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Introduction

In this seminar, we aim to introduce the modular group and modular forms. We begin by
examining the group structure of the modular group and its action on the upper half-plane
through Möbius transformations. We then define the fundamental domain and explore its
properties, followed by a brief introduction to elliptic points. After that, we introduce Fourier
expansions and define the factor of automorphy and modular forms. Finally, we prove a few
general statements about modular forms, such as the Hecke bound, and that there are no
modular forms of negative weight.

1 Möbius transformations and the upper half-plane

We begin with a brief review of Möbius transformations, focusing particularly on those
operating on the upper half-plane.

Definition 1.1. The upper half-plane is the set of complex numbers with positive imaginary
part: H = {τ ∈ C | Im(τ) > 0}.

Definition 1.2. Let a, b, c, d ∈ R satisfy the condition ad − bc = 1. We define a Möbius
transformation on H as a map of the form

f(τ) =
aτ + b

cτ + d

The condition ad− bc = 1 in the above definition is sometimes written as ad− bc > 0, but
since multiplying a, b, c and d by the same constant does not change f , both conditions are
equivalent. We verify that the image of f is indeed in H in the following lemma:

Lemma 1.3. Im(f(τ)) =
ad− bc

|cτ + d|2
Im(τ)

Proof. f(τ) =
aτ + b

cτ + d
=

(aτ + b)(cτ + d)

|cτ + d|2
=

ac|τ |2 + bd+ adτ + bcτ

|cτ + d|2
;

ac|τ |2 + bd, |cτ + d|2 ∈ R ⇒ Im(f(τ)) =
Im(adτ + bcτ)

|cτ + d|2
=

(ad− bc)Im(τ)

|cτ + d|2
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Since ad − bc = 1, Im(τ) > 0 and |cτ + d|2 > 0 (because τ ̸= −d

c
), we have Im(f(τ)) > 0,

and therefore f(τ) ∈ H. It can also be shown that f is a bijection on H with inverse

function f−1(τ) =
dτ − b

−cτ + a
. Note that the coefficients a, b, c, d of f correspond to the matrix

A =

(
a b
c d

)
∈ SL2(R), since ab− cd = 1 by definition.

2 The modular group and its action on the upper half-plane

We define the modular group, denoted by Γ, as the subgroup of SL2(R) consisting of the
matrices with integer coefficients:

Definition 2.1. Γ := SL2(Z) =
{(

a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
We determine the structure of Γ by proving the claim:

Theorem 2.2. Γ is generated (as a multiplicative group) by the matrices

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)

Proof. Let M =

(
a b
c d

)
be an arbitrary element of Γ and let G be the group generated by

S and T , that is, the group consisting of all possible combinations (products and inverses)
of S and T . It is easy to verify that S and T are in Γ, therefore G ⊂ Γ. We use strong
induction on |c| to show the remaining direction, namely Γ ⊂ G. Note that S2 = −I, so
−I ∈ G. In the base case c = 0, ad = ad − bc = 1, so a = d = ±1, and since −I ∈ G, we

can assume wlog that a = d = 1. Tm =

(
1 m
0 1

)
for any m ∈ Z ⇒ M = T b is indeed in G.

For |c| > 0, we consider the matrix STmM =

(
−c −d

a+mc b+md

)
. We choose m = m0 ∈ Z

such that |a +m0c| < |c|, and by the induction hypothesis, STm0M ∈ G ⇒ M ∈ G. This
finishes the proof.

Before we proceed, let us mention another identity (S2 = −I was already established in the
above proof) related to the group structure of the modular group, namely (TS)3 = (ST )3 =
−I. The proof follows directly by simple calculations using the definitions of S and T .

In order to examine how the modular group Γ, and more generally SL2(R), act on the upper
half-plane H, we recall what a group action is:

Definition 2.3. A group action σ of a group G on a set X is a function σ : G × X → X
with the following two properties:

1. σ(e, x) = x, where e is the identity of G and x ∈ X - arbitrary

2. σ(g, σ(h, x)) = σ(gh, x), where g, h ∈ G and x ∈ X - arbitrary
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Such a group action is called a left action; a right action is defined similarly as σ : X×G → X
that satisfies σ(x, e) = x and σ(σ(x, g), h) = σ(x, gh)

To simplify notation, we write gx or g · x instead of σ(g, x) from now on.

Theorem 2.4. The group Γ acts on H through Möbius transformations.

Γ×H → H;

(
a b
c d

)
· τ → aτ + b

cτ + d

Proof. We show the above function is indeed an action.

(
1 0
0 1

)
is the identity of SL2(R),

and we have

(
1 0
0 1

)
· τ =

τ + 0

0τ + 1
= τ ⇒ the first property holds. Let

(
a b
c d

)
and

(
a′ b′

c′ d′

)
be arbitrary elements of SL2(R).(

a b
c d

)
·
((

a′ b′

c′ d′

)
· τ

)
=

(
a b
c d

)
· a

′τ + b′

c′τ + d′
=

=
a
a′τ + b′

c′τ + d′
+ b

c
a′τ + b′

c′τ + d′
+ d

=
(aa′ + bc′)τ + ab′ + bd′

(a′c+ dc′)τ + b′c+ dd′
=

((
a b
c d

)(
a′ b′

c′ d′

))
· τ

The last equality holds because

(
a b
c d

)(
a′ b′

c′ d′

)
=

(
aa′ + bc′ ab′ + bd′

a′c+ dc′ b′c+ dd′

)
Therefore, the second condition for σ to be an action is also satisfied. Next, we illustrate
the action of S and T on H. S acts on H through the Möbius transformation f(τ) = − 1

τ
. If

we write τ as x+ yi, then f(τ) = −x+yi
x2+y2

. Therefore, f(τ) first maps τ to its inversion image

with respect to the unit circle (we define inversion in the next page), and then reflects it
with respect to the y-axis, as shown in the picture below (A′ is the image of A):
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T acts on H through the Möbius transformation f(τ) = τ + 1, which simply shifts τ with 1
to the right, as shown in the picture below (A′ is the image of A):

To better understand how S acts on H, we define inversion:

Definition 2.5. Inversion with center O and radius r > 0 is the map of the plane that sends

each point A to a point A′ on the ray
−→
OA such that |OA||OA′| = r2

Inversion has various important geometric properties. It maps the set of lines through O to
itself, the set of lines not containing O to the set of circles containing O (and vice versa),
and the set of circles not containing O to itself.

Let us recall the definition of an orbit of a group action:

Definition 2.6. The orbit of an element x ∈ X is the set OG(x) := {gx | g ∈ G}.

One can easily verify that orbits corresponding to different elements of X are either equal
or disjoint.

4



Definition 2.7. We call a group operation transitive if there is only one orbit, i.e. for every
x, x′ ∈ X there is an element g ∈ G such that gx = x′.

In the following theorem we show an important property of the group action of SL2(R) on
H:

Theorem 2.8. The group action of SL2(R) on H is transitive.

Proof. Let τ0, τ be arbitrary elements of H. We want to find an element g of SL2(R) such that

g · τ0 = τ . Let τ0 = x0 + y0i and τ = x+ yi (note that y0, y > 0). Let g1 =

(√
y 0
0 1√

y

)
, g2 =(

1 x
y
− x0

y0

0 1

)
, g3 =

( 1√
y0

0

0
√
y0

)
and let g = g1g2g3. Since g1, g2, g3 ∈ SL2(R) it follows that

g ∈ SL2(R).

g · τ0 = (g1g2g3) · τ0 = (g1g2) · (g3 · τ0) = (g1g2) ·
(
x0

y0
+ i

)
=

= g1 ·
(
g2 ·

(
x0

y0
+ i

))
= g1 ·

(
x

y
+ 1

)
= x+ yi = τ

However, the action of Γ on H is not transitive because we restrict a, b, c and d to integers.
To gain a better understanding of this action, we introduce the fundamental domain - a
closed subset of H that contains a representative of each orbit.

3 The fundamental domain and elliptic points

Definition 3.1. We define the fundamental domain as

F :=

{
τ ∈ H : |Re(τ)| ≤ 1

2
, |τ | ≥ 1

}
First, we prove that every orbit has a representative in F :

Theorem 3.2. For every τ ∈ H there is an element M =

(
a b
c d

)
∈ Γ such that Mτ =

aτ + b

cτ + d
∈ F .

Proof. Let τ ∈ H be arbitrary. We already proved in Lemma 1.3. that for a matrix M =(
a b
c d

)
we have Im(Mτ) = Im

(
aτ + b

cτ + d

)
=

Im(τ)

|cτ + d|2
. We can choose c and d in M in such a

way that |cτ+d|2 is minimal, i.e. there is a matrixM0 ∈ Γ such that Im(M0τ) is maximal. By
multiplying M0 with a power of T , we shift the real part of M0τ by a whole number without

changing the the imaginary part. Therefore, wlog we may assume that |Re(M0τ)| ≤
1

2
.

Assume now that |M0τ | < 1. Then Im(SM0τ) =
Im(M0τ)

|M0τ |2
> Im(M0τ), and since SM0 is

also in Γ, we reach a contradiction to the maximality of Im(M0τ). Therefore, our assumption
is wrong and |M0τ | ≥ 1 ⇒ M0τ ∈ F , which finishes the proof.
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The shaded area represents the fundamental domain. Each element of Γ in the diagram
corresponds to the image resulting from the action of the respective element on the

fundamental domain.

In the next theorem, we demonstrate that each representative within the set F is unique,
except for those on the boundary of F . We say that two elements τ and τ ′ are equivalent
modulo Γ if there is an element M ∈ Γ such that Mτ = τ ′. In particular, as we proved in
Theorem 2.8, every two elements of H are equivalent modulo SL2(R).

Theorem 3.3. If τ ̸= τ ′ ∈ F are equivalent modulo Γ, then τ, τ ′ must be on the boundary

of F . Moreover, we either have |τ | = 1 and τ ′ =
−1

τ
, or Re(τ) = ±1

2
and τ ′ = τ ∓ 1.

Proof. Let τ ̸= τ ′ ∈ F be equivalent modulo Γ, i.e. there is a matrix M ∈ Γ with Mτ = τ ′.
Wlog we may assume that Im(τ ′) = Im(Mτ) ≥ Im(τ), otherwise we can swap τ and τ ′.

This yields |cτ + d|2 ≤ 1, using again the fact that Im(Mτ) =
Im(τ)

|cτ + d|2
(Lemma 1.3).

Let us write τ as x + iy, and observe that by definition of F it holds −1

2
≤ x ≤ 1

2
and

y ≥
√
3

2
⇒ 1 ≥ |cτ + d|2 = (cx + d)2 + c2y2 ≥ 3

4
c2. Because c is an integer, we have

c ∈ {−1, 0, 1}. Note that M and −M operate in the same way on H, as multiplying a, b, c, d

by −1 does not change
aτ + b

cτ + d
, so we can assume wlog c ≥ 0. We now examine both cases:

• c = 0: In this case, as we showed in the proof of Theorem 2.2, it holds that M = Tm

for some m ∈ Z. Hence, M maps τ to τ ′ = τ + m, so τ and τ ′ must be on the

vertical parts of the boundary of F , and m = ±1. As a result, we get Re(τ) = ±1

2
and τ ′ = τ ∓ 1.

• c = 1: In this case, 1 ≥ |cτ+d|2 = |τ+d|2 = (x+d)2+y2 ≥ (x+d)2+
3

4
⇒ |x+d| ≤ 1

2
.

Since |x| ≤ 1

2
, this inequality yields |d| ≤ 1, so d ∈ {−1, 0, 1}. We now examine the

cases for d:

– d = 0: M must be of the form

(
a −1
1 0

)
, so M = T aS and τ ′ = Mτ = a − 1

τ
.

If we assume |τ | > 1, we get

∣∣∣∣Re(−1

τ

)∣∣∣∣ = |x|
|τ |2

<
1

2
. Thus, a bust be 0 in order
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to satisfy Re

(
a− 1

r

)
= Re(τ ′) ≤ 1

2
, and hence |τ ′| = |Mτ | =

∣∣∣∣−1

τ

∣∣∣∣ < 1. This

contradicts τ ′ ∈ F . Therefore, |τ | = 1 ⇒ 1

τ
= τ . As a result, τ ′ = Mτ = a− τ =

(a− x) + iy. Re(τ ′) ≤ 1

2
implies a ∈ {−1, 0, 1}. It remains to examine the three

possible cases for a:

For a = −1 we have M = T−1S.

For a = 0 we have M = S.

For a = 1 we have M = TS.

In the case a = 0, we get τ ′ =
−1

τ
as we claimed. a = 1 yields τ ′ = τ = ρ := e

πi
3

and a = −1 yields τ ′ = τ = ρ2 = e
2πi
3 . We required, however, that τ ̸= τ ′, so we

exclude the the cases a = ±1.

– d = −1: From the inequalities |x + d| ≤ 1

2
and |x| ≤ 1

2
, we observe that x =

1

2

and y =

√
3

2
, so τ = ρ. 1 = det(M) = ad − bc = a · (−1) − b ⇒ a + b = −1.

Therefore, Mρ =
aρ+ b

ρ− 1
= a − 1

ρ− 1
, which yields Im(Mρ) =

√
3

2
and Re(Mρ)

= a+
1

2
. This is only possible if a ∈ {−1, 0}.

If a = 0, we have b = −1 and M =

(
0 −1
1 −1

)
. However, this leads to Mρ = ρ,

contradicting τ ̸= τ ′.

If a = −1, we have b = 0 and M =

(
−1 0
1 −1

)
. This yields Mρ = ρ2 =

−1

ρ
and

since |ρ| = 1, the theorem is satisfied.

– d = 1: This case is solved similarly to d = −1

In order to define elliptic points, we recall the definitions of a stabilizer and a fixed point of
a group action:

Definition 3.4. The stabilizer of an element x ∈ X is the subgroup Gx := {g ∈ G | gx = x}
of G.

Definition 3.5. A fix point of G is an element x ∈ X such that the orbit of x consists only
of x, i.e. OG(x) = {x} (or equivalently the stabilizer of x is Gx = G).

We now examine the fixed points τ ∈ H of the action defined by Γ. Let Γτ = {M ∈ Γ : Mτ =
τ} be the stabilizer of τ . For all τ ∈ H and M ∈ Γ, we have ±I ∈ Γτ and |Γτ | = |ΓMτ |.

Definition 3.6. A point τ ∈ H is called an elliptic point of order
1

2
|Γτ | if Γτ ̸= {±I}, that

is, τ has a nontrivial stabilizer.

The following theorem shows that there are only 2 elliptic points modulo the operation of
Γ, which have orders 2 and 3.
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Theorem 3.7. The elliptic points of Γ in F are the following:

1. τ = i with stabilizer {±I,±S},

2. τ = ρ = e
πi
3 with stabilizer {±I,±TS,±(TS)2},

3. τ = ρ2 = e
2πi
3 with stabilizer {±I,±ST,±(ST )2}

The proof follows easily from the proof of Theorem 3.3.

4 Fourier series

Theorem 4.1. Let f be a 1-periodic (i.e. f(τ + 1) = f(τ)) holomorphic function on
the region D = {τ ∈ C : a < Im(τ) < b}, where −∞ ≤ a < b ≤ ∞. Then f can

be represented as a convergent complex Fourier series f(τ) =
∞∑

n=−∞
ane

2πinτ , where an =∫ 1

0

f(x+ iy)e−2πin(x+iy)dx, and y can be chosen arbitrarily in the interval (a, b).

Proof. For each y, the function f(τ) = f(x + iy) is two times continuously differentiable in
the variable x, and by a well-known result in real analysis it admits a Fourier expansion:

f(τ) =
∞∑

n=−∞

an(y)e
2πinx

with

an(y) =

∫ 1

0

f(τ)e−2πinx dx or equivalently an(y)e
2πny =

∫ 1

0

f(τ)e−2πinτ dx

We are done if we show that an := an(y)e
2πny does not depend on y, because this would

imply f(τ) =
∑∞

n=−∞ ane
2πinτ . We must therefore verify that the derivative

d

dy
(an(y)e

2πiny)

is 0 for all y or, equivalently, a′n(y) = −2πnan(y). To prove this, we use the Cauchy-Riemann
differential equations

∂f(τ)

∂x
= −i

∂f(τ)

∂y

The integral formula for an(y) together with the Leibniz rule yield

a′n =

∫ 1

0

∂f(τ)

∂y
e−2πinxdx =

∫ 1

0

i
∂f(τ)

∂x
e−2πinx

and after partial integration we obtain the desired differential equation for an(y).
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5 Modular forms

Let us introduce two definitions necessary for defining modular forms:

Definition 5.1. For M =

(
a b
c d

)
∈ SL2(R) and τ ∈ H we define the factor of automorphy

as j(M, τ) = cτ + d.

Definition 5.2. For k ∈ Z, M ∈ Γ and f : H → C we define the weight k slash-operator as
(f |kM)(τ) := j(M, τ)−kf(Mτ).

With the relation j(MN, τ) = j(M,Nτ)j(N, τ), one can verify that the weight k slash-
operator defines a right group action of SL2(R) on the set of holomorphic functions f : H →
C i.e. f |kMN = (f |kM)|kN . We can now define modular forms:

Definition 5.3. Let k ∈ Z. A function f : H → C is called a modular form of weight k for
Γ if the following conditions hold:

1. f is holomorphic on H

2. f |kM = f for all M ∈ Γ

3. f can be written as a Fourier series of the form f(τ) =
∞∑
n=0

af (n)q
n with q = e2πiτ

If af (0) = 0, f is called a cusp form.

The diagram displays a colour plot of a modular form, specifically the holomorphic
Eisenstein series of weight 4.

Remarks:

1. The second condition is equivalent to f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ). Since T and S

generate Γ, this condition is equivalent to the two inequalities f(τ + 1) = f(τ) (for

M = T ) and f

(
−1

τ

)
= τ kf(τ) (for M = S). The first inequality means f must be

1-periodic.
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2. As shown in Theorem 4.1, if f is 1 - periodic, f must have a Fourier expansion of the

form f(τ) =
∞∑

n=−∞
af (n)q

n with af (n) ∈ C and q = e2πiτ . The third condition therefore

requires that this Fourier expansion has no negative terms, which is equivalent to
f(τ) = f(x+ iy) remaining bounded as y → ∞. In particular, if f is a cusp form, then
f(τ) approaches 0 exponentially as y tends to ∞.

3. af (0) = lim
y→∞

f(iy)

4. The set of modular forms of weight k for Γ forms a C-vector space Mk; we denote by
Sk the subspace of Mk consisting of cusp forms.

Finally, we establish some important properties of modular and cusp forms.

Lemma 5.4. Given f ∈ Mk and g ∈ Ml, we have fg ∈ Mk+l. Moreover, if f and g are cusp
forms, then so is fg.

Proof. For M ∈ Γ, we calculate that

(fg)|k+lM = j(M, τ)−k−l(fg)(Mτ) = j(M, τ)−kf(Mτ)j(M, τ)−lg(Mτ) =

= f |kM · g|lM = fg

This implies the first part of the Lemma. The second part follows directly from multiplying
the Fourier expansions of f and g.

Lemma 5.5. Let k ∈ Z be odd. Then Mk = {0}.

Proof. Let f ∈ Mk. The transformation of f under the matrix −I yields f(τ) = f((−I)τ) =
(−1)kf(τ). Since k is odd, we therefore have f(τ) = 0 for all τ ∈ H.

Theorem 5.6 (Hecke bound). Let f =
∞∑
n=1

af (n)q
n be a cusp form. There exists a constant

C > 0 such that |af (n)| ≤ Cnk/2 for all n ≥ 1.

Proof. Consider the function h(τ) = Im(τ)k/2|f(τ)|. It follows from the second property

of modular forms and the identity Im(Mτ) =
Im(τ)

|cτ + d|2
(Lemma 1.3.) that h is Γ-invariant

(this means h(Mτ) = h(τ) for all M ∈ Γ and τ ∈ H). Since f(τ) → 0 exponentially as
Im(τ) → ∞ (remark 2.), h(τ) is bounded on the entire fundamental domain F . Combining
this property with h−Γ-invariant, we get that h(τ) is bounded on the entire H by a constant
C ′, i.e. h(τ) ≤ C ′ for all τ ∈ H. We can now also derive a bound for the n−th Fourier
coefficient af (n):

|af (n)| ≤
∫ 1

0

|f(x+ iy)|e2πnydx =

∫ 1

0

y−k/2h(x+ iy)e2πnydx ≤ C ′y−k/2e2πny

As pointed out in Theorem 4.1, we can choose y freely. In particular, y = 1/n gives us
|af (n)| ≤ C ′e2πnk/2, which finishes the proof.
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Theorem 5.7. For k < 0 it holds that Mk = {0}.

Proof. We consider again the Γ-invariant function h(τ) = Im(τ)k/2|f(τ)|. k < 0 and remark
2. imply that h is bounded on the fundamental domain F , and therefore also on H ⇒ h(τ) ≤
C ′ for some constant C ′ and all τ ∈ H. As in the proof the Hecke bound, we have:

|af (n)| ≤
∫ 1

0

|f(x+ iy)|e2πnydx =

∫ 1

0

y−k/2h(x+ iy)e2πnydx ≤ C ′y−k/2e2πny

If y → 0, the right side of the above inequality tends to 0, because −k > 0. Therefore,
|af (n)| = 0 for all n ⇒ f ≡ 0.
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