
ELLIPTIC FUNCTIONS

V.MICHEL, S.RUPPANNER

The first talk of the seminar “Elliptic Functions and Modular Forms” focuses on elliptic functions in the general
sense. One starts defining two notions: the periods of a meromorphic function and lattices in the complex plane.
These are the natural framework for introducing the field of elliptic functions in the third part. Various properties
of elliptic functions are then investigated through the four theorems of Liouville. Also appealing to the notion of a
lattice, the Einsenstein series are defined in the part five. Their absolute convergence yields to a first example of an
elliptic function. An appendix finally presents the argument principle and its generalized version. This fundamental
theorem of complex analysis is used in different forms in the proofs of Liouville’s theorems II, III, and IV.

1. Periods

Definition 1.1 (holomorphic function). Let D ⊆ C be open. A function f : D → C is called holomorphic
on D, if

∀z0 ∈ D : lim
z→z0

f(z)− f(z0)

z − z0
exists in C.

The set of all holomorphic functions over D is denoted by H(D).

Definition 1.2 (discrete subset). A closed subset D ⊆ C is called discrete, if

∀z ∈ D : ∃r > 0 : Br(z) ∩D is finite (D has no accumulation point)

Definition 1.3 (meromorphic function). Let D ⊆ C be open. A function f : D → C is called meromorphic
on D, if there exists a closed, discrete subset Pf ⊆ D such that

(1.1) f : D \ Pf → C is holomorphic
(1.2) f has poles at the points of Pf

The set of all meromorphic functions over D is denoted by M(D).

Lemma 1.4. The meromorphic functions on C form a field.

Theorem 1.5 (identity theorem for meromorphic functions). Let D ⊆ C be open and let f, g : D → C be
two meromorphic functions. Then

f = g ⇐⇒ {z ∈ D | f(z) = g(z)} has an accumulation point in D \ (Pf ∪ Pg)

Definition 1.6 (period). Let f : C → C be a meromorphic function and let Pf be the set of poles of f .
Then, w ∈ C is called a period of f , if

(1.1) Pf + w = Pf

(1.2) ∀z ∈ C \ Pf : f(z + w) = f(z)

Per(f) denotes the set of all periods of f .

Lemma 1.7. For every meromorphic function f : C → C, it holds that

(1.1) 0 is always a period of f .
(1.2) If f is constant, then Per(f) = C.
(1.3) Per(f) is a subgroup of (C,+, 0).
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Theorem 1.8 (structure theorem). Let f : C → C be a non-constant meromorphic function.
Then, Per(f) is a closed and discrete subgroup of (C,+, 0).
In particular, Per(f) has one of the following forms:

(1.1) Per(f) = {0}
(1.2) Per(f) = Zw1 = {nw1 | n ∈ Z} for a w1 ∈ C \ {0}
(1.3) Per(f) = Zw1 + Zw2 = {n1w1 + n2w2 | n1, n2 ∈ Z} for two w1, w2 ∈ C \ {0} with:

(a) w1 and w2 are linearly independent over R
(b) |w2

w1
| ⩾ 1

(c) Im(w2

w1
) > 0

(d) |Re(w2

w1
)| ⩽ 1

2

Proof. Assume per contradiction that Per(f) is not discrete.
Then ∃w ∈ Per(f) : ∀r > 0 : Br(w) ∩ Per(f) is infinite. Thus Per(f) has an accumulation point. Let z ∈ C
be such that f is holomorphic in z. Then ∀n ∈ N : f(z) = f(z+wn), so f agrees with a constant function on
Per(f). After the identity theorem for holomorphic functions, it follows that f is constant, which contradicts
the assumption.

Assume Per(f) ⊋ {0}. Since Per(f) is closed and discrete, it holds that ∃w1 ∈ Per(f) :

|w1| = inf{|w| | w ∈ Per(f) \ {0}} > 0. (1)

Claim 1: Per(f) ∩ Rw1 = Zw1

Since w1 ∈ Per(f), it holds that ∀n ∈ Z : nw1 ∈ Per(f) by induction and the group structure of Per(f).
Hence Per(f) ∩ Rw1 ⊇ Zw1

Let w ∈ Per(f) ∩ Rw1 be arbitrary. Then ∃α ∈ R : w = αw1. Choose n ∈ Z such that |α − n| ⩽ 1
2 . Then

w − nw1 ∈ Per(f) and

|w − nw1| = |αw1 − nw1| = |(α− n)| · |w1| < |w1|
After (1), it holds that w − nw1 = 0. Therefore w = nw1 and Per(f) ∩ Rw1 ⊆ Zw1

This proves claim 1. Hence, if all points of Per(f) lie on a line through the origin, so ∃w ∈ C : Per(f) ⊆ Rw,
then ∃w1 ∈ C \ {0} : Per(f) = Zw1.

Now assume that additionally Per(f) ̸= Zw1 for some w1 ∈ C \ {0} from (1). Since Per(f) is closed and
discrete, it holds that ∃w2 ∈ Per(f) \ Zw1 :

|w2| = inf{|w| | w ∈ Per(f) \ Zw1} > |w1|. (2)

Write w1 = r1e
iϕ1 and w2 = r2e

iϕ2 in polar form. It holds that

(a) w2

w1
∈ R ⇐⇒ ϕ2 − ϕ1 = 0 ⇐⇒ ϕ1 = ϕ2 ⇐⇒ w1 and w2 lie on the same line through the origin,

hence w1 and w2 are contained in Rw1 = Rw2, contradicting the assumption. Therefore w2

w1
/∈ R, so

w1 and w2 must be linearly independent over R.
(b) As |w2| ⩾ |w1|, it holds that |w2

w1
| ⩾ 1

(c) Im(w2

w1
) > 0 ⇐⇒ 0 < ϕ2 − ϕ1 < π ⇐⇒ ϕ2 − π < ϕ1 < ϕ2

Notice that w1 ∈ Per(f) ⇐⇒ −w1 ∈ Per(f), |w1| = | − w1| and −w1 = r1e
iϕ1−π,

so Im(w2

w1
) > 0 can be assured by choosing w1 with a suitable sign.

(d) As w2 ± w1 ∈ Per(f) \ Zw1, it follows from (2) that |w2 ± w1| ⩾ |w2| and thus |w2

w1
± 1| ⩾ |w2

w1
|

Write w2

w1
= a+ ib. Then a2 + b2 ⩽ (a± 1)2 + b2 ⇐⇒ 0 ⩽ ±2a+ 1 ⇐⇒ |Re(w2

w1
)| = |a| ⩽ 1

2 .

Claim 2: Per(f) = Zw1 + Zw2

Since w1, w2 ∈ Per(f), it holds that ∀n1, n2 ∈ Z : n1w1 + n2w2 ∈ Per(f) due to the group structure of
Per(f). Hence Per(f) ⊇ Zw1 + Zw2.
Let w ∈ Per(f) be arbitrary. Since w1, w2 is an R-basis of C, there exists α1, α2 ∈ R such that w =
α1w1 + α2w2. Choose n1, n2 ∈ Z such that for β1 = α1 − n1 and β2 = α2 − n2, it holds that |β1| ⩽ 1

2 and

|β2| ⩽ 1
2 . Then

w′ := w − n1w1 − n2w2 = β1w1 + β2w2 ∈ Per(f)
2



If β2 = 0, then w′ = β1w1 ∈ Rw1. So the same reasoning as in claim 1 yields w′ = 0.
If β2 ̸= 0, then w′ ∈ Per(f) \ Zw1 and

|w′|2 = |β1w1 + β2w2|2 = (β2
1 + 2β1β2Re(

w2

w1
) + β2

1

∣∣w2

w1

∣∣2) · |w1|2

⩽ (β2
1 + |β1||β2|+ β2

2) ·
∣∣w2

w1

∣∣2 · |w1|2 ⩽
3

4
|w1|2

After (2), it holds that w′ = 0, thus w = n1w1+n2w2 and therefore Per(f) ⊆ Zw1+Zw2. This proves claim
2. Hence, all sets of periods are of one of the three forms in the statement. □

2. Lattices in C

Definition 2.1 (lattice). Let V be a R-vector space of dimension n ∈ N.
A subset Ω ⊆ V is called a lattice in V , if there exists an R-basis (ω1, . . . , ωn) of V such that

Ω = Zω1 + . . .+ Zωn

Then, (ω1, . . . , ωn) is called a basis of Ω.

Lemma 2.2. Every lattice Ω in C is closed and discrete in C.

Lemma 2.3. Let Ω be a lattice in C with basis (ω1, ω2) and let ω′
1, ω

′
2 ∈ C be arbitrary. Then

ω′
1, ω

′
2 ∈ Ω ⇐⇒ ∃U ∈ Mat2×2(Z) :

(
ω′
1

ω′
2

)
= U

(
ω1

ω2

)
Furthermore, (ω′

1, ω
′
2) is a basis of Ω ⇐⇒ U ∈ GL2(Z).

Proof. It holds that ω′
1, ω

′
2 ∈ Ω iff ∃a, b, c, d ∈ Z such that ω′

1 = aω1 + bω2 and ω′
2 = cω1 + dω2 iff

for U =

(
a b
c d

)
∈ Mat2×2(Z) :

(
ω′
1

ω′
2

)
= U

(
ω1

ω2

)
.

If (ω′
1, ω

′
2) is a basis of Ω, then with the same reasoning as above ∃V ∈ Mat2×2(Z) with

(
ω1

ω2

)
= V

(
ω′
1

ω′
2

)
.

It follows that

(
ω1

ω2

)
= V U

(
ω1

ω2

)
and

(
ω′
1

ω′
2

)
= UV

(
ω′
1

ω′
2

)
.

Since (ω1, ω2) and (ω′
1, ω

′
2) are linearly independent, it holds that V U = UV = I2 and thus U ∈ GL2(Z).

If U ∈ GL2(Z), then
(
ω′
1

ω′
2

)
= U

(
ω1

ω2

)
yields that (ω′

1, ω
′
2) is linearly independent over R.

For arbitrary ω′′
1 , ω

′′
2 ∈ Ω, there is also a W ∈ GL2(Z) such that

(
ω′′
1

ω′′
2

)
=W

(
ω1

ω2

)
.

Hence

(
ω′′
1

ω′′
2

)
=WU−1

(
ω′
1

ω′
2

)
and thus ω′′

1 and ω′′
2 are both linear combination of ω′

1 and ω′
2 over Z.

Therefore, (ω′
1, ω

′
2) is indeed a basis of Ω. □

Definition 2.4 (fundamental parallelogram). Let Ω be a lattice in C, let (ω2, ω1) be a basis of Ω and let
u ∈ C be an arbitrary point. Then

Par(u;ω1, ω2) := {u+ α1ω2 + α2ω1 | α1, α2 ∈ [0, 1)}
is called the fundamental parallelogram w.r.t. the basis (ω2, ω1) and the base point u.

Definition 2.5 (volume of a fundamental parallelogram). Let Ω be a lattice and let Q = Par(u;ω1, ω2) be a
fundamental parallelogram in Ω.
Then vol(Ω) := |Im(ω1ω2)| is called the volume of Q.
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Example 2.6. Ω = Z · (0.6 + 1.4 · i) + Z · 1.2 and Q = Par(1 + 0.8 · i; 0.6 + 1.4 · i, 1.2)

Re

Im

ω1

ω2• • •••

•

•

•

•

• •••

• •••

• • • •

• • • •

Re

Im

u•

ω1

ω2

Lemma 2.7. vol(Ω) = |Im(ω1ω2)| is independent of the basis (ω1, ω2) and the base point u.

Proof. A basic computation yields:
Im(ω1ω2) = Im((Re(ω1) + i · Im(ω1)) · (Re(ω2)− i · Im(ω2))) = Im(ω1) · Im(ω2)− Re(ω1) · Im(ω2).
Hence the volume of Q = Par(u;ω1, ω2) is given by

vol(Ω) = |Im(ω1ω2)| =
∣∣∣∣det(Im(ω1) Re(ω1)

Im(ω2) Re(ω2)

)∣∣∣∣
If (ω′

1, ω
′
2) is a different basis of Ω, then there is after the lemma above, a matrix U ∈ GL2(Z) such that(

ω′
1

ω′
2

)
= U

(
ω1

ω2

)
. Therefore

|Im(ω′
1ω

′
2)| =

∣∣∣∣det(Im(ω′
1) Re(ω′

1)
Im(ω′

2) Re(ω′
2)

)∣∣∣∣ = ∣∣∣∣det(U ·
(
Im(ω1) Re(ω1)
Im(ω2) Re(ω2)

))∣∣∣∣ = |det(U)| · |Im(ω1, ω2)|

Since ∀U ∈ GL2(Z) : |det(U)| = 1, the volume of Ω is indeed independent of the basis. □

Lemma 2.8. Let Ω be a lattice and let Q = Par(u;ω1, ω2) be a fundamental parallelogram in Ω.
Then ∀z ∈ C : ∃!ω ∈ Ω : z + ω ∈ Q.

Proof. It holds that ∀z ∈ C : ∃β1, β2 ∈ R : z = u+ β1ω1 + β2ω2.
Define n1 := ⌊β1⌋, n2 := ⌊β2⌋, α1 := β1 − n1 ∈ [0, 1) and α2 := β2 − n2 ∈ [0, 1).
Then z = u+ n1ω1 + α1ω1 + n2ω2 + α2ω2, so for ω = −n1ω1 − n2ω2 ∈ Ω, it holds that

z + ω = z − n1ω1 − n2ω2 = u+ α1ω1 + α2ω2 ∈ Q.

Note that z ∈ Q ⇐⇒ ω = 0. □

Theorem 2.9 (fundamental parallelogram as a torus). Let Ω be a lattice in C and let Q = Par(u;ω1, ω2)
be a fundamental parallelogram in Ω. Since Ω is abelian and a subgroup of (C,+, 0), its factor group C/Ω is
also abelian. ((a+Ω) + (b+Ω) = (a+ b) + Ω = (b+ a) + Ω = (b+Ω) + (a+Ω)).

Let π : C → C/Ω, a 7→ a+Ω be the canonical projection. The restriction π|Q : Q
∼→ C/Ω is an isomorphism.

By identifying the opposite edges of Q, C/Ω can be viewed as a torus in R3.

4



3. What are elliptic functions?

In the next sections, Ω = Zω1+Zω2 will denote a lattice in C. For the sake of brevity, an elliptic function
wrt. the lattice Ω will thus be called an elliptic function. In a similar way, fundamental parallelograms
(without further specification) will implicitly refer to the lattice Ω.

3.1. The first properties.

Definition 3.1. A meromorphic function f : C−Pf → C is called elliptic or doubly periodic with respect
to Ω, if the latter is contained in the set of periods of f : Ω ⊂ Per(f).

More explicitly, this implies:

(3.1) f(z + ω) = f(z) ∀ω ∈ Ω ∀z ∈ C−Pf

(3.2) Pf + ω = Pf ∀ω ∈ Ω

The condition (3.1) implies in particular the double periodicity of the zero set: Zf = Zf +ω for all ω ∈ Ω. To
verify the properties (3.1) and (3.2), it is sufficient to verify them for a basis of Ω (e.g. (ω1, ω2)). The set of
all elliptic functions with respect to Ω will be denoted by K(Ω). If one chooses to represent a meromorphic
function f : C → C as a function on C assuming values on the extended complex plane C ..= C∪{∞}, one
can gather both conditions in a single one of the form:

f(z + ω) = f(z) ∀ω ∈ Ω ∀z ∈ C .
The following property of elliptic functions is a consequence of their periodicity. For every function

f : C → C in K(Ω), there exists a unique map f̂ : C /Ω → C, so that f̂ ([z]) ..= f(z). In other words, so that
the following diagram commutes:

z

[z]

C C

C /Ω

f

π f̂

Because f is periodic wrt. Ω, the function f̂ is well-defined (i.e. independent of the representative z). By

a slight abuse of notation, the function f̂ is sometimes directly referred to by the original function f . An
elliptic function may thus be viewed as a function on the torus C /Ω.

3.2. The structure of a field.

Reminder 3.2. Any function 0 ̸= f ∈ M(C) is (uniquely) represented by a Laurent series of the form

f(z) =
∑
n⩾m

an(z − c)n, m ∈ Z, an ∈ C, am ̸= 0, (3)

which converges normally (in particular locally uniformly) in a punctured neighbourhood of c ∈ C.
By definition, m is the order of the meromorphic function f at c, written as ordc(f). The order is positive

if and only if f has a zero at c, and it is negative iff. c is a pole. The order vanishes otherwise. A pole of
order one is called simple. The coefficient a−1 in the series (3) is the residue of f at c, denoted by resc(f).
The residue of a simple pole is always nonzero.

For f ∈ K(Ω), ω ∈ Ω, and z in an appropriate neighbourhood of c+ ω, one can write:

f(z) = f(z − ω) =
∑
n⩾m

an(z − (c+ ω))n,

which implies the invariance of orders and residues under translation wrt. to the lattice :

ordc+ω(f) = ordc(f) and resc+ω(f) = resc+ω(f). (4)

The periodicity of orders and residues (equation (4)), together with the discreteness of Pf , yields to the
5



Proposition 3.3. The elliptic functions K(Ω) form a subfield of the field M(C), containing all meromorphic
functions on C. It contains all constant functions. Each f ∈ K(Ω) has finitely many poles in any fundamental
parallelogram of Ω.

Remark. The natural field homomophism ι : C ↪→ K(Ω), z 7→ (u 7→ z) (∀z, u ∈ C), allows for identifying
the subfield Im(ι) of all constant functions on C with the field of complex numbers itself. One accordingly
writes the field tower M(C)/K(Ω)/C.

A useful lemma follows from the two defining properties (3.1) and (3.2).

Lemma 3.4. Let f ∈ K(Ω), Then f ′(z) and g(z) ..= f(nz + u) with 0 ̸= n ∈ Z and u ∈ C are also elliptic
functions wrt. Ω.

Let p(z) ∈ C[z] be a polynomial. Because K(Ω) is closed under addition and multiplication, and it contains
all constant maps on C, the composition z 7→ p(f(z)) is also an elliptic function wrt. Ω. For r(z) ∈ C(z) a
rational function, the composition z 7→ r(f(z)) is also in K(Ω). It is moreover independent of the fractional
representation of the rational function r. The composition map r 7→ r(f) having trivial kernel, it induces an
isomorphism from the field of rational functions C(z) onto a subfield of K(Ω). Latter will be denoted by

C(f) ..= {g : g = r(f) for r a rational function} .

The next step will be to determine all even elliptic functions f (f(z) = f(−z)). One will first restrict to
those, whose poles are contained in the lattice. Such an example is the Weierstrass ℘-function, which has
exactly second order poles at all lattice positions.

4. The four theorems of Liouville

Reminder 4.1. A function f ∈ H(C) is called entire. Liouville’s original theorem states that every entire
bounded function f : C → C is constant. There are at least three standard proofs for this fundamental result.
They may use Cauchy’s inequality (for Taylor coefficients), or more directly, Cauchy’s integral formula.

In 1847, J. Liouville derived four theorems, which are specific to elliptic functions. Like entire functions,
they satisfy indeed strong conditions.

4.1. Liouville’s first theorem (for elliptic functions). The double periodicity of elliptic functions allows
for dropping the assumption about the existence of a global upper bound in Liouville’s original theorem. An
elliptic function, holomorphic on the entire complex plane, is necessarily bounded.

Theorem 4.2 (Liouville, I). Every entire elliptic function (i.e. f ∈ K(Ω) ∩H(C)) is constant.

Proof. Let Q be a fundamental parallelogram. Its closure Q is compact, and the function f is continuous
on this domain. There consequently exists a real constant C > 0, so that |f(z)| ⩽ C for all z ∈ Q. For an
arbitrary z ∈ C, theorem 2.8 provides an ω ∈ Ω, so that z + ω ∈ Q holds. The periodicity condition (3.1)
then ensures that f is bounded on C: |f(z)| = |f(z + ω)| ⩽ C. The statement finally follows by applying
Liouville’s classical theorem (4.1) to the entire function f . □

4.2. Liouville’s second theorem. On the basis of theorem 4.2, it is natural to study the poles of an elliptic
function.

Theorem 4.3 (Liouville, II). Let Q be a fundamental parallelogram of Ω and f and elliptic function. The
sum of all residues of f , evaluated in Q, vanishes:

∑
c∈Q resc(f) = 0.

Remark. The function f being meromorphic on C, its set of poles is discrete. Besides, f has nonzero residues
at most at c ∈ Pf , for it is holomorphic on C−Pf . The summation accordingly reduces to the set Q ∩ Pf ,
which is finite.

Proof. Equation (4) makes the sum of residues independent of the choice of a lattice basis.

Claim. After a suitable translation of Q, there is no pole on the boundary of the resulting fundamental
parallelogram.
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The claim is a consequence of the discreteness of Pf .
From now on, Q ..= Par(q;ω1, ω2) will denote (without loss of generality) this translated parallelogram.

In particular, the function f is holomorphic on its (positively oriented) boundary ∂Q. One evaluates the
integral of f along the boundary of the fundamental parallelogram by applying the residue theorem:

±2πi ·
∑
c∈Q

resc(f) = ±
∫
∂Q

f(z)dz =

∫ q+ω1

q

f(z)− f(z + ω2)dz +

∫ q

q+ω2

f(z)− f(z + ω1)dz. (5)

The sign depends on the mutual orientation of the “basis vectors” ω1 and ω2. From the periodicity of the
elliptic function f (see equation (3.1)), both integrands are zero, and the sum of residues vanishes. □

One property of elliptic functions immediately follows from theorem 4.3.

Corollary 4.4. There is no elliptic function with a unique pole of order one. One either needs two distinct
poles of order one, or a single pole of order two with vanishing residue.

K. T. W. Weierstrass was able to provide an example for each of the two cases. In particular, his
eponymous ℘-function has exactly one pole of order two in each fundamental parallelogram, namely at its
bottom left corner.

4.3. Liouville’s third theorem. The two next theorems of Liouville consider the zeros of the elliptic
function gu : C−Pf → C, z 7→ f(z) − u, for a fixed function f ∈ K(Ω), and a parameter u ∈ C. The zeros
of gu are exactly the pre-images of u wrt. f . They have equal orders: ord0(gu) = ordu(f). The functions f
and gu also share the same poles, with equal orders.

Theorem 4.5 (Liouville, III). Let f ∈ K(Ω) be nonconstant, and Q a fundamental parallelogram. The sum
of all orders of the elliptic function gu, evaluated in Q, vanishes:

∑
c∈Q ordc(gu) = 0.

Remark. The zero set1 and the set of poles of 0 ̸= gu ∈ M(C) is discrete. The order of gu at any other point
in C vanishes. The sum of orders is consequently finite.

Proof. On the basis of:

(4.1) the non-constantness of f ,
(4.2) f ′ ∈ K(Ω) according to lemma (3.4),
(4.3) and the field structure of the set of all elliptic functions,

one defines the meromorphic function h(z) ..= f ′(z)
f(z)−u ∈ K(ω).

Because resc(h) = ordc(f − u), the statement immediately follows from theorem 4.3. □

Remark. Last equality is justified by the generalized argument principle (see proposition 6.4). One sets
ϕ(z) ..= 1 and ψ(z) ..= f(z). The definition of the residue resc(h) =

1
2πi ·

∫
γ
h(z)dz appears on the left-hand

side of equation (15). The singularities of h correspond exactly to the poles of f and to the pre-images of u
wrt. f . The zero set Zgu and the set of poles Pf being discrete, on can choose a simple closed path γ around
c, which does not contain any singularity of h but possibly c. The right-hand side of equation (15) finally
reduces to the single term ordc(f).

Definition 4.6. Let f be a meromorphic function on the set D, and u ∈ C a complex number. Consider
a subset M ⊂ D, such that M contains only finitely many pre-images of u wrt. f . The number of the
corresponding points (counted with multiplicities) is

numu(f,M) ..=
∑

c∈f−1({u})∩M

ordc(f) for any u ∈ C .

The case u ..= 0 (i.e. f−1 ({0}) =.. Zf ) yields to the number of zeros of f . The case u ..= ∞ corresponds to
poles. It is treated separately, in order to account for their negative orders:

num∞(f,M) ..= −
∑

c∈Pf ∩M

ordc(f). (6)

1as follows from theorem 1.5
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An interesting characterization of the image of elliptic functions results from theorem 4.5.

Corollary 4.7. Every nonconstant elliptic function f has an equal number of poles, pre-images of u
(∀u ∈ C), and zeros in Q, when these are counted with their multiplicities: num∞(f,Q) = numu(f,Q) =
num0(f,Q). In particular, the function f takes every complex value in Q.

Sketch of the proof. Because f(z)−u ∈ K(Ω) is not constant, it must have a pole in Q according to theorem
4.2. Then, it must also have a pre-image of u in Q according to theorem 4.5. The statement then follows
from the arbitrariness of the complex number u. □

Definition 4.8. The order of an elliptic function f is its number r ⩾ 0 of zeros or poles inside a fundamental
parallelogram Q, counted with multiplicities:

ord(f)) ..= num0(f,Q)
..= num∞(f,Q).

Definition 4.9. Let f ∈ K(Ω). A points u ∈ C is a ramification point (with respect to f), if there exists a
c ∈ C so that ordc(gu) ⩾ 2 holds. For u ..= 0, ∞, the point c respectively corresponds to a zero or pole of
order at leasts two.

Remark. For a nonconstant elliptic function of order r > 0, theorem 4.5 yields to
∣∣f−1 ({z})

∣∣ < r iff. z is a
ramification point of f . It is equal to r otherwise.

4.4. Liouville’s fourth theorem.

Theorem 4.10 (Liouville, IV). Let f ∈ K(Ω) be non-zero, and Q a fundamental parallelogram of Ω. The sum
of all points in Q, weighted by the order of f at the given point, belongs to the lattice Ω:

∑
c∈Q ordc(f) ·c ∈ Ω.

Proof. The proof of Liouville’s fourth theorem reuses the method from the proof of theorem 4.3. The

meromorphic function z · f ′(z)
f(z) must be integrated on the boundary ∂Q of a fundamental parallelogram Q.

Instead of the residue theorem, one now applies the generalized argument principle2 to evaluate the integral:

2πi ·
∑
c∈Q

ordc(f) · c =
∫
∂Q

z · f
′(z)

f(z)
dz. (7)

Applying the same changes of variable as for the calculation of the integral (5), equation (7) yields to

±
(
ω1 ·

∫ u+ω2

u

f ′(z)

f(z)
dz − ω1 ·

∫ u+ω1

u

f ′(z)

f(z)
dz

)
. (8)

The double periodicity of f , together with the constant difference between any two branches of the complex
logarithm (2πi · n,∃n ∈ Z), yields to∫ u+ωi

u

f ′(z)

f(z)
dz ∈ 2πi · Z for j = 1, 2. (9)

The statement finally follows from equations (8) and (9). □

Let a1, ..., ar and b1, ..., br denote the zeros, respectively the poles of a nonconstant function f ∈ K(Ω), on
the basis of corollary 4.7. In both enumerations every point is repeated according to its multiplicity. Then,
theorem 4.10 can be reformulated in the form

a1 + · · ·+ ar ≡ b1 + · · ·+ br mod Ω, (10)

which equation is sometimes called Abel’s relation.
Theorem 4.2 consequently claims that every elliptic function of order zero is constant, while theorem

4.3 corresponds to the non-existence of an elliptic function of order one. On the other hand, the relation
r ⩾ 2, together with equation (10), provide sufficient conditions for the existence of an elliptic function with
prescribed zeros and poles.

2by setting ϕ(z) ..= f(z), ψ(z) ..= z, and u ..= 0 in equation (16)
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5. Lattice invariants: the Eisenstein series

Reminder 5.1. Let ∑
g∈Zn

αg with αg ∈ C . (11)

be an absolutely convergent n-dimensional (for n > 1) series. There consequently exists a constant C > 0,
such that for every finite subset E ⊂ Zn,

∑
g∈E |αg| < C holds. For every bijection ϕ : N → Zn, the series∑

k∈N αϕ(k) can unambiguously be written in the form (11), as it does not depend on the enumeration ϕ,
according to Riemann’s rearrangement theorem.

5.1. Convergence of series over a lattice. Consider a fundamental parallelogram Q ..= Par(ω1, ω2) of
the lattice Ω ⊂ C.

Definition 5.2. The diameter of Q is δ ..= δ(ω1, ω2) ..= sup {|z − u| : z, u ∈ Q}.
Let Bρ(0) ..= {z ∈ C : |z| ⩽ ρ} denote the (closed) disc of radius ρ > 0, around zero. The number of lattice

points inside this disc is written: Aρ(Ω) ..=
∣∣∣Ω ∩Bρ(0)

∣∣∣.
Lemma 5.3. For every radius ρ ⩾ δ, the number of lattice points inside Bρ(0) satisfies the following
inequalities: π

vol(Ω) · (ρ− δ)2 ⩽ Aρ(Ω) ⩽ π
vol(Ω) · (ρ+ δ)2.

Proof. Let Mρ
..=

⋃
q∈Ω:|q|⩽ρ Par(q;ω1, ω2) be the smallest area covering Bρ(0), composed of period parallel-

ograms. The two inclusions Bρ−δ(0) ⊂Mρ ⊂ Bρ+δ(0) follow from the definitions of the three sets involved.
The second inclusion also appeals to the definition of the diameter δ of the fundamental parallelogram Q.

The statement follows after translating the two inclusions of sets to inequalities between their respective
areas: area(Br(0)) = πr2 (for r ..= ρ− δ, ρ+ δ), and area(Mρ) = vol(Ω) ·Aρ(Ω). □

Theorem 5.4 (Absolute convergence). The series
∑

0̸=ω∈Ω |ω|−α
converges for (and only for) α > 2.

Proof. The argument distinguishes three cases:

(5.1) α > 2, which justifies the direct implication,
(5.2) α ⩽ 0, for which the series3 trivially diverges,
(5.3) and 0 < α ⩽ 2, which together with the previous case shows the converse.

For the case (5.1), let ∅ ≠ E ⊂ Ω−{0} be a finite set and M ..= max {|ω| : ω ∈ E}. Consider the positive
integer δ ⩽ n ∈ N. Lemma 5.3 provides the following estimate:

An+1(Ω)−An(Ω) ⩽
π

vol(Ω)
·
(
(n+ 1 + δ)2 − (n− δ)2

)
=

π

vol(Ω)
· (2δ + 1) · (2n+ 1) ⩽ c2 · n,

for the constant c2 = 3π(2δ+1)
2·vol(Ω) > 0 (for instance).

Defining the positive constant c1 ..=
∑

0̸=ω∈Ω
|ω|⩽δ+1

|ω|−α
, the statement follows from the upper bound

∑
ω∈E

|ω|−α ⩽ c1 +
∑
n∈N

δ<n<M

(An+1(Ω)−An(Ω)) · n−α ⩽ c1 + c2 ·
∞∑

n=1

n1−α <∞,

since 1− α < −1 has been assumed.
For the case (5.3), define N ∈ N, N > 2δ. From lemma 5.3, the following estimate holds for every integer

k ⩾ 2:

AkN (Ω)−A(k−1)N (Ω) ⩾
π

vol(Ω)
·
(
2N2 · k −N(N + 2δ)

)
⩾ c3 · k,

with the constant c3 ..= 2πN2

vol(Ω) > 0 (for example).

For the finite set Em
..= {ω ∈ Ω : 0 < |ω| ⩽ mN}, one obtains the following lower bound:∑

ω∈Em

|ω|−α ⩾
m∑

k=2

(AkN (Ω)−A(k−1)N (Ω)) · (kN)−α ⩾ c3N
−α ·

m∑
k=2

k1−α.

3of infinitely many positive terms
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The last sum is bounded from below by the harmonic sum
∑m

k=2 k
−1, for −1 ⩽ 1− α holds. The statement

for case (5.3) finally follows by allowing an arbitrarily large upper limit m → ∞, noting that the harmonic
series

∑∞
k=2 k

−1 diverges. □

5.2. The Eisenstein series: First properties.

Definition 5.5. The Eisenstein series (for a lattice Ω) are infinite sums of negative powers of the nonzero
elements of the lattice:

Gk
..= Gk(Ω) ..=

∑
0̸=ω∈Ω

ω−k for k ⩾ 3. (12)

The parameter k is the weight of the Eisenstein series.

The convergence of the series (12) follows from theorem 5.4.

Corollary 5.6. For any lattice Ω, the Eisenstein series Gk(Ω) (with k ⩾ 3) converge absolutely.

Because ω ∈ Ω ⇔ −ω ∈ Ω holds, Riemann’s rearrangement theorem yields to Gk = (−1)kGk, and to the

Proposition 5.7. For any lattice Ω, the Eisenstein series of odd weights k vanish: Gk(Ω) = 0.

Remark. On the other hand, all Eisenstein series of even weight k ⩾ 4 are nonzero. Besides, each such series
can be expressed as a polynomial over the field of the rational numbers Q in the variables G4 and G6 (e.g.
7G8 = 3G2

4 and 11G10 = 5G4G6).

Remark. The regular part4 of the Laurent expansion of the Weierstrass ℘-function (for a lattice Ω), around
zero, has coefficients am = m ·Gm+1(Ω), for m ⩾ 2 even. All its terms of odd powers vanish, for the function
is even.

5.3. A natural elliptic function: First example. For any 2 < k ∈ N, the series

fk(z) =
∑
ω∈Ω

(z − ω)−k

defines an of elliptic function wrt. the lattice Ω.
The absolute convergence of the Eisenstein series (see corollary 5.6) implies5 the well-definiteness of the

functions fk(z) at all z ∈ C−Ω.
The functions fk are6 periodic wrt. to Ω:

fk(z + ω̃) =
∑
ω∈Ω

(z + ω̃ − ω)−k =
∑

ω∈Ω−ω̃

(z − ω)−k = f(z), for any ω̃ ∈ Ω, (13)

since Ω is an additive subgroup (i.e. Ω− ω̃ = Ω).
The doubly periodic functions fk have poles of order k exactly at the lattice points. From equation (13),

the principal part7 of the Laurent expansion of fk around a point ω̃ ∈ Ω is indeed equal to (z − ω̃)−k. The
sets of poles Pfk are therefore discrete and periodic wrt. Ω. Because the functions fk are holomorphic on
C−Ω, fk ∈ K(Ω) finally follows for all k ⩾ 3.

6. Addendum: The argument principle

The argument principle is a consequence of the residue theorem. It allows for the evaluation of a generic
integral in terms of two sums. There exists a generalized version of this theorem. The argument principle
itself can then be viewed as a special case of the latter.

Definition 6.1 (winding number, or index). The winding number or index of a closed path γ intuitively
counts the number of times the curve revolves around a given point z ∈ C−Im(γ):

indz(γ) ..=
1

2πi
·
∫
γ

du

u− z
.

4i.e. the terms with non-negative powers
5One simply chooses the lattice Ω + z (∀z ∈ C) in the definition of the Eisenstein series: fk(z) = Gk(Ω + z).
6essentially by definition
7i.e. the terms with negative powers
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Definition 6.2 (simple closed path). A simple closed path γ has non-empty interior8 (int(γ) ̸= ∅), and the
index of every point z ∈ int(γ) (i.e. inside the path) is one (indz(γ) = 1).

In particular, the boundary of a bounded domain corresponds to a simple closed path.

Theorem 6.3 (Residue theorem). Let γ be a null-homotopic path in D ⊂ C, A ⊂ D a finite set, which
satisfies A ∩ Im(γ) = ∅, and h ∈ H(D −A). Then, it holds:

1

2πi
·
∫
γ

h(z)dz =
∑

c∈int(γ)

indc(γ) · resc(h). (14)

Remark. Because the residues of h in D −A vanish, the sum on the right-hand side of (14) is finite.

Remark. In particular, theorem 6.3 provides an alternative definition of the residue a−1 of a meromorphic
function h at a point c ∈ C:

a−1
..=

1

2πi
·
∫
γ

h(z)dz,

in which γ is a positively oriented simple closed path around c, which includes no other singularity of f .

Theorem 6.4 (Generalized argument principle). Consider

(6.1) a meromorphic function ϕ ̸= 0 in D ⊂ C, with at most finitely many poles in D,
(6.2) a null-homotopic path γ, which contains no pole of ϕ,
(6.3) a complex number u /∈ Im(γ), so that ϕ−1({u}) is finite,
(6.4) and ψ ∈ H(D).

It then holds:

1

2πi
·
∫
γ

ψ(z) · ϕ′(z)

ϕ(z)− u
dz =

∑
c∈ϕ−1({u})

indc(γ) · ordc(ϕ) · ψ(c) +
∑
d∈Pϕ

indd(γ) · ordd(ϕ) · ψ(d). (15)

Remark. The first sum runs over the pre-images of u wrt. ϕ inside γ, the second one over its poles, enclosed
by the path. Both sums are finite as a consequence of the identity theorem for meromorphic functions.

The proof is an application of the residue theorem to the function ψ(z) · ϕ′(z)
ϕ(z)−u . Then, two cases must be

treated separately, although in a similar fashion, whether

(6.1) ϕ is holomorphic at c ∈ D,
(6.2) or ϕ has a pole at c.

Example 6.5. Considering a bounded domain D, γ its boundary (i.e. indz(γ) = 0, ∀z ∈ C−D), and setting
ψ(z) ..= zn (n ∈ N), equation (15) yields to the formula:

1

2πi
·
∫
γ

zn · ϕ
′(z)

ϕ(z)
dz =

∑
c∈(Zϕ∪Pϕ)∩int(γ)

cn · ordϕ(c). (16)

The argument principle finally relates the number of poles and zeros (with multiplicities) of a given
meromorphic function, contained in a simple closed path, with the curvilinear integral of a specific derived
function along this path.

Theorem 6.6 (Argument principle). By setting ψ(z) ..= 1 and u ..= 0, the generalized argument principle
reduces to:

1

2πi
·
∫
γ

ϕ′(z)

ϕ(z)
dz = num0(ϕ, int(γ))− num∞(ϕ, int(γ)). (17)

Alternatively, equation (17) follows more directly from formula (16) in the previous example, by setting
n ..= 0.

8The interior of the closed path γ is defined as int(γ) ..= {z ∈ C−Im(γ) : indz(γ) ̸= 0} .
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