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Introduction

Before the Easter break, we introduced modular forms, which are holomorphic
functions on the upper half plane which are invariant under Moebius transfor-
mations and satisfy a certain growth condition. So far, we have not encountered
any non-trivial modular forms and by the definition, it’s not immediately clear
whether it’s even possible to find non-trivial modular forms. In this talk, we
give a first example of a non-trivial modular form (the Eisenstein series) and use
it to construct a non-trivial modular cusp form (the Ramanujan delta function).
As usual, we closely follow the lecture notes [12].

1 Preliminaries

In the following, Γ = SL2(Z) will denote the modular group, as introduced in
the last talk. Recall that Γ acts on the set of holomorphic functions on the
upper half plane via f |kM(τ) = j(M, τ)−kf(Mτ), where j(M, τ) = cτ + d is
the factor of automorphy (with M =

(
a b
c d

)
).

Definition 1. Let k ∈ Z and let f : H → C be a complex valued function. We
call f a modular form of weight k for Γ if f fullfills the following three conditions:

1. f is homolomorphic on H,

2. f |kM = f for all M ∈ Γ,

3. There are no negative terms in the fourier expansion of f , i.e. it’s fourier
expansion is of the form

f(τ) =

∞∑
n=0

anq
n,

where q = e2πiτ . If also a0 = 0, then f is called a cusp form.

To show holomorphy, we will need the following statement:

Theorem 1. Let (fn)n be a sequence of complex-valued functions on a set S.
Assume there are non-negative numbers (Mn)n s.t.

1. |fn(x)| ≤ Mn for all n ≥ 1 and all x ∈ S.

2.
∑∞

n=1 Mn converges

Then the series
∑∞

n=1 fn(x) converges absolutely and uniformly on S.
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2 Eisenstein Series

Definition 2. Let k ∈ Z, k ≥ 4 be even. We define the Eisenstein Series of
weight k as

Gk(τ) =
∑

(m,n)∈Z2\{(0,0)}

(mτ + n)−k

for all τ ∈ H.

In week 1, we already introduced the Eisenstein Series for a given lattice Ω.
Recall that we defined

Gk(Ω) =
∑

0̸=ω∈Ω

ω−k

for k ∈ Z, k ≥ 4 and even. In the special case of Ω = Zτ + Z, this is simply the
Eisenstein Series as in Definition 2. We will now show the following proposition,
which shows the relationship between modular forms and the Eisenstein Series.

Proposition 1. Let k ∈ Z, k ≥ 4 be even. Then Gk is a non-zero modular
form of weight k with respect to Γ.

Recall that there are no modular forms of odd weight on Γ. For k odd, we
have that −(mτ + n)−k = (−mτ − n)−k, so Gk = 0. This means that the
Eisenstein series does not give a new non-trivial example of a modular form in
this case, as we expected.

Lemma 1. Let K ⊂ H be compact. Then there are constants α, β > 0 such
that

∀τ ∈ K ∀m,n ∈ R : α|mi+ n| ≤ |mτ + n| ≤ β|mi+ n|. (1)

Proof. We can assume WLOG that m2 + n2 = 1. Otherwise, replace (m,n) by
1√

m2+n2
(m,n) and use the fact that (1) is homogeneous in m,n. Now consider

the continuous function (τ, (m,n)) 7→ |mτ + n| on the compact set K × S1

(products of compact sets are compact, by Tychonoff’s theorem). This function
admits a minimum and a maximum, hence there are constants α, β such that
α ≤ |mτ + n| ≤ β. It only remains to show that α > 0. To this end, notice
that z 7→ Im(z) is continuous, so it admits a minimum on the compact set K.
Hence, there exists a constant C s.t. ∀z ∈ K : Im(z) ≥ C > 0. Now |mτ + n| =(
(mx + n)2 + iym

)1/2
. So if m = 0, then |mτ + n| = |n| = 1 > 0 (because of

the relation m2 + n2 = 1) while if m ̸= 0, then |mτ + n| ≥ |my| ≥ |m|C > 0. In
either case, the value of the function is positive and hence it’s minimum (which
is α) is positive too. This completes the proof.

Lemma 2. Let k ∈ Z be even, k ≥ 4. Then Gk defines a holomorphic function
on H.

Proof. By the Weierstrass convergence theorem, it suffices to show Gk converges
locally uniformly. To this end, we want to apply the Weierstrass M-test. Using
the lemma above, we can bound

|Gk| ≤
∑

(m,n)∈Z2\{(0,0)}

|mτ + n|−k ≤ α−k
∑

(m,n)∈Z2\{(0,0)}

|mi+ n|−k

= α−k
∑

(m,n)∈Z2\{(0,0)}

(m2 + n2)−k/2

2



Now we only need to show that
∑

(m,n)∈Z2\{(0,0)}(m
2 + n2)−k/2 converges. In-

deed,∑
(m,n)∈Z2\{(0,0)}

(m2+n2)−k/2 =
∑

n∈Z\{0}

n−k+
∑

m∈Z\{0}

m−k+
∑

m,n∈Z\{0}

(m2+n2)−k/2.

Now we use that fact that
∑

n∈Z\{0} n
−k = 2ζ(k) and that m2 + n2 ≥ 2|mn|

(this is simply
(
|m| − |n|

)2 ≥ 0) to obtain the bound∑
(m,n)∈Z2\{(0,0)}

(m2 + n2)−k/2 ≤ 4ζ(k) +
∑

m,n∈Z\{0}

2−k/2|mn|−k/2

= 4ζ(k) + 4 · 2−k/2ζ(k/2)2

< ∞.

By the Weierstrass M-test, we obtain that Gk converges absolutely and uni-
formly on every compact set, which proves the claim.

Lemma 3. Let k ∈ Z be even, k ≥ 4. Then Gk|kM = Gk for every M ∈ Γ,
i.e. Gk is Γ-invariant.

Proof. The proof is a simple computation: let M =
(
a b
c d

)
∈ Γ. Then

(Gk|kM)(τ) = (cτ + d)−k
∑

(m,n)∈Z2\{(0,0)}

(
m
aτ + b

cτ + d
+ n

)−k

=
∑

(m,n)∈Z2\{(0,0)}

(
m(aτ + b) + n(cτ + d)

)−k

=
∑

(m,n)∈Z2\{(0,0)}

(
(ma+ nc)τ + (mb+ nd)

)−k
.

Now the map (m,n) 7→ (ma + nc,mb + nd) from Z2 \ {(0, 0)} to itself is a
bijection, because it is given by right multiplication of the matrix M, which has
determinant 1 and is thus invertible over Z. Also, notice that we can reorder
the series because it converges absolutely.

To conclude that Gk is indeed a modular form, we need to calculate it’s
Fourier expansion. We want to show the following result:

Proposition 2. Let k ∈ Z be even, k ≥ 4. Then the Eisenstein Series Gk has
the Fourier expansion

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)q
n,

where q = e2πiτ , ζ(k) =
∑∞

n=1 n
−k is the Riemann-Zeta function and σk(n) =∑

d|n d
k is the generalized divisor sum function.

Lemma 4. Let k ∈ Z be even, k ≥ 4. Then for every τ ∈ H we have that

∑
n∈Z

(τ + n)−k =
(2πi)k

(k − 1)!

∞∑
d=1

dk−1e2πidτ .
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With this lemma we can already calculate the Fourier expansion ofGk. Write

Gk(τ) =
∑
n̸=0

n−k +
∑

m∈Z\{0}

∑
n∈Z

(mτ + n)−k = 2ζ(k) + 2

∞∑
m=1

∑
n∈Z

(mτ + n)−k.

The second equality comes from the fact that k is even and thus∑
n∈Z

(−mτ + n)−k =
∑
n∈Z

(−mτ − n)−k =
∑
n∈Z

(mτ + n)−k.

Now we apply Lemma 4 (but with τ replaced by mτ to obtain that

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
m=1

∞∑
d=1

dk−1e2πidmτ

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

∑
d|n

dk−1e2πinτ

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e
2πinτ ,

as desired. In the second equality, we made the subsitution n = md. So it
remains to proof the lemma.

Proof. Consider the function f(τ) =
∑

n∈Z(τ + n)−k on the upper-half plane.
Then f(τ + 1) = f(τ), because increasing τ by an integer corresponds to a
shift of Z, which does not change the sum. f is also holomorphic (we can
essentially copy the argument that Gk is holomorphic). Therefore, f has a
Fourier expansion∑

n∈Z
(τ + n)−k =

∑
d∈Z

(∫ 1

0

f(τ)e−2πidτ

)
e2πidτ ,

where the inner integral does not depend on y = Im(τ). The same proof as
in Lemma 3 shows that

∑
n∈Z(τ + n)−k converges locally uniformly and thus

uniformly on the compact set [0, 1] × {y}. Hence, we can exchange limit and
integral to obtain∫ 1

0

∑
n∈Z

(τ + n)−ke−2πidτdx =
∑
n∈Z

∫ 1

0

(τ + n)−ke−2πidτdx

=
∑
n∈Z

∫ n+1

n

τ−ke−2πidτdx

=

∫ ∞

−∞
τ−ke−2πidτdx

(2)

So it only remains to calculate this last integral. We distinguish three cases:

1. d < 0. In this case, we can bound

|
∫ ∞

−∞
τ−ke−2πidτdx| ≤

∫ ∞

−∞
|τ−ke−2πidτ |dx

= e2πidy
∫ ∞

−∞
|τ−k|dx
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Now we can take the limit y → ∞ on both sides (recall that the integral
in (2) is independent of y). Then the right hand side will be zero, given
that the integral

∫∞
−∞|τ−k|dx is finite. To show this, bound |τ |−k by y−k

in the unit ball around 0 and by x−k outside the unit ball. Then:∫ ∞

−∞
|τ−k|dx ≤ 2

∫ 1

0

y−kdx+ 2

∫ ∞

1

x−kdx

= 2y−k + 2
1

1− k
x1−k

∣∣∣∣∞
1

= 2y−k + 2
1

1− k

< ∞

This calculation shows that
∫∞
−∞ τ−ke−2πidτdx = 0 for d < 0.

2. d = 0. In this case, the above argument won’t work, because e2πidy = 1.
However, now∫ ∞

−∞
τ−ke−2πidτdx =

∫ ∞

−∞
τ−kdx

=

∫ ∞

−∞
(x+ iy)−kdx

=
1

−k + 1
(x+ iy)−k+1

∣∣∣∣x=∞

x=−∞

= 0,

because limx→±∞(x + iy)−k = 0 (simply calculate the modulus of the
expression, which is (x2 + y2)−k/2, which goes to 0 as x → ±∞).

3. d > 0 In this case we use the integral representation

1

Γ(z)
=

1

2π

∫ ∞

−∞
(c+ it)−zec+itdt

for every z ∈ C and any c > 0 as follows:
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set t := −2πdx and c := 2πdy > 0. Then we calculate∫ ∞

−∞
τ−ke−2πidτdx =

∫ ∞

−∞
(x+ iy)−ke−2πidx+2πdydx

=

∫ ∞

−∞

( t

−2πd
+

ic

2πd

)−k
ec+it 1

2πd
dt

=
1

2πd

∫ ∞

−∞

( 1

2πd

)−k
(−t+ ic)−kec+itdt

=
(2πd)k

2πd
(−i)k

∫ ∞

−∞

(
(−i)(−t+ ic)

)−k
ec+itdt

=
(2πdi)k

2πd

∫ ∞

−∞
(c+ it)−kec+itdt

=
(2πdi)k

2πd

2π

Γ(k)

=
(2πd)k

Γ(k)
dk−1,

where we used that (−i)k = ik because k is even in the fifth equality. The
result follows using the fact that Γ(k) = (k − 1)! for any positive integer
k.

Putting all our results together we finally obtain Proposition 1:

Proof. Lemma 2 states that Gk is holomorphic and by Lemma 3 it transforms
invariantly under Γ with weight k. Moreover, by Proposition 2, Gk has a
Fourier expansion where all coefficients of negative index vanish. Also, the
zeroth Fourier coefficient is ζ(k) ̸= 0, so Gk is non-zero.

Note that if k is even, Gk is no cusp form.

Definition 3. For even k ∈ Z with k ≥ 4 we call the map

Ek : τ ∈ H 7→ 1

2ζ(k)
Gk(τ) = 1 +

(2πi)k

ζ(k)(k − 1)!

∞∑
n=1

σk−1(n)q
n

the normalized Eisenstein series.

Proposition 3. The normalized Eisenstein series has the representation

Ek =
∑

M∈Γ∞\Γ

1|kM ,

where 1 denotes the constant function ≡ 1 on the upper half plane and Γ∞ the
subgroup {±Tn|n ∈ Z}.
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Proof. For every τ ∈ H it holds

Ek(τ) =
1

2ζ(k)
Gk(τ) =

1

2ζ(k)

∑
(m,n)∈Z2\{0}

(mτ + n)−k

=
1

2ζ(k)

∞∑
l=1

∑
(m,n)∈Z2

gcd(m,n)=l

(mτ + n)−k

=
1

2ζ(k)

∞∑
l=1

l−k
∑

(m,n)∈Z2

gcd(m,n)=1

(mτ + n)−k

=
1

2

∑
(m,n)∈Z2

gcd(m,n)=1

(mτ + n)−k

Now let M1 =
(
a b
c d

)
∈ Γ be arbitrary. Note that gcd(c, d) = 1 and j(M1, τ)

−k =

(cτ + d)−k. If M2 =
(

ã b̃
c̃ d̃

)
is a second arbitrary element of Γ, we claim that

c = c̃ and d = d̃ ⇔ ∃n ∈ Z: M1 = TnM2,

where T = ( 1 1
0 1 ). Since Tn = ( 1 n

0 1 ) leaves the bottom row of M2 invariant, the

implication (”⇐”) is clear. Conversely, assume c = c̃, d = d̃ and let m1,m2 ∈ Z
such that a = ã+m1 and b = b̃+m2. Then

0 = det(M1)− det(M2) = (a− ã)d− (b− b̃)c = dm1 − cm2

But c and d are coprime, which implies the existence of n ∈ Z such that m1 = cn
and m2 = dn. Therefore it holds M1 = TnM2, which yields the claim.
This defines a natural bijection between coprime pairs of integers and the cosets
of Γ+

∞\Γ, where Γ+
∞ = {Tn|n ∈ Z}. Hence we have

Ek(τ) =
1

2

∑
(m,n)∈Z2

gcd(m,n)=1

(mτ + n)−k

=
1

2

∑
M∈Γ+

∞\Γ

j(M, τ)−k

=
∑

M∈Γ∞\Γ

j(M, τ)−k

=
∑

M∈Γ∞\Γ

1|kM .

It is easily seen that for k ≥ 4 the modular forms of weight k define a C-
vector space Mk. The same is true for Sk, the set of all cusp forms of weight k.
The following lemma states, that Mk is the direct sum of Sk and the subspace
spanned by the Eisenstein series of weight k.

Lemma 5. For even k ∈ Z with k ≥ 4 we have Mk = CEk ⊕ Sk.
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Proof. We have Mk = CEk + Sk, since f − af (0)Ek ∈ Sk where af (0) denotes
the constant coefficient of the Fourier expansion of f . As for all λ ∈ C we have
aλEK

(0) = λaEk
(0) = λ, we also have CEk ∩ Sk = {0}.

This lemma allows us to estimate the growth of the Fourier coefficients of a
modular form of weight k.

Theorem 2. Let k ∈ Z such that k ≥ 4 and f ∈ Mk with Fourier coefficients
af (n) for all n ≥ 0. Then there exists a constant C > 0, such that af (n) ≤
Cnk−1 for all n ≥ 1.

Proof. By Lemma 5 we find α ∈ C and g ∈ Sk, such that f = αEk + g. The
Hecke Bound yields the estimation for the cusp form g. Hence it suffices to
proof the estimation for Ek, i.e for the sequence σk−1(n):

σk−1(n) =
∑
d|n

dk−1 =
∑
d|n

nk−1

dk−1
< nk−1

∞∑
d=1

d1−k = nk−1ζ(k − 1).

Since k − 1 > 1, ζ(k − 1) is indeed well-defined, which proofs the claim.

Surprisingly, the Fourier coefficients of the normalized Eisenstein series Ek

turn out to be rational numbers. To proof this remarkable fact, it is clear from

Definition 3 that it is enough to show that the constant factor (2πi)k

ζ(k) is rational.

In order to do so, we need the following definition.

Definition 4. The Bernoulli numbers Bn are the coefficients of the Taylor

expansion around x0 = 0 of the map b : x ∈ B2π(0) ⊂ C 7→

{
x

ex−1 if x ̸= 0

1 if x = 0
,

i.e. for all n ∈ N0 we define Bn = b(n)(0). They satisfy for all x ∈ B2π(0)

b(x) =

∞∑
n=0

Bn
xn

n!
.

It can be shown, that the Bernoulli numbers are all rational. Furthermore
we have Bn = 0 for all odd n > 1. The link to the Fourier coefficients of the
Eisenstein series is now given by the Euler formula:

Proposition 4. For even n ∈ N with n ≥ 2 it holds

2ζ(n) = − (2πi)n

n!
Bn.

Proof. Consider the partial fraction expansion of the cotangent: For all x ∈ R\Z
it holds

π cot(πx) =
1

x
+

∞∑
n=1

(
1

x+ n
+

1

x− n

)
.

Multiplying by x removes the pole at 0 and we obtain an expression for the
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Taylor expansion of xπ cot(πx) around 0. For all x ̸= 0 small enough

xπ cot(πx) = 1 +

∞∑
n=1

(
x

x+ n
+

x

x− n

)

= 1 +

∞∑
n=1

x

n

( ∞∑
k=0

(
−x

n

)k
−
(x
n

)k)

= 1− 2

∞∑
n=1

∞∑
k=1

(x
n

)2k
(∗)
= 1− 2

∞∑
k=1

x2k
∞∑

n=1

n−2k

= 1− 2

∞∑
k=1

x2kζ(2k).

In (∗) we used that the series over the doubly-indexed sequence converges abso-
lutely and thus, by Fubini, the order of summation can be changed. Substituting
y = πx we get the Taylor expansion of y cot(y) around 0. But now, using the

formula cot(y) = i e
2iy+1

e2iy−1 , we obtain a different expression for this Taylor expan-
sion. For all y ̸= 0 small enough

y cot(y) = iy +
2iy

e2iy − 1
=

∞∑
k=0

B2k
(2iy)2k

(2k)!
.

Here we used that B1 = − 1
2 and that all Bernoulli numbers of higher odd index

vanish. Comparison of the two expressions for the Taylor series of y cot(y) yields
the claim.

Using the Euler formula, we immediately obtain the following expression for
the Fourier series of the normalized Eisenstein series:

Theorem 3. For even k ∈ Z with k ≥ 4 it holds

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n.

In particular, the Fourier coefficients of Ek are rational.

Example 1. For k = 4 and k = 6 we have the following Fourier expansions:

E4(τ) = 1 + 240

∞∑
n=1

σ3(n)q
n = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 . . .

E6(τ) = 1− 504

∞∑
n=1

σ5(n)q
n = 1− 504q − 16632q2 − 122976q3 − 532728q4 + 1575504q5 . . .

Remark 1.

(i) The Fourier coefficients of Ek have bounded denominators. Indeed, for C
the enumerator of Bk, the modular form CEk has integer-valued Fourier
coefficients.
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(ii) For odd k ∈ N with k ≥ 3 we know very little about the values ζ(k). It
was shown by Apéry in 1979 [1] that ζ(3) is irrational, and in 2001 Zudilin
[13] was able to prove that at least one of the values ζ(5), ζ(7), ζ(9), ζ(11)
is irrational.

3 The Ramanujan Delta Function

In this section we give a first example of a non-trivial cusp form.

Definition 5. The Ramanujan delta function is defined as

∆ =
E3

4 − E2
6

1728
.

The delta function is indeed the example we were looking for:

Theorem 4. ∆ is a non-trivial cusp form of weight 12.

The proof is a simple calculation using the Cauchy product. However, this
will require the absolute convergence of the Fourier series of E4 and E6, which
we would like to show in the general framework of arbitrary modular forms.

Lemma 6. Let f be a modular form. Then f has an absolutely convergent
Fourier expansion.

Proof. Consider the map g : H → Ω, τ 7→ e2πiτ , where Ω denotes the punctured
open unit disc B1(0) \ {0}. For every ω ∈ Ω the preimage g−1(ω) is non-empty
and a translated lattice of the type τ0 + Z for some τ0 ∈ g−1(ω). Since f
is a modular form, it is 1-periodic and thus constant on g−1(ω). Then, by
the factorization theorem for holomorphic functions [11], it exists h : Ω → C
holomorphic, such that f = h ◦ g. As a holomorphic map on the punctured
open unit disc, h has a normally convergent Laurant expansion [3]. Thus we find
complex coefficients (an)n∈Z, such that for all z ∈ Ω it holds h(z) =

∑
n∈Z anz

n.
Hence, f(τ) =

∑
n∈Z ane

2πinτ for all τ ∈ H. This series converges normally and
therefore in particular absolutely on H. By uniqueness of the Fourier expansion,
this is indeed the Fourier series of f , which completes the proof.

Now back to the proof of the theorem.

Proof. By a lemma seen in the last talk, E3
4 and E2

6 are both modular forms of
weight 12, thus ∆ is indeed a modular form of weight k. To show that it is a
non-trivial cusp form, we would like to compute its first two Fourier coefficients.
By respective exponentiation of the Fourier series of E4 and E6 according to the
Cauchy product rule, we obtain the Fourier expansions of E3

4 and E2
6 thanks to

the lemma above. They both have constant coefficient 1, which shows that ∆
is a cusp form. Similarly we find that their coefficients of index 1 are 720 and
−1008. Thus ∆ has 1 as a Fourier coefficient and is therefore non-trivial.

Definition 6. Denoting the delta function’s Fourier coefficients by τ(n), i.e.
∆(z) =

∑∞
n=1 τ(n)e

2πinz, we define the Ramanujan tau function as the map
τ : n ∈ Z≥1 7→ τ(n).
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Remark 2. The delta function has the product expansion

∆(τ) = q

∞∏
n=1

(1− qn)24.

We will prove this fact in two weeks from now. From the product expansion it
is clear that τ maps into Z. In addition, this formula allows us to proof, which
we will do next week already, that ∆ doesn’t vanish anywhere.

Remark 3. The Ramanujan tau function satisfies (or at least seems to satisfy)
some interesting properties. Ramanujan himself conjectured properties (i)-(iv)
(cf. [9]).

(i) The tau function is multiplicative for coprime numbers, i.e.

τ(nm) = τ(n)τ(m),

for all (n,m) = 1. For instance, we have

τ(6) = −6048 = −24 · 252 = τ(2)τ(3).

We will prove this in one of the talks on Hecke operators.

(ii) There is a recursive formula for the tau function on powers of even primes,
namely

τ(pn) = τ(p)τ(pn−1)− p11τ(pn−2)

for all primes p and integers n ≥ 2. [6]

(iii) τ satisfies many congruences. A famous one, conjectured by Ramanujan,
is the following:

τ(n) ≡ σ11(n) (mod 691)

for all n ∈ N. A proof can be found in [7].

(iv) For every prime p it holds

|τ(p)| ≤ 2p11/2.

This property is known as the Ramanujan conjecture and was proven in
1979 by Deligne [4],[5] as a consequence of his work on theWeil conjectures.
Note that it is only a tiny improvement of the Hecke bound for this special
case - nevertheless this is a significantly deeper result, as evidenced by
Deligne’s proof.

(v) Lehmer famously conjectured that τ(n) ̸= 0 for all n ∈ N. The conjecture
is still open to date.
However, Lehmer was able to prove [8] that if the tau function ever van-
ishes, then the smallest zero of τ is a prime.

(vi) There exists an effectively computable constant C > 0, such that for all
n ≥ 1 for which τ(n) is an odd value, it holds

|τ(n)| ≥ log(n)C .
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This result is due to Murty, Murty and Shorey [10] and in particular it
implies that for odd integers a, the equation

τ(n) = a

has only finitely many solutions.

(vii) We have that

τ(n) /∈ {±1,±3,±5,±7,±13,±17,−19,±23,±37,±691}

for all n > 1. This is a very recent result from 2023 by Balakrishnan,
Craig, Ono and Tsai [2].
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