Eisenstein series and the Delta function

G. Hüglin and J. Menzi

10.04.2024

Introduction

Before the Easter break, we introduced modular forms, which are holomorphic functions on the upper half plane which are invariant under Moebius transformations and satisfy a certain growth condition. So far, we have not encountered any non-trivial modular forms and by the definition, it's not immediately clear whether it's even possible to find non-trivial modular forms. In this talk, we give a first example of a non-trivial modular form (the Eisenstein series) and use it to construct a non-trivial modular cusp form (the Ramanujan delta function). As usual, we closely follow the lecture notes [12].

1 Preliminaries

In the following, $\Gamma = \operatorname{SL}_2(\mathbb{Z})$ will denote the modular group, as introduced in the last talk. Recall that Γ acts on the set of holomorphic functions on the upper half plane via $f|_k M(\tau) = j(M,\tau)^{-k} f(M\tau)$, where $j(M,\tau) = c\tau + d$ is the factor of automorphy (with $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$).

Definition 1. Let $k \in \mathbb{Z}$ and let $f : \mathbb{H} \to \mathbb{C}$ be a complex valued function. We call f a modular form of weight k for Γ if f fulfills the following three conditions:

- 1. f is homolomorphic on \mathbb{H} ,
- 2. $f|_k M = f$ for all $M \in \Gamma$,
- 3. There are no negative terms in the fourier expansion of f, i.e. it's fourier expansion is of the form

$$f(\tau) = \sum_{n=0}^{\infty} a_n q^n,$$

where $q = e^{2\pi i \tau}$. If also $a_0 = 0$, then f is called a *cusp form*.

To show holomorphy, we will need the following statement:

Theorem 1. Let $(f_n)_n$ be a sequence of complex-valued functions on a set S. Assume there are non-negative numbers $(M_n)_n$ s.t.

- 1. $|f_n(x)| \leq M_n$ for all $n \geq 1$ and all $x \in S$.
- 2. $\sum_{n=1}^{\infty} M_n$ converges

Then the series $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely and uniformly on S.

2 Eisenstein Series

Definition 2. Let $k \in \mathbb{Z}$, $k \ge 4$ be even. We define the Eisenstein Series of weight k as

$$G_k(\tau) = \sum_{(m,n) \in \mathbb{Z}^2 \setminus \{(0,0)\}} (m\tau + n)^{-k}$$

for all $\tau \in \mathbb{H}$.

In week 1, we already introduced the Eisenstein Series for a given lattice Ω . Recall that we defined

$$G_k(\Omega) = \sum_{0 \neq \omega \in \Omega} \omega^{-k}$$

for $k \in \mathbb{Z}, k \geq 4$ and even. In the special case of $\Omega = \mathbb{Z}\tau + \mathbb{Z}$, this is simply the Eisenstein Series as in Definition 2. We will now show the following proposition, which shows the relationship between modular forms and the Eisenstein Series.

Proposition 1. Let $k \in \mathbb{Z}$, $k \geq 4$ be even. Then G_k is a non-zero modular form of weight k with respect to Γ .

Recall that there are no modular forms of odd weight on Γ . For k odd, we have that $-(m\tau + n)^{-k} = (-m\tau - n)^{-k}$, so $G_k = 0$. This means that the Eisenstein series does not give a new non-trivial example of a modular form in this case, as we expected.

Lemma 1. Let $K \subset \mathbb{H}$ be compact. Then there are constants $\alpha, \beta > 0$ such that

$$\forall \tau \in K \; \forall m, n \in \mathbb{R} \colon \alpha |mi+n| \le |m\tau+n| \le \beta |mi+n|. \tag{1}$$

Proof. We can assume WLOG that $m^2 + n^2 = 1$. Otherwise, replace (m, n) by $\frac{1}{\sqrt{m^2+n^2}}(m, n)$ and use the fact that (1) is homogeneous in m, n. Now consider the continuous function $(\tau, (m, n)) \mapsto |m\tau + n|$ on the compact set $K \times S^1$ (products of compact sets are compact, by Tychonoff's theorem). This function admits a minimum and a maximum, hence there are constants α, β such that $\alpha \leq |m\tau + n| \leq \beta$. It only remains to show that $\alpha > 0$. To this end, notice that $z \mapsto \text{Im}(z)$ is continuous, so it admits a minimum on the compact set K. Hence, there exists a constant C s.t. $\forall z \in K \colon \text{Im}(z) \geq C > 0$. Now $|m\tau + n| = ((mx + n)^2 + iym)^{1/2}$. So if m = 0, then $|m\tau + n| = |n| = 1 > 0$ (because of the relation $m^2 + n^2 = 1$) while if $m \neq 0$, then $|m\tau + n| \geq |my| \geq |m|C > 0$. In either case, the value of the function is positive and hence it's minimum (which is α) is positive too. This completes the proof.

Lemma 2. Let $k \in \mathbb{Z}$ be even, $k \geq 4$. Then G_k defines a holomorphic function on \mathbb{H} .

Proof. By the Weierstrass convergence theorem, it suffices to show G_k converges locally uniformly. To this end, we want to apply the Weierstrass M-test. Using the lemma above, we can bound

$$|G_k| \le \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} |m\tau+n|^{-k} \le \alpha^{-k} \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} |mi+n|^{-k}$$
$$= \alpha^{-k} \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} (m^2+n^2)^{-k/2}$$

Now we only need to show that $\sum_{(m,n)\in\mathbb{Z}^2\backslash\{(0,0)\}}(m^2+n^2)^{-k/2}$ converges. Indeed,

$$\sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} (m^2+n^2)^{-k/2} = \sum_{n\in\mathbb{Z}\setminus\{0\}} n^{-k} + \sum_{m\in\mathbb{Z}\setminus\{0\}} m^{-k} + \sum_{m,n\in\mathbb{Z}\setminus\{0\}} (m^2+n^2)^{-k/2} + \sum_{n\in\mathbb{Z}\setminus\{0\}} (m^2+n^2)^{-k/2} + \sum_{n\in\mathbb{Z}\setminus\{0$$

Now we use that fact that $\sum_{n \in \mathbb{Z} \setminus \{0\}} n^{-k} = 2\zeta(k)$ and that $m^2 + n^2 \ge 2|mn|$ (this is simply $(|m| - |n|)^2 \ge 0$) to obtain the bound

$$\sum_{\substack{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}\\}} (m^2+n^2)^{-k/2} \le 4\zeta(k) + \sum_{\substack{m,n\in\mathbb{Z}\setminus\{0\}\\}} 2^{-k/2} |mn|^{-k/2}$$
$$= 4\zeta(k) + 4 \cdot 2^{-k/2} \zeta(k/2)^2$$
$$< \infty.$$

By the Weierstrass M-test, we obtain that G_k converges absolutely and uniformly on every compact set, which proves the claim.

Lemma 3. Let $k \in \mathbb{Z}$ be even, $k \geq 4$. Then $G_k|_k M = G_k$ for every $M \in \Gamma$, *i.e.* G_k is Γ -invariant.

Proof. The proof is a simple computation: let $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. Then

$$(G_k|_k M)(\tau) = (c\tau + d)^{-k} \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} \left(m\frac{a\tau + b}{c\tau + d} + n\right)^{-k}$$
$$= \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} \left(m(a\tau + b) + n(c\tau + d)\right)^{-k}$$
$$= \sum_{(m,n)\in\mathbb{Z}^2\setminus\{(0,0)\}} \left((ma + nc)\tau + (mb + nd)\right)^{-k}.$$

Now the map $(m,n) \mapsto (ma + nc, mb + nd)$ from $\mathbb{Z}^2 \setminus \{(0,0)\}$ to itself is a bijection, because it is given by right multiplication of the matrix M, which has determinant 1 and is thus invertible over \mathbb{Z} . Also, notice that we can reorder the series because it converges absolutely.

To conclude that G_k is indeed a modular form, we need to calculate it's Fourier expansion. We want to show the following result:

Proposition 2. Let $k \in \mathbb{Z}$ be even, $k \geq 4$. Then the Eisenstein Series G_k has the Fourier expansion

$$G_k(\tau) = 2\zeta(k) + 2\frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n,$$

where $q = e^{2\pi i \tau}$, $\zeta(k) = \sum_{n=1}^{\infty} n^{-k}$ is the Riemann-Zeta function and $\sigma_k(n) = \sum_{d|n} d^k$ is the generalized divisor sum function.

Lemma 4. Let $k \in \mathbb{Z}$ be even, $k \geq 4$. Then for every $\tau \in \mathbb{H}$ we have that

$$\sum_{n \in \mathbb{Z}} (\tau + n)^{-k} = \frac{(2\pi i)^k}{(k-1)!} \sum_{d=1}^{\infty} d^{k-1} e^{2\pi i d\tau}.$$

With this lemma we can already calculate the Fourier expansion of G_k . Write

$$G_k(\tau) = \sum_{n \neq 0} n^{-k} + \sum_{m \in \mathbb{Z} \setminus \{0\}} \sum_{n \in \mathbb{Z}} (m\tau + n)^{-k} = 2\zeta(k) + 2\sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} (m\tau + n)^{-k}.$$

The second equality comes from the fact that k is even and thus

$$\sum_{n \in \mathbb{Z}} (-m\tau + n)^{-k} = \sum_{n \in \mathbb{Z}} (-m\tau - n)^{-k} = \sum_{n \in \mathbb{Z}} (m\tau + n)^{-k}$$

Now we apply Lemma 4 (but with τ replaced by $m\tau$ to obtain that

$$G_k(\tau) = 2\zeta(k) + 2\frac{(2\pi i)^k}{(k-1)!} \sum_{m=1}^{\infty} \sum_{d=1}^{\infty} d^{k-1} e^{2\pi i dm\tau}$$
$$= 2\zeta(k) + 2\frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sum_{d|n} d^{k-1} e^{2\pi i n\tau}$$
$$= 2\zeta(k) + 2\frac{(2\pi i)^k}{(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2\pi i n\tau},$$

as desired. In the second equality, we made the substitution n = md. So it remains to proof the lemma.

Proof. Consider the function $f(\tau) = \sum_{n \in \mathbb{Z}} (\tau + n)^{-k}$ on the upper-half plane. Then $f(\tau + 1) = f(\tau)$, because increasing τ by an integer corresponds to a shift of \mathbb{Z} , which does not change the sum. f is also holomorphic (we can essentially copy the argument that G_k is holomorphic). Therefore, f has a Fourier expansion

$$\sum_{n \in \mathbb{Z}} (\tau + n)^{-k} = \sum_{d \in \mathbb{Z}} \left(\int_0^1 f(\tau) e^{-2\pi i d\tau} \right) e^{2\pi i d\tau},$$

where the inner integral does not depend on $y = \text{Im}(\tau)$. The same proof as in Lemma 3 shows that $\sum_{n \in \mathbb{Z}} (\tau + n)^{-k}$ converges locally uniformly and thus uniformly on the compact set $[0,1] \times \{y\}$. Hence, we can exchange limit and integral to obtain

$$\int_{0}^{1} \sum_{n \in \mathbb{Z}} (\tau + n)^{-k} e^{-2\pi i d\tau} dx = \sum_{n \in \mathbb{Z}} \int_{0}^{1} (\tau + n)^{-k} e^{-2\pi i d\tau} dx$$
$$= \sum_{n \in \mathbb{Z}} \int_{n}^{n+1} \tau^{-k} e^{-2\pi i d\tau} dx$$
$$= \int_{-\infty}^{\infty} \tau^{-k} e^{-2\pi i d\tau} dx$$
(2)

So it only remains to calculate this last integral. We distinguish three cases:

1. d < 0. In this case, we can bound

$$\left|\int_{-\infty}^{\infty} \tau^{-k} e^{-2\pi i d\tau} dx\right| \leq \int_{-\infty}^{\infty} |\tau^{-k} e^{-2\pi i d\tau}| dx$$
$$= e^{2\pi i dy} \int_{-\infty}^{\infty} |\tau^{-k}| dx$$

Now we can take the limit $y \to \infty$ on both sides (recall that the integral in (2) is independent of y). Then the right hand side will be zero, given that the integral $\int_{-\infty}^{\infty} |\tau^{-k}| dx$ is finite. To show this, bound $|\tau|^{-k}$ by y^{-k} in the unit ball around 0 and by x^{-k} outside the unit ball. Then:

$$\int_{-\infty}^{\infty} |\tau^{-k}| dx \le 2 \int_{0}^{1} y^{-k} dx + 2 \int_{1}^{\infty} x^{-k} dx$$
$$= 2y^{-k} + 2 \frac{1}{1-k} x^{1-k} \Big|_{1}^{\infty}$$
$$= 2y^{-k} + 2 \frac{1}{1-k}$$
$$< \infty$$

This calculation shows that $\int_{-\infty}^{\infty} \tau^{-k} e^{-2\pi i d\tau} dx = 0$ for d < 0.

2. d = 0. In this case, the above argument won't work, because $e^{2\pi i dy} = 1$. However, now

$$\int_{-\infty}^{\infty} \tau^{-k} e^{-2\pi i d\tau} dx = \int_{-\infty}^{\infty} \tau^{-k} dx$$
$$= \int_{-\infty}^{\infty} (x+iy)^{-k} dx$$
$$= \frac{1}{-k+1} (x+iy)^{-k+1} \Big|_{x=-\infty}^{x=\infty}$$
$$= 0,$$

because $\lim_{x\to\pm\infty} (x+iy)^{-k} = 0$ (simply calculate the modulus of the expression, which is $(x^2+y^2)^{-k/2}$, which goes to 0 as $x\to\pm\infty$).

3. d > 0 In this case we use the integral representation

$$\frac{1}{\Gamma(z)} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (c+it)^{-z} e^{c+it} dt$$

for every $z \in \mathbb{C}$ and any c > 0 as follows:

set $t := -2\pi dx$ and $c := 2\pi dy > 0$. Then we calculate

$$\begin{split} \int_{-\infty}^{\infty} \tau^{-k} e^{-2\pi i d\tau} dx &= \int_{-\infty}^{\infty} (x+iy)^{-k} e^{-2\pi i dx+2\pi dy} dx \\ &= \int_{-\infty}^{\infty} \left(\frac{t}{-2\pi d} + \frac{ic}{2\pi d}\right)^{-k} e^{c+it} \frac{1}{2\pi d} dt \\ &= \frac{1}{2\pi d} \int_{-\infty}^{\infty} \left(\frac{1}{2\pi d}\right)^{-k} (-t+ic)^{-k} e^{c+it} dt \\ &= \frac{(2\pi d)^k}{2\pi d} (-i)^k \int_{-\infty}^{\infty} ((-i)(-t+ic))^{-k} e^{c+it} dt \\ &= \frac{(2\pi di)^k}{2\pi d} \int_{-\infty}^{\infty} (c+it)^{-k} e^{c+it} dt \\ &= \frac{(2\pi di)^k}{2\pi d} \frac{2\pi}{\Gamma(k)} \\ &= \frac{(2\pi d)^k}{\Gamma(k)} d^{k-1}, \end{split}$$

where we used that $(-i)^k = i^k$ because k is even in the fifth equality. The result follows using the fact that $\Gamma(k) = (k-1)!$ for any positive integer k.

Putting all our results together we finally obtain Proposition 1:

Proof. Lemma 2 states that G_k is holomorphic and by Lemma 3 it transforms invariantly under Γ with weight k. Moreover, by Proposition 2, G_k has a Fourier expansion where all coefficients of negative index vanish. Also, the zeroth Fourier coefficient is $\zeta(k) \neq 0$, so G_k is non-zero.

Note that if k is even, G_k is no *cusp form*.

Definition 3. For even $k \in \mathbb{Z}$ with $k \ge 4$ we call the map

$$E_k : \tau \in \mathbb{H} \mapsto \frac{1}{2\zeta(k)} G_k(\tau) = 1 + \frac{(2\pi i)^k}{\zeta(k)(k-1)!} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$

the normalized Eisenstein series.

Proposition 3. The normalized Eisenstein series has the representation

$$E_k = \sum_{M \in \Gamma_{\infty} \setminus \Gamma} 1|_k M,$$

where 1 denotes the constant function $\equiv 1$ on the upper half plane and Γ_{∞} the subgroup $\{\pm T^n | n \in \mathbb{Z}\}.$

Proof. For every $\tau \in \mathbb{H}$ it holds

$$E_{k}(\tau) = \frac{1}{2\zeta(k)}G_{k}(\tau) = \frac{1}{2\zeta(k)}\sum_{\substack{(m,n)\in\mathbb{Z}^{2}\setminus\{0\}\\ m\tau+n\}}}(m\tau+n)^{-k}$$
$$= \frac{1}{2\zeta(k)}\sum_{l=1}^{\infty}\sum_{\substack{(m,n)\in\mathbb{Z}^{2}\\ \gcd(m,n)=l}}(m\tau+n)^{-k}$$
$$= \frac{1}{2\zeta(k)}\sum_{l=1}^{\infty}l^{-k}\sum_{\substack{(m,n)\in\mathbb{Z}^{2}\\ \gcd(m,n)=1}}(m\tau+n)^{-k}$$
$$= \frac{1}{2}\sum_{\substack{(m,n)\in\mathbb{Z}^{2}\\ \gcd(m,n)=1}}(m\tau+n)^{-k}$$

Now let $M_1 = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ be arbitrary. Note that gcd(c, d) = 1 and $j(M_1, \tau)^{-k} = (c\tau + d)^{-k}$. If $M_2 = \begin{pmatrix} \tilde{a} & \tilde{b} \\ \tilde{c} & \tilde{d} \end{pmatrix}$ is a second arbitrary element of Γ , we claim that

$$c = \tilde{c}$$
 and $d = d \Leftrightarrow \exists n \in \mathbb{Z}: M_1 = T^n M_2$,

where $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Since $T^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ leaves the bottom row of M_2 invariant, the implication (" \Leftarrow ") is clear. Conversely, assume $c = \tilde{c}$, $d = \tilde{d}$ and let $m_1, m_2 \in \mathbb{Z}$ such that $a = \tilde{a} + m_1$ and $b = \tilde{b} + m_2$. Then

$$0 = \det(M_1) - \det(M_2) = (a - \tilde{a})d - (b - \tilde{b})c = dm_1 - cm_2$$

But c and d are coprime, which implies the existence of $n \in \mathbb{Z}$ such that $m_1 = cn$ and $m_2 = dn$. Therefore it holds $M_1 = T^n M_2$, which yields the claim. This defines a natural bijection between coprime pairs of integers and the cosets of $\Gamma^+_{\infty} \setminus \Gamma$, where $\Gamma^+_{\infty} = \{T^n | n \in \mathbb{Z}\}$. Hence we have

$$E_k(\tau) = \frac{1}{2} \sum_{\substack{(m,n) \in \mathbb{Z}^2 \\ \gcd(m,n)=1}} (m\tau + n)^{-k}$$
$$= \frac{1}{2} \sum_{M \in \Gamma_{\infty}^+ \backslash \Gamma} j(M,\tau)^{-k}$$
$$= \sum_{M \in \Gamma_{\infty} \backslash \Gamma} j(M,\tau)^{-k}$$
$$= \sum_{M \in \Gamma_{\infty} \backslash \Gamma} 1|_k M.$$

It is easily seen that for $k \geq 4$ the modular forms of weight k define a \mathbb{C} -vector space M_k . The same is true for S_k , the set of all cusp forms of weight k. The following lemma states, that M_k is the direct sum of S_k and the subspace spanned by the Eisenstein series of weight k.

Lemma 5. For even $k \in \mathbb{Z}$ with $k \geq 4$ we have $M_k = \mathbb{C}E_k \oplus S_k$.

Proof. We have $M_k = \mathbb{C}E_k + S_k$, since $f - a_f(0)E_k \in S_k$ where $a_f(0)$ denotes the constant coefficient of the Fourier expansion of f. As for all $\lambda \in \mathbb{C}$ we have $a_{\lambda E_K}(0) = \lambda a_{E_k}(0) = \lambda$, we also have $\mathbb{C}E_k \cap S_k = \{0\}$.

This lemma allows us to estimate the growth of the Fourier coefficients of a modular form of weight k.

Theorem 2. Let $k \in \mathbb{Z}$ such that $k \ge 4$ and $f \in M_k$ with Fourier coefficients $a_f(n)$ for all $n \ge 0$. Then there exists a constant C > 0, such that $a_f(n) \le Cn^{k-1}$ for all $n \ge 1$.

Proof. By Lemma 5 we find $\alpha \in \mathbb{C}$ and $g \in S_k$, such that $f = \alpha E_k + g$. The Hecke Bound yields the estimation for the cusp form g. Hence it suffices to proof the estimation for E_k , i.e for the sequence $\sigma_{k-1}(n)$:

$$\sigma_{k-1}(n) = \sum_{d|n} d^{k-1} = \sum_{d|n} \frac{n^{k-1}}{d^{k-1}} < n^{k-1} \sum_{d=1}^{\infty} d^{1-k} = n^{k-1} \zeta(k-1).$$

Since k - 1 > 1, $\zeta(k - 1)$ is indeed well-defined, which proofs the claim.

Surprisingly, the Fourier coefficients of the normalized Eisenstein series E_k turn out to be rational numbers. To proof this remarkable fact, it is clear from Definition 3 that it is enough to show that the constant factor $\frac{(2\pi i)^k}{\zeta(k)}$ is rational. In order to do so, we need the following definition.

Definition 4. The *Bernoulli numbers* B_n are the coefficients of the Taylor expansion around $x_0 = 0$ of the map $b: x \in B_{2\pi}(0) \subset \mathbb{C} \mapsto \begin{cases} \frac{x}{e^x - 1} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases}$ i.e. for all $n \in \mathbb{N}_0$ we define $B_n = b^{(n)}(0)$. They satisfy for all $x \in B_{2\pi}(0)$

$$b(x) = \sum_{n=0}^{\infty} B_n \frac{x^n}{n!}$$

It can be shown, that the Bernoulli numbers are all rational. Furthermore we have $B_n = 0$ for all odd n > 1. The link to the Fourier coefficients of the Eisenstein series is now given by the *Euler formula*:

Proposition 4. For even $n \in \mathbb{N}$ with $n \geq 2$ it holds

$$2\zeta(n) = -\frac{(2\pi i)^n}{n!}B_n$$

Proof. Consider the partial fraction expansion of the cotangent: For all $x \in \mathbb{R} \setminus \mathbb{Z}$ it holds

$$\pi \cot(\pi x) = \frac{1}{x} + \sum_{n=1}^{\infty} \left(\frac{1}{x+n} + \frac{1}{x-n} \right).$$

Multiplying by x removes the pole at 0 and we obtain an expression for the

Taylor expansion of $x\pi \cot(\pi x)$ around 0. For all $x \neq 0$ small enough

$$x\pi \cot(\pi x) = 1 + \sum_{n=1}^{\infty} \left(\frac{x}{x+n} + \frac{x}{x-n}\right)$$
$$= 1 + \sum_{n=1}^{\infty} \frac{x}{n} \left(\sum_{k=0}^{\infty} \left(-\frac{x}{n}\right)^k - \left(\frac{x}{n}\right)^k\right)$$
$$= 1 - 2\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \left(\frac{x}{n}\right)^{2k}$$
$$\stackrel{(*)}{=} 1 - 2\sum_{k=1}^{\infty} x^{2k} \sum_{n=1}^{\infty} n^{-2k}$$
$$= 1 - 2\sum_{k=1}^{\infty} x^{2k} \zeta(2k).$$

In (*) we used that the series over the doubly-indexed sequence converges absolutely and thus, by Fubini, the order of summation can be changed. Substituting $y = \pi x$ we get the Taylor expansion of $y \cot(y)$ around 0. But now, using the formula $\cot(y) = i \frac{e^{2iy} + 1}{e^{2iy} - 1}$, we obtain a different expression for this Taylor expansion. For all $y \neq 0$ small enough

$$y \cot(y) = iy + \frac{2iy}{e^{2iy} - 1} = \sum_{k=0}^{\infty} B_{2k} \frac{(2iy)^{2k}}{(2k)!}.$$

Here we used that $B_1 = -\frac{1}{2}$ and that all Bernoulli numbers of higher odd index vanish. Comparison of the two expressions for the Taylor series of $y \cot(y)$ yields the claim.

Using the Euler formula, we immediately obtain the following expression for the Fourier series of the normalized Eisenstein series:

Theorem 3. For even $k \in \mathbb{Z}$ with $k \ge 4$ it holds

$$E_k(\tau) = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n.$$

In particular, the Fourier coefficients of E_k are rational.

Example 1. For k = 4 and k = 6 we have the following Fourier expansions:

$$E_4(\tau) = 1 + 240 \sum_{n=1}^{\infty} \sigma_3(n) q^n = 1 + 240q + 2160q^2 + 6720q^3 + 17520q^4 + 30240q^5 \dots$$
$$E_6(\tau) = 1 - 504 \sum_{n=1}^{\infty} \sigma_5(n) q^n = 1 - 504q - 16632q^2 - 122976q^3 - 532728q^4 + 1575504q^5 \dots$$

Remark 1.

(i) The Fourier coefficients of E_k have bounded denominators. Indeed, for C the enumerator of B_k , the modular form CE_k has integer-valued Fourier coefficients.

(ii) For odd $k \in \mathbb{N}$ with $k \geq 3$ we know very little about the values $\zeta(k)$. It was shown by Apéry in 1979 [1] that $\zeta(3)$ is irrational, and in 2001 Zudilin [13] was able to prove that at least one of the values $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational.

3 The Ramanujan Delta Function

In this section we give a first example of a non-trivial cusp form.

Definition 5. The Ramanujan delta function is defined as

$$\Delta = \frac{E_4^3 - E_6^2}{1728}.$$

The delta function is indeed the example we were looking for:

Theorem 4. Δ is a non-trivial cusp form of weight 12.

The proof is a simple calculation using the Cauchy product. However, this will require the absolute convergence of the Fourier series of E_4 and E_6 , which we would like to show in the general framework of arbitrary modular forms.

Lemma 6. Let f be a modular form. Then f has an absolutely convergent Fourier expansion.

Proof. Consider the map $g: \mathbb{H} \to \Omega, \tau \mapsto e^{2\pi i \tau}$, where Ω denotes the punctured open unit disc $B_1(0) \setminus \{0\}$. For every $\omega \in \Omega$ the preimage $g^{-1}(\omega)$ is non-empty and a translated lattice of the type $\tau_0 + \mathbb{Z}$ for some $\tau_0 \in g^{-1}(\omega)$. Since fis a modular form, it is 1-periodic and thus constant on $g^{-1}(\omega)$. Then, by the factorization theorem for holomorphic functions [11], it exists $h: \Omega \to \mathbb{C}$ holomorphic, such that $f = h \circ g$. As a holomorphic map on the punctured open unit disc, h has a normally convergent Laurant expansion [3]. Thus we find complex coefficients $(a_n)_{n\in\mathbb{Z}}$, such that for all $z \in \Omega$ it holds $h(z) = \sum_{n\in\mathbb{Z}} a_n z^n$. Hence, $f(\tau) = \sum_{n\in\mathbb{Z}} a_n e^{2\pi i n\tau}$ for all $\tau \in \mathbb{H}$. This series converges normally and therefore in particular absolutely on \mathbb{H} . By uniqueness of the Fourier expansion, this is indeed the Fourier series of f, which completes the proof.

Now back to the proof of the theorem.

Proof. By a lemma seen in the last talk, E_4^3 and E_6^2 are both modular forms of weight 12, thus Δ is indeed a modular form of weight k. To show that it is a non-trivial cusp form, we would like to compute its first two Fourier coefficients. By respective exponentiation of the Fourier series of E_4 and E_6 according to the Cauchy product rule, we obtain the Fourier expansions of E_4^3 and E_6^2 thanks to the lemma above. They both have constant coefficient 1, which shows that Δ is a cusp form. Similarly we find that their coefficients of index 1 are 720 and -1008. Thus Δ has 1 as a Fourier coefficient and is therefore non-trivial.

Definition 6. Denoting the delta function's Fourier coefficients by $\tau(n)$, i.e. $\Delta(z) = \sum_{n=1}^{\infty} \tau(n) e^{2\pi i n z}$, we define the *Ramanujan tau function* as the map $\tau : n \in \mathbb{Z}^{\geq 1} \mapsto \tau(n)$.

Remark 2. The delta function has the product expansion

$$\Delta(\tau) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}.$$

We will prove this fact in two weeks from now. From the product expansion it is clear that τ maps into \mathbb{Z} . In addition, this formula allows us to proof, which we will do next week already, that Δ doesn't vanish anywhere.

Remark 3. The Ramanujan tau function satisfies (or at least seems to satisfy) some interesting properties. Ramanujan himself conjectured properties (i)-(iv) (cf. [9]).

(i) The tau function is multiplicative for coprime numbers, i.e.

$$\tau(nm) = \tau(n)\tau(m),$$

for all (n, m) = 1. For instance, we have

$$\tau(6) = -6048 = -24 \cdot 252 = \tau(2)\tau(3).$$

We will prove this in one of the talks on Hecke operators.

(ii) There is a recursive formula for the tau function on powers of even primes, namely

$$\tau(p^n) = \tau(p)\tau(p^{n-1}) - p^{11}\tau(p^{n-2})$$

for all primes p and integers $n \ge 2$. [6]

(iii) τ satisfies many congruences. A famous one, conjectured by Ramanujan, is the following:

$$\tau(n) \equiv \sigma_{11}(n) \pmod{691}$$

for all $n \in \mathbb{N}$. A proof can be found in [7].

(iv) For every prime p it holds

$$|\tau(p)| \le 2p^{11/2}.$$

This property is known as the *Ramanujan conjecture* and was proven in 1979 by Deligne [4],[5] as a consequence of his work on the Weil conjectures. Note that it is only a tiny improvement of the Hecke bound for this special case - nevertheless this is a significantly deeper result, as evidenced by Deligne's proof.

(v) Lehmer famously conjectured that τ(n) ≠ 0 for all n ∈ N. The conjecture is still open to date.
However, Lehmer was able to prove [8] that if the tau function ever van-

ishes, then the smallest zero of τ is a prime.

(vi) There exists an effectively computable constant C > 0, such that for all $n \ge 1$ for which $\tau(n)$ is an *odd* value, it holds

$$|\tau(n)| \ge \log(n)^C.$$

This result is due to Murty, Murty and Shorey [10] and in particular it implies that for odd integers a, the equation

 $\tau(n) = a$

has only finitely many solutions.

(vii) We have that

 $\tau(n) \notin \{\pm 1, \pm 3, \pm 5, \pm 7, \pm 13, \pm 17, -19, \pm 23, \pm 37, \pm 691\}$

for all n > 1. This is a very recent result from 2023 by Balakrishnan, Craig, Ono and Tsai [2].

References

- [1] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque, vol. 61 (1979), pp. 11-13.
- [2] J. Balakrishnan, W. Craig, K. Ono and W. Tsai, Variants of Lehmer's speculation for newforms, Adv. Math., vol. 428 (2023), Paper No. 109141
- [3] R. Busam and E. Freitag, Complex Analysis, Springer Verlag (2009).
- [4] P. Deligne, Formes modulaires et représentations l-adiques, Séminaire Bourbaki, 1968/69, exp. no. 355, Lect. Notes in Math., vol. 179 (1971), Springer Verlag, pp. 139-172.
- [5] P. Deligne, La conjecture de Weil: I, Publ. Math. Inst. Hautes Étud. Sci., vol. 43 (1974), pp. 273-307.
- [6] G.H. Hardy, Ramanujan, Cambridge University Press (1940)
- [7] D.H. Lehmer, Properties of the coefficients of the modular invariant J(r), Amer. J. Math., vol. 64 (1942), pp. 488-502.
- [8] D.H. Lehmer, The vanishing of Ramanujan's function $\tau(n)$, Duke Math. J., vol. 14 (2) (1947), pp. 429-433.
- [9] M. R. Murty, V. K. Murty, The Mathematical Legacy of Srinivasa Ramanujan, Springer Verlag (2013).
- [10] M. R. Murty, V. K. Murty and T.N. Shorey, Odd values of the Ramanujan τ -function, Bull. Soc. Math. France, vol. 115 (1987), pp. 391-395.
- [11] R. Remmert and G. Schumacher, Funktionentheorie 1, Springer Verlag (2002).
- [12] M. Schwagenscheidt, Vorlesung Modulformen, Lect. Notes (2021).
- [13] W. V. Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Russ. Math. Surv., vol. 56 (4) (2001), pp. 774-776