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Abstract. In this paper, we will discuss the Weierstrass ζ and σ-functions and their
connection with the ℘-function in order to prove ’Abel’s Theorem on the existence of
elliptic functions with prescribed zeros and poles’.
As an alternative construction method for elliptic functions we will present the Jacobi
theta function, which also has numerous other applications in mathematics and physics.

For the whole paper Ω ⊆ C is a lattice:

Definition 0.1. Let V = Rn, with n ⩾ 1. A subset Ω ⊆ V is called a lattice in V if
there exists an R−basis (w1, . . . , wn) of V such that

Ω = Zw1 + . . .+ Zwn.

We also call (w1, . . . , wn) a basis of Ω.

1. Convergence of Infinite Products

In this short chapter, we will introduce some important facts about infinite products,
which we will further need to define the σ-function.
Let a1, a2, a3, . . . be a sequence of complex numbers that converges to 0. Then by defini-
tion of convergence, there exists N ∈ N such that |an| < 1 for every n ⩾ N. We define
the infinite product of the sequence (1 + an)n∈N as

∞∏
n=1

(1 + an) := (1 + a1) · · · (1 + aN) exp

( ∞∑
n=N+1

log(1 + an)

)
Since we work with complex numbers, it is important to specify that the above definition
uses the principal branch of the logarithm.
We say that the infinite product converges absolutely if

∑∞
n=N+1 |an| converges. In this

case, the remaining sum
∑∞

n=N+1 log(1 + an) converges absolutely. Moreover, an infinite
product that converges is equal 0 if and only if there is an n ∈ N with (1 + an) = 0.

If f1, f2, . . . is a sequence of holomorphic functions on some domain D ⊆ C, we say that∏∞
n=1(1 + fn) converges absolutely and locally uniformly if the series

∑∞
n=1 fn converges

absolutely and locally uniformly. In this case, the infinite product
∏∞

n=1(1 + fn) defines
a holomorphic function on D.

2. The three Weierstrass functions: σ, ζ and η.

Proposition 2.1 (Weierstrass σ-function). For z ∈ C the Weierstrass σ-function

σ(z) := σ(z; Ω) := z
∏

0 ̸=ω∈Ω

(
1− z

w

)
e

z
w
+ 1

2
( z
w
)2
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converges absolutely and uniformly on every compact subset of C and hence defines an
entire function. It has zeros of order one precisely at the points in Ω. Moreover, σ(z) is
an odd funciton.

To prove this statement we recall a known Lemma.

Lemma 2.2. Let α ∈ R The series ∑
0 ̸=w∈Ω

|w|−α

converges if and only if α > 2.

Now, let us begin the proof of the Proposition 2.1.

Proof of Proposition 2.1. We divide the proof into three parts:

• Convergence: Let K ⊆ C be a compact set. We will do a computation using the
Series representation of ex =

∑∞
n=0

xn

n!
, which we use in the first equality.∣∣∣∣∣1−

(
1− z

w

)
e

z
w
+ 1

2
( z
w
)2

∣∣∣∣∣ =
∣∣∣∣∣18
(
z

w

)3
((

z

w

)2

+ 3

(
z

w

)
+4

)
+

∞∑
n=3

( z
w
+ 1

2
( z
w
)2)n

n!

∣∣∣∣∣
⩽ CK |w|−3

where CK is a constant that depends only on the compact set, which exists by
the boundedness of K. Moreover,

∑
w ̸=0 |w|−3 is a convergent series by Lemma

2.2, so by the above introduction of infinite products we immediately get that it
converges absolutely and locally uniformly.

• Zeros of σ: The σ-function vanishes if and only if z = 0 or one of the factors
(1 − z

w
)e

z
w
+ 1

2
( z
w
)2 vanishes for some 0 ̸= w ∈ Ω. This happens only when z = w.

From this reasoning, it directly follows by its definition that σ has zeros of order
1 exactly at the lattice points in Ω.

• σ is odd : By replacing z with −z and w with −w in the infinite product we get:

σ(−z) = −z
∏

0̸=w∈Ω

(
1− −z

−w

)
e

−z
−w

+ 1
2
( −z
−w

)2 = −z
∏

0̸=ω∈Ω

(
1− z

w

)
e

z
w
+ 1

2
( z
w
)2 =

= −σ(z)
From which we can conclude that σ is odd.

□

Proposition 2.3. For z ∈ C \ Ω the Weierstrass ζ-function is given by:

ζ(z) := ζ(z; Ω) :=
σ′(z)

σ(z)
=

1

z
+
∑

0̸=w∈Ω

(
1

z − w
+

1

w
+

z

w2

)
.

This function converges absolutely and uniformly on every compact subset of C\Ω. It has
poles of first order and residue 1 precisely at the points in Ω and it is an odd function.

Proof. Three aspects need to be shown.

• Covergence: Let K ⊆ C \ Ω. We estimate for z ∈ K:∣∣∣∣ 1

z − w
+

1

w
+

z

w2

∣∣∣∣= ∣∣∣∣ z2

w2(z − w)

∣∣∣∣⩽ CK |w|−3,
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the constant CK only depends onK and exists because of boundedness ofK. Then
again by Lemma 2.2 the sum

∑
0 ̸=w∈Ω |w|−3 converges absolutely and uniformly

on K.
• Poles of ζ: It is clear from the definition of ζ, that the poles are exactly at the
lattice points and of order and residue one.

• ζ is odd : From Proposition 2.1 it is known that the σ-function is an odd function,

from which follows that σ′(z) is even. By using the definition ζ(z) := σ′(z)
σ(z)

we

have

ζ(−z) = σ′(−z)
σ(−z)

=
σ′(z)

−σ(z)
= σ(z),

which ends the proof.

□

It is now beautiful to discover the connection between the ζ- function and the ℘-
function. First, we need to recall the ℘-function and some of its properties. Secondly, it
is important to recall the following definition of the Eisenstein series:

Definition 2.4 (Eisentein Series). Let k ∈ N with k ⩾ 3, then

Gk := Gk(Ω) :=
∑

0̸=w∈Ω

w−k (1)

defines the Eisenstein Series.

Theorem 2.5. The Weierstrass ℘- function

℘(z) := ℘Ω(z) :=
1

z2
+
∑

0 ̸=w∈Ω

(
1

(z − w)2
− 1

w2

)
, z ∈ C \ Ω (2)

converges absolutely and uniformly in every compact subset of C \ Ω. Moreover, it is an
even elliptic function with respect to Ω and has poles of second order with residue 0 in
every lattice point of Ω. The Laurent expansion at 0 has the form:

℘(z) = z−2 + a2z
2, . . . .

Corollary 2.6. For z ∈ C \ Ω we have

ζ ′(z) = −℘(z)

Proof. To do the comparison let us consider

ζ ′(z) = − 1

z−2
+
∑

0̸=w∈Ω

(
− 1

(z − w)2
+

1

w2

)
.

Then by direct comparison with ℘(z) (2), it can be seen that ζ(z) = −℘(z). □

Corollary 2.7. We have the Laurent expansion

ζ(z; Ω) =
1

z
+

∞∑
k=2

G2k(Ω)z
2k−1

around z = 0.

Proof. First note that we have

1

1− t
=

∞∑
m=0

tm, (|t| < 1) (3)
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Hence for 0 ̸= w ∈ Ω we may write

1

z − w
+

1

w
+

z

w2
=

1

w

(
1− 1

1− z
w

+
z

w

)
(3)
=

1

w

(
1−

∞∑
m=0

(
z

w

)m

+
z

w

)
=

=
1

w

(
−

∞∑
m=2

(
z

w

)m)
= −

∞∑
m=2

(
zm

wm+1

)
, (|z| < γ)

and thus we get

ζ(z) =
1

z
+
∑

0̸=w∈Ω

(
−

∞∑
m=2

(
zm

wm+1

))
, (0 < |z| < γ). (4)

Since ∣∣∣∣( zm

wm+1

)∣∣∣∣ ⩽ |w|−3

(
|z|
w

)m

γ2 (5)

we see from the estimation in (5) that the double series in (4) has to converge absolutely
by Lemma 2.2. Hence, we change the order of the summation and obtain

ζ(z) =
1

z
−

∞∑
m=2

( ∑
0̸=w∈Ω

(
1

wm+1

)
zm
)

=
1

z
−

∞∑
m=2

( ∑
0̸=w∈Ω

Gm+1(Ω)z
m

)
=

=
1

z
−

∞∑
m=2

Gm+1(Ω)z
m =

1

z
−

∞∑
k=2

G2k(Ω)z
2k−1

for 0 < |z| < γ. Recall that Gk = 0 for odd k, which gives the stated Laurent expansion.
□

The ζ-function is not elliptic. However, we have the following result.

Lemma 2.8. For w ∈ Ω the Weierstrass η-function

η(w) := η(w; Ω) := ζ(z + w)− ζ(z)

is independent of the choice of z ∈ C \ Ω. In particular, we have

η(w + w′) = η(w) + η(w′), w, w′ ∈ Ω

that is, η : Ω → C is a group homomorphism.

Proof. We know by Theorem 2.5 that ℘ is an elliptic function, thus we find

(ζ(z + w)− ζ(z))′ = −℘(z + w) + ℘(z) = 0

by this equality we then see that ζ(z + w) − ζ(z) is independent of z. We can now
compute:

η(w + w′) = ζ(z + w + w′)− ζ(z) = ζ(z + w)− ζ(z + w) + ζ(z + w + w′)− ζ(z) =

= (ζ(z + w)− ζ(z)) + (ζ((z + w) + w′)− ζ(z + w)) = η(w) + η(w′).

By this last equality, we get that η : Ω → C is a group homomorphism. □

We conclude this chapter by showing a nice property of the η-function, which is called
the Legendre Relation. But before proving it, we would like to recall the definition of a
fundamental parallelogram.
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Definition 2.9. Let Ω ⊆ C be a lattice and let (w1, w2) be a basis pf Ω. For u ∈ C we
define the fundamental parallelogram w.r.t (w1, w2) and base point u by

P (u;w1, w2) = {u+ α1w1 + α2w2 : α1, α2 ∈ [0, 1)}
For u = 0 we also write P (w1, w2) = P (0;w1, w2)

Proposition 2.10 (Legendre Relation). Let Ω = Zw1 +Zw2 with Im(w1

w2
) > 0. Then we

have:

η(w2)w1 − η(w1)w2 = 2πi

In particular, for w,w′ ∈ Ω we have

η(w)w′ − η(w′)w ∈ 2πiZ.

Proof. Let P = P (u;w1, w2) be a fundamental parallelogram, where the base point u ∈ C
is chosen in a way that 0 is still contained in the interior of P (u;w1, w2). We now analyze
the integral of ζ(z) over the positively oriented boundary of P and using the residue
theorem we get that ∫

∂P

ζ(z)dz = 2πi,

since the function ζ(z) has only one pole of first order and residue 1 in P , which is exactly
at z = 0. At the same time, we can split our integral as follows:∫

∂P

ζ(z)dz =

∫ u+w2

u

ζ(z)dz +

∫ u+w1+w2

u+w2

ζ(z)dz +

∫ u+w1

u+w1+w2

ζ(z)dz +

∫ u

u+w1

ζ(z)dz =

=

∫ u+w2

u

(ζ(z)− ζ(z + w1))dz +

∫ u

u+w1

(ζ(z)− ζ(z + w2))dz =

= η(w1)w2 − η(w2)w1,

where the last equality follows directly by the definition of the η-function. Moreover, we
used that the parallelogram has positive orientation.
To conclude we know that η : Ω → C is a group homomorphism, from which we get that
for each w,w′ ∈ Ω

η(w)w′ − η(w′)w ∈ 2πiZ
□

Remark 1. It follows as a consequence of the above-discussed propositions, that for 0 ̸=
λ ∈ C it holds:

σ(λz;λΩ) = λσ(z; Ω),

ζ(λw;λΩ) =
1

λ
ζ(z; Ω),

η(λw;λΩ) =
1

λ
η(w; Ω).
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3. The Transformation Law for σ

Recall that σ(z; Ω) is not an elliptic function since it is entire and non-constant.
Nonetheless, it satisfies an interesting transformation law which associates σ(z+w) to σ(z) for w ∈
Ω and z ∈ C.

Theorem 3.1. For w ∈ Ω and z ∈ C we have

σ(z + w) = χ(w)eη(w)(z+w
2
)σ(z), (6)

where

χ(w) =

{
1 if w

2
∈ Ω,

−1 if w
2
/∈ Ω.

Proof. Since σ vanishes at every point in Ω, the above theorem trivially holds in that
case. Let us now assume that z /∈ Ω. By the definition of the ζ-function we have
σ′(z) = σ(z)ζ(z). We thus get:

d

dz

(
σ(z + w)

σ(z)

)
=
σ′(z + w)σ(z)− σ(z + w)σ′(z)

σ(z)2

=
σ(z + w)ζ(z + w)σ(z)− σ(z + w)σ(z)ζ(z)

σ(z)2

=
σ(z + w)

σ(z)
η(w)

where we used the definition η(w) := ζ(z + w)− ζ(z) in the last equality.
Now let us define

ψ(w) :=
σ(z + w)

σ(z)
e−η(w)(z+w

2
),

which is independent of z. This can be verified easily by computing its derivative w.r.t.
z and checking that it is equal to zero.
If we can show that ψ(w) = χ(w), then we have concluded the proof. Indeed,
if w

2
/∈ Ω choose z = −w

2
and use the fact that σ is odd. This yields

ψ(w) =
σ(w

2
)

σ(−w
2
)
= −1 = χ(w)

Now consider the case where 0 ̸= w
2
/∈ Ω. We have for any w̃ ∈ Ω that

ψ(2w̃) =
σ(z + 2w̃)σ(z + w̃)

σ(z + w̃)σ(z)
e−2η(w̃)(z+w̃) = ψ(w̃)2, (7)

where we used the fact that η is a homomorphism.
By the discreteness of Ω, ∃n ⩾ 1 s.t. w′ := 2−nw̃ ∈ Ω and w′/2 = 2−n−1w̃ /∈ Ω. In our
case w′ = w where w′/2 /∈ Ω. We have seen in the previous case, that we then have
ψ(w′) = −1.
We obtain from equation (7)

ψ(w) = ψ(2nw′) = ψ(w′)2
n

= (−1)2
n

= 1

since n ⩾ 1. This shows that ψ = χ and thus concludes the proof. □
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Corollary 3.2. Let a, b ∈ C, for z ∈ C such that z /∈ b+Ω we define f(z) := σ(z−a)
σ(z−b)

. For

w ∈ Ω we then obtain with above transformation law (6)

f(z + w) = eη(w)(b−a)f(z).

Proof. Indeed,

f(z + w)
def.
=

σ(z + w − a)

σ(z + w − b)

=
σ((z − a) + w)

σ((z − b) + w)

(3.1)
=

χ(w)eη(w)(z−a+w
2
)σ(z − a)

χ(w)eη(w)(z−b+w
2
)σ(z − b)

= eη(w)(b−a)f(z).

□

4. Abel’s Theorem on the Existence of Elliptic Functions

Recall Abel’s relation which states the following: Let f be a (non-constant) elliptic
function for a given lattice Ω with fundamental parallelogram P . If we list the zeros
a1, . . . , ar and poles b1, . . . , br of f in P (with repetitions for the respective order), then
we have

a1 + . . .+ ar ≡ b1 + . . .+ br (mod Ω).

The following existence theorem can be considered as the converse of Abel’s relation
and is the culmination of this chapter. Its proof makes use of nearly all tools developed
up until now in this paper.

Theorem 4.1. Let a1, . . . , ar and b1, . . . , br be two finite sequences in C, such that {a1 +
Ω, . . . , ar + Ω} and {b1 + Ω, . . . , br + Ω} are disjoint and such that

w0 := (b1 + . . .+ br)− (a1 + . . .+ ar) ∈ Ω.

Then

f(z) := e−η(w0)z
σ(z − a1) · · ·σ(z − ar)

σ(z − b1) · · ·σ(z − br)

is an elliptic function that has zeros precisely at the points a1 + Ω, . . . , ar + Ω and poles
precisely at the points b1 + Ω, . . . , br + Ω (with order at such a point given by its number
of repetitions in the respective sequence). Moreover, every elliptic function with zeros
a1, . . . , ar and poles at b1, . . . , br is a constant multiple of f .

This means that we know how to construct any possible elliptic function up to a
constant factor given its zeros and poles (which have to satisfy Abel’s relation!). Now let
us turn our attention to the proof of this existence theorem.

Proof. Let us define

fa,b(z) :=
σ(z − a)

σ(z − b)
,

then we can rewrite f(z) as

f(z) = e−η(w0)z

r∏
j=1

faj ,bj(z).
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From above corollary (3.2), it follows that

f(z + w) = e−η(w0)(z+w)

r∏
j=1

faj ,bj(z + w)

= e−η(w0)(z+w)

r∏
j=1

eη(w)(bj−aj)faj ,bj(z)

= e−η(w0)(z+w)eη(w)
∑r

j=1(bj−aj)

r∏
j=1

faj ,bj(z)

= eη(w)w0−η(w0)we−η(w0)z

r∏
j=1

faj ,bj(z)

= f(z).

We have used that η(w)w0 − η(w0)w ∈ 2πiZ by the Legendre relation.
Since σ(z) has zeros of order 1 at the lattice points it follows immediately that σ(z − bi)
has zeros of order 1 at bi for all i ∈ {1, . . . , r}. From this is follows that f(z) has poles of
order exactly one at the points {b1 + Ω, . . . , br + Ω}.
The last statement of the theorem follows from a fact seen during the course. Any two
elliptic functions with the same zeros and poles only differ by a constant factor. This
concludes the proof. □

5. Jacobi’s Theta Function

Definition 5.1. The Jacobi theta function for the lattice Ω = Zτ+Z for τ ∈ H is defined
by

θ : C×H −→ C
(z, τ) 7→ θ(z|τ) :=

∑
n∈Z

eπin
2τ+2πinz

Lemma 5.2. The Jacobi theta function converges absolutely and locally uniformly on
C × H. For every fixed τ ∈ H it defines an entire function θ(·|τ) in z. It has zeros (at
least) at the points τ+1

2
+ Ω.

Moreover, it satisfies the transformation laws

θ(z + 1|τ) = θ(z|τ) and θ(z + τ |τ) = e−πiτ−2πizθ(z|τ)

Remark 2. Since θ(z|τ) is entire and non-constant in z it cannot be doubly periodic in
z. Nonetheless we get to relate θ(z + τ |τ) to θ(z|τ). Therefore and because θ(z|τ) also
has period 1 in z, the θ-function is sometimes called a quasiperiodic function.

Proof. We prove the three points separately:

• Convergence: Let K ⊆ C × H be compact. Then there exists ε > 0 such that
|Im(z)| ⩽ 1

ε
and Im(τ) > ε for all (z, τ) ∈ K. Let now (z, τ) ∈ K be arbitrary,

then∑
n∈Z

|eπin2τ+2πinz| =
∞∑
n=1

e−πn2Im(τ)−2πnIm(z) ⩽ 1 + 2
∞∑
n=1

e−πn2ε+ 2πn
ε .

We see that there must exist a constant C > 0 such that the right hand side of
the calculation can be estimated by

∑∞
n=1 e

−Cn2
, which is a convergent series as

a subseries of a convergent series. Moreover, θ(z; τ) defines an entire function in
z and a holomorphic in τ .
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• Transformation laws :
1. It holds that θ(z + 1; τ) = θ(z; τ), since

θ(z + 1; τ) =
∑
n∈Z

eπin
2τ+2πin(z+1) =

∑
n∈Z

eπin
2τ+2πinz+2πin =

=
∑
n∈Z

eπin
2τ+2πinze2πin

(∗)
=
∑
n∈Z

eπin
2τ+2πinz = θ(z; τ).

In (*) we used the fact that for any n ∈ Z it holds e2πin = 1.

2. We now prove that θ(z + τ ; τ) = θ(z; τ).

θ(z + τ ; τ) =
∑
n∈Z

eπin
2τ+2πin(z+τ) = e−πiτ−2πiz

∑
n∈Z

eπi(n+1)2τ+2πi(n+1)z =

= e−πiτ−2πizθ(z; τ).

• Zeros at τ+1
2

+ Ω: We directly compute

θ

(
τ + 1

2
; τ

)
=
∑
m∈Z

(−1)neπin(n+1)τ =
∑
n∈Z

(−1)−m−1eπi(−m−1)(−m)τ =

= −θ
(
τ + 1

2
; τ

)
,

which holds only in the case where θ
(
τ+1
2
; τ
)
= 0. This shows that the zeros of

θ(z; τ) are at least at the points τ+1
2

+ Ω.

□

The main purpose of defining the θ-function in this paper is to show that there exists
an alternative way of constructing elliptic functions.

Theorem 5.3. For a1, . . . , ar, b1, . . . , br ∈ C with (a1 + . . .+ ar)− (b1 + . . .+ br) ∈ Ω the
function

f(z) :=
θ(z − a1|τ) · · · θ(z − ar|τ)
θ(z − b1|τ) · · · θ(z − br|τ)

is an elliptic function for the lattice Ω = Zτ + Z. If the sets {a1 + Ω, . . . , ar + Ω} and
{b1 +Ω, . . . , br +Ω} are disjoint, then f(z) has zeros at the points z ∈ τ+1

2
+ aj +Ω and

poles at the points z ∈ τ+1
2

+ bj + Ω for 1 ⩽ j ⩽ r, where the order of the poles is given
by the number of repetitions of aj and bj.

Proof. Uses the Jacobi triple product identity. Can be found in [1]. □

Remark 3. In comparison to Abel’s Existence Theorem the poles and zeros seem to be
shifted by τ+1

2
, which is due to the fact that the zeros of the θ-function are located at

τ+1
2

+ Ω instead of at 0 + Ω for the σ-function
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