjective.
Now suppose that there are 21,20 € C\ Q with (p(z1),9'(21)) = (p(22), 9 (22)). The
identity p(z1) = @(z2) implies z; = £22 (mod Q) by Lemma If ©'(21) # 0, then
21 £ —21 (mod Q) since ¢’(2) is odd, so we must have 21 = 25 (mod Q). If ©/(21) = 0 (hence
©'(22) = 0), then each of z; and 29 is equivalent to one of wi/2,w2/2,ws/2 (mod ) by
Lemmam But since the values p(wy) = ey, are pairwise different by , we must have
z1 = z9 (mod ). This shows that ® is injective. O
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7 Elliptic curves and the addition theorem for the p-function

It is somewhat inconvenient that the trivial coset Q in C/€Q does not correspond to a point
on F via ®. To solve this issue, we add a ’point at infinity’ O to the elliptic curve F,

E:=E(Q):=FU{0},

We will think of O as the 'point’ (00, 00). Then we may extend the map ® to a bijection

$:C/Q—EQ), @(:z+Q)= {g(Z)’ v iiz z 87

Recall from that we may identify C/€2 with a fundamental parallelogram for €2, which
can in turn be thought of as a torus. Hence, via the map ® we may think of the elliptic curve
FE as a torus.

Using the bijection @, we can now carry over the natural group structure of C/2 to the
elliptic curve E. For P,Q € E we define their sum as

P+ Q:=o(@ Y(P)+27Q)), (7.2.1)

where the addition on C/) is given by (u+ Q) + (v + Q) := (u + v) + Q. The following
proposition is then clear.

Proposition 7.2.3. Under the addition (7.2.1)), the elliptic curve E(S) is an abelian group
with unit element O, and ® : C/Q — E(Q) is a group isomorphism. Moreover, for z € C\ Q
the inverse element can be computed as

—(p(2), 9'(2)) = (p(=2), 9'(=2)) = (p(2), =¢'(2)), (7.2.2)

and for u,v € C with u,v,u+ v & Q the addition can be computed as
(p(u), o' (w) + (p(v), ' (v)) = (p(u +v), o' (u+v)). (7.2.3)
Note that tells us that the negative —P of a point P = (X,Y’) on E is just given by
—P=(X,-Y).

However, the addition law ([7.2.3)) does not yet tell us how the components of P 4 @ could be
expressed in terms of the components of P and ). Such an explicit formula will be derived
in the next section, using a geometric interpretation of the addition law.

7.3 The addition law, geometrically

In this section we define an addition law on E by a geometric approach. To distuish it from
the group law introduced above, we will denote the geometric addition law by Pe( (although
we will see below that it essentially defines the same addition law). Since O = (00, 00) should
be the neutral element, we define P e O = O @ P = P for any P € E. Hence it remains to
define P e () for P,(Q € E.

We have to distinguish three cases concerning the position of P and Q on E. Thoughout
we will write P = (Xp, Yp) for points P € C x C.
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7.3 The addition law, geometrically

7.3.1 P,Q € E with Xp # X

For P,Q € E with Xp # X we consider the complex line I' = I'p ¢ through P and Q. It is
given by the equation
YV =apqX +bpg

where
Yp - Yo
=" 7.3.1
apqQ XP — XQ’ ( )
XpYo — XoYp
b =Yp —apoXp= . 7.3.2
PQ P —apXp Xp— Xo (7.3.2)

If we look at the real image of E in some examples (if g2, g3 are real) we see that the line I'
typically intersects F in a third point, which we denote by P e ().

ReRR

To make this idea rigorous, we define P o ( as the point with coordinates

1
Xpeg = Za%’Q - Xp— Xg,

Ypeq := apXpreq + bpg,

(7.3.3)

and show that it is indeed the third intersection point of the line I" with the elliptic curve E.
It is clear from the definition that P e @) lies on the line T'.

Lemma 7.3.1. For X € C we have
4X3 — goX — g3 = 4(X — Xp)(X — X0)(X — Xpeg) + (apoX +bpg)*. (7.3.4)

Proof. Tt is clear that the coefficients at X3 on both sides of agree, and it follows
from that the coefficients at X? agree, as well. Hence the difference of the two sides
in is linear in X. But this difference vanishes at the two distinct points X = Xp and
X = Xg since P,() € I'N E, so it vanishes identically. ]

Corollary 7.3.2. For P,Q € E with Xp # X¢g we have Pe () € E.

In particular, the point P e () is the third intersection point of the line I' with E. The
formulas in (7.3.3) are also called intersection formulas.
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7 Elliptic curves and the addition theorem for the p-function

7.3.2 P #Q with Xp = X

For P # @ with Xp = X the defining equation for E implies that we have Ylg = YQ2, that
is, Yp = +Yg. Since P # @, we must have Yp = —Y. In the the real image of E (if g2, g3
are real), the line through P and @ is a vertical line, which ‘intersects E at oo’ Motivated

by this, we define
Pe(Q:=0.

733 P=Q

The idea is similar as in the case that Xp # X¢, but now we consider the tangent line at P,
and define P o P as the other intersection point of this tangent line with F.
If Yp = 0, then the tangent line at P in the real image of E will be a vertical line. Hence

we define
PeP =0

in this case.
If Yp # 0, then the complex tangent line I' = I'p at P is given by

Y =apX +bp

where

_12XF — g

= bp=Yp —apXp.
ap Yy P P —apap

We define the point P e P by
1
Xpep i= Za2p —2Xp,

Ypep := apXpep + bp.

Again, it is clear that P e P lies on the tangent line I". Similarly as above, one proves the
following results:

Lemma 7.3.3. For X € C we have
AX% — 9o X — g5 = A(X — Xp)*(X — Xpep) + (apX + bp)®
Corollary 7.3.4. For P € E with Yp # 0 we have Pe P € E.

7.3.4 Comparison of the addition laws

Recall that we defined
PeO=0QeP=P

for P € E. Moreover, for P # Q € E we defined

third intersection point of the line through P, @ with E, if Xp # Xg,

P =
- {0, it Xp = Xo,

and for P € E we defined

Pep second intersection point of the tangent line through P with E, if Yp #0,
[ ] =
O, if Yp =0,
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7.3 The addition law, geometrically

Remark 7.3.5. The geometric addition law P e () defined above is not associative! In
particular, it does not give a group structure on E.

Lemma 7.3.6. Let u,v,w € C\  such that u+ v+ w € Q, and such that w+ Q is not one
of the points u+ Q,v 4+ Q. Then the corresponding points on E satisfy

D(u) @ P(v) = ¢(w).
Proof. Recall that ®(z) = (p(z), ¢'(z)). For brevity, we put
P = ®(u), Q= 2(v), R = ®(w).

Let us first assume that u 4+ Q # v + 1, such that P # ). Then we have Xp # Xg
since otherwise Xp = p(u) = p(v) = Xq would imply that u + v € Q (by Theorem [3.2.4)),
contradicting our assumption that v +v +w € Q but u,v,w ¢ Q. Hence we are in the case
of Section [7.3.1] of the geometric addition law.

In order to show that P e (@ = R, we have to check that R is the third intersection point of
the line I'p o through P and @. Consider the elliptic function

f(2) = ¢'(2) — (apqp(2) + bpg)-

It has a third order pole in 0 and no other poles in C/€2, so ist must have three roots in C/S).
We have f(u) = f(v) = 0 since P = ®(u) and Q = ®(v) lie on the line I'p g which is defined
by Y = apgX + bpg. Since f(z) has precisely three roots in C/2 whose sum is in Q by
Theorem we must have f(w) = 0. Since P, @, R are pairwise different, this means that
R = ®(w) is the third intersection point of E and the line I'p g, so we have P o () = R.

It remains to consider the case that u + Q = v + Q, that is, P = @), which is very similar.
Now the assumption that u +v +w = 2u+w € Q and u,w ¢ Q implies that 2u ¢ Q, i.e.
©'(u) # 0, which means that we are in the case of Section with Yp # 0. Hence, we
consider the elliptic function

f(z) = ¢/(2) = (app(2) + bp).

Again, it has a third order pole and three roots in C/Q2. We have f(u) = 0 since P = ®(u)
lies on the tangent through P. Moreover, using the definition of ap and the (derivative of)
the differential equation ©? = 493 — pgo — g3 one can check that f(z) has a double root at
z = u. The third root mod © must be w by Theorem which implies that ®(w) is the
third intersection point of F and the tangent through P, hence P e P = R as claimed. O

Remark 7.3.7. Lemma can also be proved using the addition and duplication laws
for the p-function, Theorem [7.1.1] and Corollary Conversely, we can use Lemma [7.3.6
to obtain a new proof of the addition theorem, Theorem Indeed, assume first that
u,v,w € C\ Q satisfy u+v+w =0, and v+ Q,v + Q,w + Q are pairwise different. Then
Lemma together with and , implies that

1
p(u+v) = p(—w) = p(w) = *G%D,Q - Xp—Xqg

4
1 (@’(U) —¢'(v)

2
4\ p(u) — p(v) ) ~ olu) = plo).

For general u,v € C\  the addition theorem follows by continuity.
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7 Elliptic curves and the addition theorem for the p-function

For P = (Xp,Yp) € C x C we put
P* = (Xp,~Yp).

We can now show that the addition law P+ () on E defined via ® and the geometric addition
law P e Q on E (essentially) agree.

Proposition 7.3.8. The addition (P,Q) — P + Q on E defined via the bijection ® : (C\
0)/Q = E, (2 + Q) = (p(2), ¢'(2)), is given by

P+Q=(PeQ), ifXp+# X,

and
2P =(PeP)*, ifYp#0.

In particular, we have the formulas

1

Xpig = Za%:,Q - Xp—-Xq,  Ypig=—apeXpiQ —brq, if Xp # Xq,

and

Xop = ia% —2Xp, Yop = —apXop —bp, if Yp # 0.
Moreover, we have
_P =P = (Xp,~Yp). (7.3.5)
Proof. Let P = ®(u),Q = ®(v), and put w = —u — v. Then by Lemma [7.3.6] we have

P+Q=2(@ (P)+271(Q)) = 2(u+v) = ¢(~w)
= (p(—w), ¢ (—w)) = (p(w), —¢'(w)) = (B(w))" = (P Q)".

The explicit formulas for the addition law defined via ® now follow from the explicit formulas
for the geometric addition law. O

Remark 7.3.9. If we put O* = O then it follows from the above proposition that we have
P+Q=(PeQ)"

for all P,Q € E. Indeed, the remaining cases can be checked directly: if P # Q with Xp = X

then we have Yp = =Yg, and P4+Q = O = (Pe())*, where the first identity is (7.3.5)), and the

second identity holds by definition. Similarly, if P = @ with Yp = 0, then 2P = O = (Pe P)*
by (7.3.5)) and definition, respectively.

The addition law (in the real picture) geometrically looks as follows.
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8 Rational points on elliptic curves
In this chapter we follow the book Rational points on elliptic curves by Silverman and Tate.

8.1 Mordell’'s Theorem

In Section we defined an elliptic curve over C to be the set of solutions of the equation
E:Y?2=4X3— X — g3,

where ga = ¢2(Q2), g3 = g3(2) are the Weierstrass invariants of a lattice 2 in C, which satisfy
g3 —27g% # 0. In order to simplify the notation, we would like to forget for now that the
coefficients go, g3 come from a lattice. By Corollaryfor every ¢, cg3 € C with ¢3—27¢3 # 0
there exists a lattice 2 with Weierstrass invariants ca = ¢g2(£2) and c3 = ¢3(€2). Hence, after
replacing Y by 2Y (which will be inessential for our application) and setting a = —go/4 and
b= —g3/4, every elliptic curve has the form

E:Y?=X*+aX +b

where a,b € C satisfy 4a® + 27b% # 0.

Definition 8.1.1. A rational elliptic curve is given by an equation of the form
E:Y?=X’+aX +b

with a,b € Q satisfying 4a® 4 27b% # 0.

To simplify the notation, we will view the point at infinity O as a point on F/, and no longer
distinguish between F and F = F U {oo}.

Remark 8.1.2. The condition 4a® + 276 # 0 is equivalent to saying that the polynomial
f(X) = X3+ aX + b does not have multiple roots.

Remark 8.1.3. Replacing Y by 2Y slighly changes the explicit formula for the addition law
in Proposition For example, for the X-coordinate of P + () we have

Yp—Yy )’
XP+Q:<X1;_)%> — Xp—Xg, if Xp# Xg,

and
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8 Rational points on elliptic curves

For the rest of this chapter, E will denote a rational elliptic curve. We may ask for its
rational points
EQ ={(X,Y)eQ*: Y’ =X’ +aX + b} U{O}.

Note that we view the point at infinity O as a rational point by definition. Using the explicit
formulas for the group law on E given in Remark we see that F(Q) is a subgroup of E.
The fundamental result about E(Q) we want to prove is Mordell’s Theorem:

Theorem 8.1.4 (Mordell). The group E(Q) is finitely generated.

Explicitly, this means that there exist points Pi,..., P, € E(Q) such that every point
P € E(Q) can be written as P =nj P + -+ - 4+ ni Py for some integers nq,...,n; € Z.
By the structure theorem for finitely generated abelian groups, we have an isomorphism

E(Q) =7 x E(Q)tors

for some integer r > 0, called the rank of E, and a finite group E(Q)tors, which is called the
torsion subgroup of E(Q) and consists precisely of the elements of finite order in E(Q).

In order to prove Mordell’s Theorem, we will now study heights on rational elliptic curves
and use a descent argument.

8.2 The Descent Theorem

We will use the following criterion in order to prove Mordell’s Theorem.

Theorem 8.2.1 (Descent Theorem). Let I' be an abelian group, and suppose that there is a
function
h:T'—[0,00)

with the following four properties:
(a) For every real number C, the set {P € I": h(P) < C} is finite.

(b) For every Py € T there is a constant ko such that

hP + Py) <2h(P)+ ko forallPeTl.

(¢) There is a constant k such that

h(2P) > 4h(P) — k for all P €T.

(d) The subgroup 2T has finite index in T
Then I is finitely generated.

Proof. Since 2T" has finite index in I by assumption (d), we can choose finitely many coset
representatives Q1,...,Q, for 2I" in I'. This means that for any P € I there is an index iy
such that

P—Q, eor,

SO we can write

P—-Q; =2P
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8.2 The Descent Theorem

for some P, € I'. Now we do the same thing with P;. Continuing like this, we obtain

P — Q’il - 2P17
Py —Qi, =25,
Py — Qiy = 2P, (8.2.1)

Ph_1—Qi, = 2Py,

where Q;,,...,Qi, are chosen in a suitable way from the coset representatives Q1,...,Qn,
and where Pi,..., P, are suitable elements in I". By substituting the equations into
each other recusively, we obtain

P = Qi +2P,

and then
P = Q’il + 2@22 +4P27

and, after some more steps,
P=Qi +2Qi, +4Qi, + - + 277 Qs,, + 2" P

In particular, this says that P is in the subgroup of I' generated by the @Q;’s and P,,,. We are
going to show that by choosing m large enough, we can force P,, to have height less than a
certain fixed bound that does not depend on the initial point P. Then the finite set of points
with height less than this bound, together with the @Q);’s, will generate I'.

The basic idea is that since P; is more-or-less equal to 2P, 11, the height of P, should be
more-or-less one-fourth the height of P;. So the sequence of points P, Py, P, ... should have
decreasing height, and eventually the point P,, should end up in a set of points of bounded
height (this proof strategy is where the name descent theorem comes from). Now we turn this
idea into a valid proof.

From assumption (b) applied to the points @1, ..., @, we get constants K1, . .., ky such that

WP —Q;) <2h(P)+#; forall PeT,

for each 1 <4 <n. Let
k' = max{k1,...,kn}

Then
h(P—Q;) <2h(P)+ K" forall PeT and all 1 <i < n. (8.2.2)

Here we used again the assumption (d), or in other words, that there are only finitely many
coset representatives Q1,...,Q, for 2I" in T".

Let x be the constant from item (c¢). Moreover, let P; one of the elements in the sequence
P, Py, Py, .... We want to show that h(P;) is considerably smaller than h(P;_1). We calculate

4h(P,) < h(2P;) + &
=h(Pj-1—Qi;) + K
< 2h(Pj-1) + K + K,
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8 Rational points on elliptic curves

where we used (8.2.2)) in the last step. We write this as

A(By) < (P + "
= 00— 1 ()~ (< 4 ).

From this we see that if h(Pj_1) > k' + k, then

h(Pj) < —h(Pj-1).

] oo

Hence, in the sequence of points P, Pi, Ps, ..., as long as the point Pj_; satisfies h(Pj_1) >
k' +k, then the next point in the sequence has much smaller height, namely h(P;) < %h(Pj,l).
But if you start with any number and keep multiplying it by %, it approaches zero. So
eventually we will find an index m such that h(P,;,) < k' + k.

In conclusion, we have shown that every element P € I' can be written in the form

P=0a1Q1 +aQ2+ -+ 0,Qn +2™R

for certain integers ay, . .., a, and m € N, and some R € T with bounded height h(R) < ' +k.
Hence the set

{Q1,Q2,...,Q,}U{ReT : h(R) <K +k}

generates I'. From (a) and (d) this set is finite, which finishes the proof. O

We will apply the Descent Theorem with I' = F(Q), and the logarithmic height » on E(Q)
defined in the next section. To do that, has to prove that the logarithmic height has the four
properties stated in the Descent Theorem. Here we will prove the properties (a),(b), and (c¢).
The assection (d) that 2E(Q) has finite index in E(Q) is much more difficult to prove, and
we refer the reader to Section 3.4 in the book by Silverman and Tate .

8.3 Heights

Definition 8.3.1. Let x = “* be a rational number written in lowest terms. The height H (x)
of x is the minimum of the absolute values of the numerator and denominator of z,

H(w) = H (") = max{jm].[n]} € No.

The height is a measure for the complexity of a rational number. For example, although 1

and 5 are close to each other in absolute value, we have H(1) =1 and H(5%) = 1000.

Proposition 8.3.2. The height on Q has the finiteness property: The set of all rational
numbers whose height is less than some fired number is a finite set.

Proof. If H(™) < C then we have |m|, [n| < C, which leaves only finitely many possibilities
for m,n € Z. O
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8.3 Heights

Definition 8.3.3. For a rational elliptic curve E we define the height of a point O # P =
(X,Y) € E(Q) by
H(P) = H(X) € No,

and we set H(O) = 1. Moreover, we define the logarithmic height by
h(P) = IOgH(P) S Rzo.

Note that it makes sense to measure the complexity of a point P on E(Q) only in terms of
its X-coordinate, since its Y coordinate is determined by X up to a sign.

We now want to show that the logarithmic height hA(P) has the four properties required in
the Descent Theorem The finiteness property (a) is easy to prove:

Lemma 8.3.4. For every real number C, the set {P € E(Q) : h(P) < M} is finite.

Proof. If h(P) < C then H(P) < e“. Since H(P) = H(X) for P = (X,Y), this leaves
only finitely many possibilities for X, and since Y? = X3 4+ aX + b, we have at most two
possibilities for Y for every possible X. O

The items (b) and (c¢) in the Descent Theorem are more complicated, and will be discussed
in the following two subsections. The proof of item (d), the finiteness of 2FE(Q) in E(Q), is
considerably harder and will be discussed in a separate section afterwards.

8.3.1 The height of P + F,

In this section we prove the following lemma, which asserts that the logarithmic height h(P)
satisfies assumption (b) of the Descent Theorem

Lemma 8.3.5. Let Py € E(Q) be fized. There is a constant ko (depending on Py and a,b),
such that

h(P + Py) <2h(P)+ ko forall P € E(Q).
For the proof of the lemma, we will use the following observations:
Lemma 8.3.6. Let P = (X,Y) € E(Q) with P # O.

1. We can write the coordinates of P in lowest terms as

m n
2 V=
€

_6—37

X =

with integers m,n, and e, with e > 0 and gcd(m,e) = ged(n,e) = 1.

2. There is a constant K > 0 (depending on a,b) such that

m| < H(P), ¢ < H(P), |n|<KH(PY* forallP= (:; e’”;)

Proof. We leave this as an exercise to the reader. O
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8 Rational points on elliptic curves

Proof of Lemma|[8.5.5 For the proof, we will explicitly write out the formula for the sum of
two points, compare Corollary

First note that the lemma is trivial for Py = O, so we may assume that Py # . Moreover,
we note that in proving the existence of ky, it is enough to prove that the inequality holds for all
P execept those a finite set. Hence it suffices to prove Lemma for all P ¢ {Py, —F, O},
which implies that X # Xg. This assumption saves us from doing a case distinction when
applying the explicit formulas for the addition law.

Let P = (X,Y) and write

Then we have h(P + Py) = log H(£), so we need a formula for ¢ in terms of (X,Y’) and
(Xo, Yp). Since X # Xy by assumption, the formula from Corollary says

(Y —Yp)?

S T
(Y = Y5)? = (X = X0)*(X + Xo)
N (X — Xp)? '

If we multiply this out, we find that Y2 — X3 appears in the numerator. Since P is on the
curve, we may replace Y2 — X3 with aX + b, so we end up with an expression

5_AY+BX2+CX+D
 EX?’+FX+G

where A, B,C, D, E,F,G are certain rational numbers that can be expressed in terms of
a,b, and (Xo,Yp). Further, by multiplying the numerator and the denominator by the least
common denominator of A, B, ..., G, we may assume that A, B,...,G are all integers.

The important fact is that once the curve and the point P, are fixed, this expression is
correct for all points P. So it will be allright if our constant xy depends on A, B,... G, as
long as it does not depend on X,Y.

Now substitute X = m/e? and Y = n/e? as in Lemma above, and clear denominators
by multiplying numerator and denominator by e*. We find that

_ Ane+ Bm? + Cme? + De*
- Em? + Fme? + Get

£

Notice that we now have an expression for £ that is an integer divided by an integer. It need
not be in lowest terms, but cancellation will only make the height smaller. Thus

H(&) < max{|Ane + Bm? + Cme® + De?|,|Em? + Fme? + Ge'|}
In Lemma I8.3.6] we have noted that
e<HP)Y?, n< KH(P)*? and m < H(P),

where the constant K only depends on a,b, but not on P. Using these and the triangle
inequality gives

|Ane + Bm? + Cme? + De*| < |Ane| + |Bm?| + |Cme?| + | De?|
< (|AK| +|B| +|C| + | D)) H (P)?
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and

|Em? + Fme? + Ge'| < |[Em?| + |Fme?| + |Ge?|
< (IB| +|F| + |G H(P)*.

Therefore
H(P+ Ry) = H(€) < max{|AK| + |B| +|C| + |D|,|E| + |F| + |G|} H(P)*.
Taking logarithms of both sides gives
h(P + Py) < 2h(P) + ko,
where the constant
ro = logmax{|AK| + B[+ [C| + [D|,|[E| + |F| + |G|}

depends only on a,b and (Xg, Yp), but not on P = (X,Y’). This finishes the proof. O

8.3.2 The height of 2P
Lemma 8.3.7. There is a constant k (depending on a,b) such that
h(2P) > 4h(P) — k for all P € E(Q).

Proof. Again, it doesn’t matter if we discard finitely many points P, and now it will be
convenient to discard the finitely many points satisfying 2P = O in order to avoid case
distinctions when applying the explicit formulas for the addition law on E(Q).

Let P = (X,Y), write 2P = (£,n), and put

f(X)=X3+aX +0
for brevity. The formulas from Corollary state that

f'(X)
2Y

£ =a?—-2X, where o=

Putting everything over a common denominator and using Y2 = X3 + aX + b we find

FX)?-8XF(X)  X'+...

&= 4f(X) T AX

Note that the denominator is nonvanishing since 2P # O.

Thus & = i(())?) is the a quotient of two polynomials ¢(X),1(X) with integer coefficients.
Since f(X) does not have multiple roots, f(X) and f/(X) have no common roots, so the
polynomials in the numerator and denominator of £ have no common roots.

Since h(P) = h(X) and h(2P) = h(§) = h(¢(X) /¢ (X)), we want to prove that

(X ))
h ( > 4h(X) — kK,
v(x)) =
for some constant x (depending on a, b, or in other words, on the polynomials ¢, ). This will
follow from the next general lemma about heights (on Q) and quotients of polynomials. [J
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8 Rational points on elliptic curves

Lemma 8.3.8. Let ¢ and 1 be polynomials with integer coefficients a no common roots. Let
d be the maximum of the degrees of ¢ and 1.

(a) There is an integer R > 1 (depending on ¢ and 1), such that for all rational numbers
m/n (written in lowest terms) we have

ged <nd¢ (’:) ,ndy (7:)) divides R.

(b) There are constants k1 and ko (depending on ¢ and ), such that for all rational numbers
m/n that are not roots of 1 we have

() - (Z20) <o (2) e

Proof. (a) For d = 0 the statement is trivial, so we will assume d > 1. Further, without loss
of generality we may assume that deg(¢) = d and deg(v)) = e < d. We write

®(m,n) = nte <m> = aom® + aym®T'n + - 4+ ag_1mn® + agn?,
n

U(m,n) = nhp <m> = bomn®¢ + bym* 'n? et ... 4 bon.
n
and we put
v = y(m,n) = ged(®(m, n), ¥(m,n)).

We want to find a bound for v which is independent of m,n.
Since ¢(X) and ¥(X) have no common roots, they are relatively prime in the Euclidean
ring Q[X], and we can find polynomials F'(X) and G(X) with rational coefficients such that

F(X)$(X) + G(X)(X) = 1. (8.3.1)

Let A € Z be such that AF(X) and AG(X) have integer coefficients, and let D be the
maximum of the degrees of F' and GG. Note that A and D do not depend on m, n.
Now we evaluate (8.3.1)) at X = m/n and multiply by AnP+9:

nP AF (:) -ne (:?) +nPAG (:) -ny (:) — ApP+d,

EZL =®(m,n) €L =¥(m,n)

From this we see that v = ged(®(m, n), ¥(m,n)) divides AnP*9. This is not yet good enough,
since we need to show that v divides some fixed integer which does not depend on n. We will

show that v divides Aaé) +4 where ag is the leading coefficient of ¢(X).

Note that v divides ®(m,n), so it also divides
AP 1D (m, n) = AagmnP T 4 Aaym@TInP T 44 AggnP T2

On the right-hand side, every summand after the first one contains An”+?, which divisible
by ~ as we just showed above. Hence 7 divides the first term AagmnPT41. Thus

~v  divides ng(AnD+d,Aa0man+d—1)_
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Since m and n are coprime, we find that v divides Aagn®?*t4"1. If D+ d — 1 = 0, then we
are done. If not, then n”+9=2 is an integer, and we use that v divides AaonD“l*QCI)(m,n)
to repeat the above argument and find that + divides Aa3n? +d=2 We repeat this procedure
until we find that v divides AaOD +4 which finishes the proof of (a).

(b) We will only prove the lower bound, which is the one we need to complete the proof of
Lemma Again, we may discard finitely many rational numbers, so we will assume that
m/n is not a root of ¢. Moreover, since h(r) = h(1/r) for any non-zero rational number, we
may interchange ¢ and 1 if necessary, and again assume that deg(¢) = d and deg(v)) = e < d.

We want to estimate the height of

6(2) _nlo (%) _ d(m,n)
v (%) nt (%) ¥(imn)

Since ®(m, n) and ¥(m,n) are integers whose greates common divisor «y is bounded by some
R (independently of m,n) by part (a) we have

&=

H(E) = imax{@(m, )1, 1% (m, ) }

a3
o ()l GI)

%( + b). We need to compare H(£) to

|v
B
I
»

IV
IV :u\“
A

In the last line we used max{a, b}

d
1 (%) = max{fm|*, nl),
n
so we consider the quotient
1 e ()] + et ()]
H(m/n%) — 2R max{|m|?,|n|?}
1

e G+ lv G
2R max{| 24,1}

To estimat this, we consider the function p(¢) on R defined by

2] + [ ()]

PO = e {71}

Since ¢ has degree d and 1 has degree at most d, we see that p(¢) has non-zero limit as
|t| = oo. The limit is |ag| if ¢ has degree strictly less than d, and it is |ag| + |bp| if ¥ has
degree equal to d. In any case, outside of some closed interval I the function p(¢) is bounded
away from 0, that is, there is some constant € > 0 such that p(t) > ¢ for all t € R\ I. Inside
the interval I, the function p(¢) is continuous and non-vanishing since by assumption ¢ and
1 do not have common zeros. Hence p(t) is bounded away from 0 on all of R, so there is a
constant C7 > 0 such that p(t) > C; for all t € R.
We prove earlier that

H(m/n)® — 2R

n

H(¢) S 1 p(m)
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8 Rational points on elliptic curves

and using p(t) > C for all ¢ gives
Cl m d
H&>—=H(— ) .
€)= 2R <n>
The constants C'; and R depend on ¢ and v, but not on m and n, so taking logarithms gives
the desired inequality

h€) > dh (’:) “ ke with sy = log(2R/Ch).

This finishes the proof of Lemma and thereby also the proof of Lemma [8.3.7] O

8.4 Outlook: Points of finite order

Let
E:Y?=X3+aX +b, (a,b€Q, A :=4a®+270* #0)
be a rational elliptic curve. By replacing (X,Y) with (X/m?,Y/m3) for a suitable integer m,
we may assume that a,b € Z, which we will do from now on.
A point P € E(Q) has finite order (or is a torsion point) if there exists an integer n € Z
such that nP = O. By Mordell’s Theorem, the torsion subgroup E(Q)os of all points of
finite order is a finite subgroup of E(Q).

Theorem 8.4.1 (Nagell-Lutz). Let P = (X,Y) € E(Q)tors be a rational point of finite order.
Then

1. X andY are integers, and

2. either Y = 0, in which case P has order 2, or Y? divides the discriminant A = 4a3 +
27b%.

The Nagell-Lutz Theorem yields a procedure to determine all points of finite order: First,
we can form a finite list of possible torsion points by taking ¥ = 0 and all integers Y such
that Y2 divides A, and check whether the corresponding values for X with (X,Y) € E(Q)
are integral. For each of the points P in this list of possible torsion points, we compute
P,2P,3P,... until we either arrive at O, in which case P is indeed a torsion point, or we
arrive at a point nP which does not have integral coordinates, in which case nP, and hence
P, cannot be a torsion point by the Nagell-Lutz Theorem. A priori, it could happen that all
points P,2P,3P,... have integral coordinates, even if P is not a torsion point. This could
only happen if E contains infinitely many integral points, which is not possible by Siegel’s
Theorem.

Theorem 8.4.2 (Siegel). A rational elliptic curve E contains only finitely many integral
points.

Now the question arises what points of finite order may appear. For example, one can write
down examples of elliptic curves having points of order 2,3,4,5,6,7,8,9,10 and 12, but it is
impossible to find a point of order 11 or of order larger than 12. More precisely, it turns out
that there are not many that possibilies for E(Q)tops:

Theorem 8.4.3 (Mazur). The torsion group E(Q)ios is isomorphic to one of the following:
o Z/nZ with 1 <n <10 orn =12.

o 7./27 X Z]2nZ with 1 < n < 4.

66



9 The Birch and Swinnerton-Dyer Conjecture

9.1 The BSD Conjecture

The algebraic rank

Let
E: Y =X34+aX+b (a,beQ, A:=4a®>+270*+#0)

be a rational elliptic curve. By replacing (X,Y) with (X/m?2,Y/m?) for a suitable integer m,
we may assume that a,b are integers, which we will do from now on.

Mordell’s Theorem tells us that the group F(Q) of rational points of a rational elliptic
curve is finitely generated, so by the structure theorem for finitely generated abelian groups
we have

E(Q) =7 x E(Q)tors

for some r € Ny, called the algebraic rank (or Mordell-Weil rank) of E, and with the finite
torsion subgroup E(Q)ors consisting of the elements of finite order in F(Q). The Theorem
of Lutz-Nagell gives an effective way to compute F(Q)tors, and the Theorem of Mazur gives
a classification of all possible torsion groups. It remains to consider the rank 7, but unfortu-
nately, it is usually difficult to determine and there is currently no known algorithm that will
compute the rank for any given rational elliptic curve.

It is conjectured that the ’average rank’ of an elliptic curve should be % Roughly speaking,
this means that if you pick an elliptic curve at random there will be a 50% chance that the
curve has rank 0, and a 50% chance that it has rank 1. In particular, curves of rank > 2 are
‘rare’.

The highest known rank is » = 20 (found in 2020), and an elliptic curve with rank at least
28 is known (but its precise rank is unknown)ﬂ It is not known whether there exist elliptic
curves of any given rank, or even whether the rank can be arbitrarily big.

The Birch and Swinnerton-Dyer Conjecture connects the algebraic rank to an analytic
quantity attached to E, which we will explain next.

The analytic rank

Let p be a prime number. Since the coefficients a, b are integers, it makes sense to reduce the
equation Y2 = X3+ aX + b mod p and ask for solutions (X,Y) € IE‘IZ). The rough idea is that
the curve E(F,) should be easier to understand than E(Q), and that it might be possible
to piece together information from all the E(IF,) for primes p to get new information about
E(Q). For example, E(Q) is difficult to determine in general, but for a fixed prime p, the
set E(F,) can be determined in finitely many steps by just checking for every (X,Y) € IFZ%
whether it satisfies the equation of £ mod p or not.

'see https://web.math.pmf .unizg.hr/~duje/tors/rankhist.html|for the current records
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9 The Birch and Swinnerton-Dyer Conjecture

However, if A =0 (mod p) then the reduction of E mod p is not an elliptic curve anymore,
and in this case we say that F has bad reduction at p. Otherwise we say that E has good
redution at p. Fortunately, F has bad reduction only at the finitely many primes p dividing
A. However, there may be different integral Weierstrass equations for the same curve F,
which have different discriminants, so in order to obtain a well-defined notion of good and
bad reduction, we must actually choose a minimal integral Weierstrass equation for E, which
means that |A| is minimal among all integral Weierstrass equations.

It is clear that E(F,) has at most 2p+ 1 points (for each X € F, there are at most 2 values
of Y such that (X,Y) € E(F,), and O always lies on E(F,)). In fact, the number of points
in E(F)) is closer to p+ 1. A theorem of Hasse states that we have the bound

|#E(Fp) -p—1|< 2\/13’

We will be interested in the quantity
ap :=#EF,) —p—1.

All the local informations a, about the numbers of points on E(F),) for primes p are collected
in the Hasse-Weil L-function of E, defined by the Euler product

L(E,s) == [[(1 —awp™* +p" )7 - J](1 = app™®) 7,
ptA plA

for s € C, whenever the product converges absolutely. It follows from the Hasse bound that
L(E, s) converges absolutely for Re(s) > %, and by the general theory of L-functions is is
expected that L(E, s) should have an analytic continuation to the entire complex plane, and
should satisfy a functional equation under s — 2 — s. However, it turned out that this is
a very difficult problem. It was proved in 1941 by Deuring for a certain class of elliptic
curves (those with complex multiplication) by relating L(FE,s) to the L-functions of Hecke
Grossencharacters, which are easier to understand. The analytic continuation and functional
equation of L(E), s) for all rational elliptic curves was proves around 1999 as a part of Andrew
Wiles’ proof of Fermat’s Last Theorem, by relating L(E, s) to L-functions of modular forms.
We will briefly discuss this result below.

Now we define the analytic rank of E as the order of vanishing of L(E,s) at s = 1, or in
symbols

ran(E) := ords—1 L(E, s).

Note that s = 1 is the center of the (expected) functional equation of L(FE, s) under s — 2—s.

The BSD conjecture
We can now state the famous Birch and Swinnerton-Dyer conjecture.

Conjecture 9.1.1 (Birch and Swinnerton-Dyer 1965). Let E be a rational elliptic curve.
Then the algebraic rank and the analytic rank are equal:

r(E) = ren(F) = ords=1 L(E, s).

This formulation is sometimes called the weak version, and there is also a stronger version
which predicts the precise value of L(") (E, 1) in terms of certain algebraic quantities attached
to E.
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9.2 Fermat’s Last Theorem and the Taniyama-Shimura Conjecture

Birch and Swinnerton-Dyer arrived at this conjecture through extensive numerical exper-
iments and heuristics. A particularly remarkable aspect is the fact that, at the time the
conjecture was made, it was not even clear that L(E, s) has an analytic continuation to s = 1.
Moreover, in the conjectural explicit formula for L") (E, 1) the order of the Tate-Shafarevich
group 1II(E/Q) appears, which is not known to be finite in general!

Although the conjecture is still largely open, there has been some progress for curves of rank
0 and 1. For example, it follows from celebrated works of Gross and Zagier, and Kolyvagin
from 1989 that the BSD conjecture is true in the case that the elliptic curve has algebraic rank
0 or 1. In a recent breakthrough, Bhargavar and Shankar showed that a positive proportion
of elliptic curves have rank 0 and hence satisfy the BSD conjecture.

9.2 Fermat’s Last Theorem and the Taniyama-Shimura Conjecture
Around 1637 Fermat conjectured his famous Last Theorem, saying that for n > 3 the equation

has no positive integer solutions a, b, c. Although many cases of the conjecture (for special
values of n) had been proved, a complete proof was found only in 1995 by Andrew Wiles and
Richard Taylor, building on work of Serre, Ribet, and many others. The proof heavily uses
the theory of elliptic curves and modular forms. In particular, a key element in the proof
of Fermat’s Last Theorem is the Modularity Theorem, previously the Taniyama-Shimura
Conjecture. To state it, we recall that every modular form f of weight k¥ has a Fourier
expansion of the shape f(7) = 320 a,e*™"" with Fourier coefficients a, € C. The L-
function of f is now defined as

a

E

s )

3

L(f,s) =
n=1

and it is relatively easy to show that L(f,s) converges absolutely for Re(s) > k, has a
meromorphic continuation to the entire complex plane, and satisfies a functional equation
under s — k — s.

Theorem 9.2.1 (Modularity Theorem; Wiles, Taylor,...1995). Every rational elliptic curve
E is modular, which means that there exists a (unique) modular form (of weight 2 for a certain

subgroup of SLa(Z)) such that L(E,s) = L(f,s).

As an immediate corollary, one obtains the meromorphic continuation and the functional
equation for L(F,s), which was impossible to prove directly. Moreover, this opens up new
ways to study the BSD conjecture by studying L-functions of modular forms. This was done,
for example, in the work of Gross and Zagier, which led to a proof of the BSD conjecture for
rank 0 and rank 1 curves.

The connection between the Modularity Theorem and Fermat’s last theorem was suggested
by Frey in 1986, and proved shortly after by Serre and Ribet. They showed that if a,b,c € N
are a (hypothetical) solution to Fermat’s equation a? + b? = ¢ with some prime p > 5, then
the Frey curve

Ea,b,c : y2 = ZE(l’ - ap)(x + bp)

would not be modular, contradicting the Modularity Theorem.
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9.3 Congruent numbers and Tunnell’s Theorem

The BSD Conjecture has many applications in number theory, a very prominent one being a
solution to the Congruent Number Problem. A natural number n is called a congruent number
if it is the area of a right triangle with rational side lengths. For example, 5, 6, 7 are congruent
numbers as they the areas of the following right triangles:

29 41
3\ © 2 337
4 5 5 60
3 3 3
2 12

An amusing example is the following (simplest!) rational right triangle with area 157, due to
Zagier.

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

6803298487826435051217540
411340519227716149383203

411340519227716149383203
21666555693714761309610

On the other hand, one can show by elementary (yet difficult) considerations that 1,2,3,4
are not congruent. The Congruent Number Problem asks for a (simple) description of all
congruent numbers.

The above examples show that finding a suitable triangle for a congruent number can be
difficult since the side lengths will usually be complicated rational numbers. Conversely,
showing that a number is not a congruent number seems to be even more difficult since we
need to show that there is no right triangle with rational side lengths having area n.

A partial (and conjecturally complete) solution to the Congruent Number Theorem is given
by Tunnell’s Theorem.
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Theorem 9.3.1 (Tunnell 1983). Let n be a square free natural number. Define the represen-
tation numbers

#{(x,y,2) € Z® :n =22+ y* + 3227},
#{(x,y,2) € Z® :n =227 +y* + 827},
#{(z,y,2) € Z® :n=8x%+ 2% + 6422},
n=#{(z,y,2) €Z> :n =8z% + 2% + 162%}.

Qe
I

>
I

Suppose that n is congruent. If n is odd, then 2A,, = By, and if n is even, then 2C, = D,,.
Conversely, if the BSD conjecture is true for curves of the form E, : y*> = 2% — n’x, then
these equalities are sufficient to conclude that n is a congruent number.

Note that the restriction to square free numbers is inesssential, since a natural number n
is congruent if and only if n/d? is congruent for any d € Q. Indeed, if (a,b,c) is a rational
right triangle for n, then (a/d,b/d,c/d) is a rational right triangle for n/d.

Note that the numbers A,, By, Cp, D, can be computed quite easily by just trying all
possible solutions (x,y,z) with |z|,|y|,|2|] < +/n. In particular, Tunnell’s Theorem gives
an effective procedure to find non-congruent numbers. For example, for n = 1 we have
4 =2A; # By = 2 (the only solutions being (x,y, z) = (0,£1,0) in both cases), so Tunnell’s
Theorem tells us that 1 is not congruent.

Conversely, if we apply Tunnell’s Theorem with the congruent number n = 5, we see that
0 =2A5 = Bs = 0, so we may not conclude from the theorem that n is a congruent number.
However, if 24,, = B,, or 2C,, = D,, then this is a very strong hint that n should be a congruent
number, and we can start looking for a suitable triangle, for example by a computer search.

Congruent numbers and elliptic curves - the idea of the proof of Tunnell’s Theorem

The question whether a natural number n is congruent is closely related to the rank of a
certain elliptic curve F,. First notice that n is congruent if and only if there exist positive
rational numbers a, b, ¢ satisfying the equations

a’ 4+ b = 02,
1
n — §ab

Now if we set x = n(a+c)/b and y = 2n%(a + ¢)/b?, we see after a short calculation that the
point (x,y) lies on the elliptic curve

En:yzzw?’—n%
and satisfies y # 0 (which means that (z,y) does not have order 2). Conversely, given a
rational point (z,y) € E, with y # 0 we set a = (2 — n?)/y,b = 2nz/y,c = (2 +n?)/y
to obtain a right triangle with rational side lengths and area n. Moreover, it is not hard to
show that the only torsion points on the curve E,, are those with y = 0. In other words: the
rational right triangles with area n correspond to the rational points (z,y) € E, of infinite
order. Hence, we obtain the following criterion.

Proposition 9.3.2. A natural number n is congruent if and only if the elliptic curve E, :
y? = 2% — n?x has rank > 0.
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9 The Birch and Swinnerton-Dyer Conjecture

The proposition tells us that we could decide wether n is congruent if we could check whether
E,, has positive rank. By the BSD conjecture, this should be the case if the L-function L(E, s)
vanishes at s = 1. In our situation, we are lucky since the F,, are quite special: the curves
E,, all have complex multiplication, and for such curves we have the following partial answer
to the BSD conjecture:

Theorem 9.3.3 (Coates-Wiles 1976). Let E be a rational elliptic curve with complex multi-
plication. If E has positive rank, then L(E,1) = 0.

In particular, if n is congruent, then E,, has positive rank, so L(E,,1) = 0, and the converse
would be true under the BSD conjecture. Now we need to decide wether L(E,,1) = 0, and
here the Modularity Theorem comes into play. It tells us that there exists a modular form
G, of weight 2 such that L(G,,s) = L(E,,s). So we need to decide when the L-function
of a modular form vanishes at s = 1. Using the theory of modular forms, one can show
that L(Gp,1) equals the n-th Fourier coefficient of a certain modular form f of weight %
The crucial insight is that this modular form f can be constructed very explicitly as a linear
combination of theta series of the form

2 2 2
Oapc)(2) = D ¢ Ve
T,Y,2€EL

for suitable integers a, b, c. More precisely, it turns out that the n-th coefficient of f is given
by a non-zero multiple of 24,, — B,, if n is odd and 2C}, — D,, if n is even. Summarizing: if n is
congruent, then F,, has positive rank, hence L(E,, 1) = 0 by Coates-Wiles, so L(Gy,1) = 0 by
the Modularity Theorem, and thus the n-th coefficient of f vanishes, which means 2A4,, = B,
if n is odd and 2C,, = D,, if n is even. The converse would be true if we could show that
L(E,,1) =0 implies r(E) > 0, which would be a consequence of the BSD conjecture.
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