The valence formula and the structure of M_k

Jossi Schütt and Joel Sommer

Wednesday, 17 April 2024

1 The valence formula

1.1 Preliminaries

Recall

- the complex upper half-plane $\mathbb{H} := \{ \tau \in \mathbb{C} : \Im(\tau) > 0 \},\$
- the modular group $\Gamma := \operatorname{SL}_2(\mathbb{Z}) := \{ A \in M_{2 \times 2}(\mathbb{Z}) : \det A = 1 \},\$
- the Möbius transformations defined for $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$ and $\tau \in \mathbb{H}$ as

$$M\tau = \frac{a\tau + b}{c\tau + d}.$$

With this, a modular form of weight $k\in\mathbb{Z}$ is defined as a function $f:\mathbb{H}\to\mathbb{C}$ such that

- 1. f is holomorphic on \mathbb{H} ,
- 2. $f(M\tau) := f(\frac{a\tau+b}{c\tau+d}) = (c\tau+d)^k f(\tau),$
- 3. f has a Fourier expansion of the form

$$f(\tau) = \sum_{n=0}^{\infty} a_f(n)q^n,$$

where $q = e^{2\pi i \tau}$

Now, let $f \in M_k$ be a modular form of weight k. As a holomorphic function on \mathbb{H} , it has a Taylor expansion at each point $a \in \mathbb{H}$ of the form

$$f(\tau) = \sum_{n=0}^{\infty} c_{f,a}(n)(\tau - a)^n$$

with coefficients $c_{f,a}(n) \in \mathbb{C}$. We define the order of f at a by

$$\operatorname{ord}_{a}(f) = \min\left\{n \in \mathbb{N}_{0} : c_{f,a}(n) \neq 0\right\},\$$

and we define the order of f at ∞ by

$$\operatorname{ord}_{\infty}(f) = \min \left\{ n \in \mathbb{N}_0 : a_f(n) \neq 0 \right\}.$$

Finally, note that f is 1-periodic, i.e.

$$f(\tau+1) = f(\tau) \quad \forall \tau \in \mathbb{H}.$$

This follows directly from condition 2 in the definition of a modular form when taking $M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

1.2 The valence formula

With these definitions, we can state and prove a formula for the sum of the orders of a modular form:

Theorem 1.1 (Valence formula). Let *i* be the imaginary unit and $\rho = e^{i\frac{\pi}{3}}$. For $f \in M_k$ with $f \neq 0$,

$$\operatorname{ord}_{\infty}(f) + \frac{1}{2}\operatorname{ord}_{i}(f) + \frac{1}{3}\operatorname{ord}_{\rho}(f) + \sum_{\substack{\tau \in \Gamma \setminus \mathbb{H} \\ \tau \neq i, \rho \bmod \Gamma}} \operatorname{ord}_{\tau}(f) = \frac{k}{12}$$

Remark 1.1. 1. The formula is also called the k/12-formula. If we define $\operatorname{ord}(\infty) = 1$ and the order of a point $\tau \in \mathbb{H}$ as

$$\operatorname{ord}(\tau) = \frac{1}{2} |\Gamma_{\tau}| = \begin{cases} 3, & \text{if } \tau = \rho \pmod{\Gamma} \\ 2, & \text{if } \tau = i \pmod{\Gamma} \\ 1, & \text{otherwise} \end{cases}$$

we can write the valence formula more compactly as

$$\sum_{\tau \in \Gamma \setminus \mathbb{H} \cup \{\infty\}} \frac{\operatorname{ord}_{\tau}(f)}{\operatorname{ord}(\tau)} = \frac{k}{12}$$

2. The sum on the left-hand side of the valence formula is finite, as the zeros of $0 \neq f \in M_k$ do not accumulate in $\Gamma \setminus \mathbb{H}$.

Example 1.2. From the valence formula, it follows that the Eisenstein series E_4 (or E_6) has a simple zero at $\tau = \rho$ (or $\tau = i$) and no further zeros modulo Γ . This can be obtained by comparing the coefficients and since the order is an element of \mathbb{N}_0 .

We now proceed to prove the weight formula. First, recall the fundamental domain \mathcal{F} :

$$\mathcal{F} = \{ \tau \in \mathbb{H} : |\tau| \ge 1, -1/2 \ge \Re(\tau) \ge 1/2 \}.$$

Figure 1: The fundamental domain \mathcal{F} , which contains the points i, ρ , and ρ^2 . If we remove the left edge and the part of \mathcal{F} which lies on the segment of the unit circle whose real part is < 0, this is a system of representants for the quotient Γ/\mathbb{H} . Graphic from [1].

Proof of Theorem 1.1. The sum is well-defined: We claim that for $f \in M_k$,

$$\operatorname{ord}_{M\tau}(f) = \operatorname{ord}_{\tau}(f)$$

for all $\tau \in \mathbb{H}$ and $M \in \Gamma$. Indeed, this follows directly from the second condition in the definition of a modular form by noting that

$$f(M\tau) = \underbrace{(c\tau+d)^k}_{\neq 0} f(\tau).$$

Hence, the order of f at τ depends only on the class of τ in $\Gamma \setminus \mathbb{H}$ and the sum on the left-hand side of the weight formula is well-defined.

The formula: Let

$$f = \sum_{n=n_0}^{\infty} a_f(n) q^n \in M_k$$

with $f \neq 0$ and $a_f(n_0) \neq 0$. In particular, $n_0 = \operatorname{ord}_{\infty}(f)$. There exists a T > 0such that $f(\tau)$ has no zeros for $\operatorname{Im}(\tau) > T$. Otherwise, the zeros of the function $g(q) = \sum_{n=0}^{\infty} a_f(n)q^n$ (which is holomorphic for |q| < 1) would accumulate at q = 0, implying g(q) = 0 for all |q| < 1, which contradicts $f \neq 0$. For simplicity, let's assume f also has no zeros on the boundary of the fundamental domain \mathcal{F} . Later, we will see why this is allowed. We now consider the following path γ in \mathbb{H} :

Figure 2: The path γ , taken from [1]

Here, $\varepsilon > 0$ is chosen small enough so that the circles around *i*, ρ , and ρ^2 do not contain any zeros inside \mathcal{F} . Note that γ has winding number 1.

According to the residue theorem, with F = f'/f, we have the formula

$$\int_{\gamma} F(\tau) d\tau = 2\pi i \sum_{w \in \mathcal{F}^{\circ}} \operatorname{ord}_{w}(f)$$

where \mathcal{F}° denotes the interior of \mathcal{F} . This is because F only has poles where f vanishes. Since the right-hand side does not depend on ε , we can take the limit $\varepsilon \to 0$ on the left-hand side. We compute the integrals over the individual subpaths:

• The path γ_0 : The function F = f'/f is 1-periodic and has a Fourier expansion of the form

$$F(\tau) = \frac{2\pi i \sum_{n=n_0}^{\infty} n a_f(n) q^n}{\sum_{n=n_0}^{\infty} a_f(n) q^n} = 2\pi i n_0 + \dots$$

We parameterize $-\gamma_0$ (where the minus indicates the reversal of orientation) by $x \mapsto x + iT$ with $x \in [-1/2, 1/2]$. Then,

$$\int_{\gamma_0} F(\tau) d\tau = -\int_{-1/2}^{1/2} F(x+iT) dx = -2\pi i \operatorname{ord}_{\infty}(f)$$

• The paths γ_1 and γ'_1 : Since F is 1-periodic, and γ'_1 is the reverse of γ_1 , we have

$$\int_{\gamma_1} F(\tau) d\tau + \int_{\gamma'_1} F(\tau) d\tau = 0$$

• The paths γ_2 and γ'_2 : Given $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, the function F = f'/f transforms as follows:

Since $f(M\tau) = (c\tau + d)^k f(\tau)$, applying the chain rule on the left-hand side and the product rule on the right-hand side gives

$$f'(M\tau)\frac{dM\tau}{d\tau} = k(c\tau + d)^{k-1}f(\tau) + (c\tau + d)^k f'(\tau),$$

and hence

$$F(M\tau)dM\tau = \left(\frac{kc}{c\tau + d} + F(\tau)\right)d\tau$$

The matrix $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ maps γ_2 to $-\gamma'_2$. Hence,

$$\int_{\gamma_2'} F(\tau) d\tau = -\int_{S\gamma_2} F(\tau) d\tau = -\int_{\gamma_2} F(S\tau) dS\tau = -\int_{\gamma_2} \left(\frac{k}{\tau} + F(\tau)\right) d\tau$$

and thus

$$\int_{\gamma_2} F(\tau) d\tau + \int_{\gamma'_2} F(\tau) = -k \int_{\gamma_2} \frac{d\tau}{\tau}$$

Using a substitution $\tau \mapsto e^{it}$, further computation yields

$$\lim_{\varepsilon \to 0} \left(\int_{\gamma_2} \frac{d\tau}{\tau} \right) = \int_i^{\rho} \frac{d\tau}{\tau} = -\frac{2\pi i}{12}.$$

• The paths $\gamma_{\rho}, \gamma_{\rho^2}$, and γ_i : The function $F(\tau)$ has a Laurent expansion around ρ of the form

$$F(\tau) = \sum_{n=-1}^{\infty} c_F(n)(\tau - \rho)^n$$

Here, $c_F(-1) = \operatorname{ord}_{\rho}(f)$, which can be seen by substituting the Taylor expansion of f into F = f'/f.

We write

$$\lim_{\varepsilon \to 0} \int_{\gamma_{\rho}} F(\tau) d\tau = \lim_{\varepsilon \to 0} \left(c_F(-1) \int_{\gamma_{\rho}} \frac{d\tau}{\tau - \rho} + \int_{\gamma_{\rho}} \left(F(\tau) - \frac{c_F(-1)}{\tau - \rho} \right) d\tau \right).$$

The second integral vanishes as $\varepsilon \to 0$ since the integrand is holomorphic at $\tau = \rho$ and the length of the integration path approaches 0. With $c_F(-1) = \operatorname{ord}_{\rho}(f)$, we obtain

$$\lim_{\varepsilon \to 0} \int_{\gamma_{\rho}} F(\tau) d\tau = \operatorname{ord}_{\rho}(f) \lim_{\varepsilon \to 0} \int_{\gamma_{\rho}} \frac{d\tau}{\tau - \rho}$$

To compute the integral, we choose $\alpha = \alpha(\varepsilon)$ such that $e^{i\alpha}$ lies on the unit circle to the left of ρ and $|e^{i\alpha} - \rho| = \varepsilon$. Let $\varphi = \varphi(\varepsilon) < 0$ be the angle between $\rho + i\varepsilon$ and $e^{i\alpha}$.

Figure 3: The path γ_{ρ} , taken from [1]

Then, we can parameterize the path γ_ρ as

$$\rho + \varepsilon e^{it}, \quad \frac{\pi}{2} + \varphi \le t \le \frac{\pi}{2}$$

Hence,

$$\lim_{\varepsilon \to 0} \int_{\gamma_{\rho}} \frac{d\tau}{\tau - \rho} = \lim_{\varepsilon \to 0} \int_{\pi/2 + \varphi}^{\pi/2} \frac{1}{\varepsilon e^{it}} i\varepsilon e^{it} dt = -i \lim_{\varepsilon \to 0} \varphi = \frac{\pi i}{3}$$

Overall, we have

$$\lim_{\varepsilon \to 0} \int_{\gamma_{\rho}} F(\tau) d\tau = -\frac{2\pi i}{6} \operatorname{ord}_{\rho}(f)$$

Analogously, we show

$$\lim_{\varepsilon \to 0} \int_{\gamma_{\rho^2}} F(\tau) d\tau = -\frac{2\pi i}{6} \operatorname{ord}_{\rho}(f)$$

and

$$\lim_{\varepsilon \to 0} \int_{\gamma_i} F(\tau) d\tau = -\frac{2\pi i}{2} \operatorname{ord}_i(f).$$

Combining all paths, we obtain the valence formula from 1.1. If zeros lie on the boundary of \mathcal{F} , as with i, ρ , and ρ^2 , we excise small circles around the zeros. The additional boundary integrals are treated similarly to above. \Box

Lemma 1.2. The Δ -function does not have any zeros on \mathbb{H} . In particular, it induces an Isomorphism

$$M_k \to S_{k+12}, \quad f \mapsto \Delta \cdot f$$

Proof. Recall that if $f \in M_k$ and $g \in M_l$, then $fg \in M_{k+l}$. Moreover, if f or g is a cusp form, then so is fg. Since $\Delta \in S_{12}$, the map is well-defined. To see that Δ does not vanish on \mathbb{H} we make use of the valence formula. For k = 12, the RHS of the formula equals 1. Moreover $\operatorname{ord}_{\infty}(\Delta) = 1$. Since $\operatorname{ord}_{\tau}(\Delta) \geq 0$ for all $\tau \in \mathbb{H}$, the valence formula implies $\operatorname{ord}_{\tau}(\Delta) = 0$ for all $\tau \in \mathbb{H}$, i.e. $\Delta(\tau) \neq 0$ for all $\tau \in \mathbb{H}$. Thus the map

$$S_{k+12} \to M_k, \quad g \mapsto g/\Delta$$

is well-defined and yields an inverse to $f \mapsto f \cdot \Delta$

Theorem 1.3. For $k \leq 12$ the spaces M_k and S_k are given as follows:

- 1. $M_k = S_k = \{0\}$ for k < 0.
- 2. $M_0 = \mathbb{C}$ and $S_0 = \{0\}$.
- 3. $M_2 = S_2 = \{0\}.$
- 4. $M_k = \mathbb{C}E_k$ and $S_k = \{0\}$ for k = 4, 6, 8, 10.
- 5. $S_{12} = \mathbb{C}\Delta$ and $M_{12} = \mathbb{C}E_{12} \oplus \mathbb{C}\Delta$.
- *Proof.* 1. For k < 0, the RHS of the valence formula is negative, while the LHS is always positive (the valence formula holds for $f \neq 0$).
 - 2. Assume $f \in M_0$ is not constant. Then f f(i) is not constant either and vanishes at *i*. Hence the LHS of the valence formula applied to f f(i) is greater or equal to $\frac{1}{2}$, and the RHS is equal to 0.
 - 3. For k = 2, the RHS of the valence formula is equal to $\frac{1}{6}$. The LHS cannot attain the value $\frac{1}{6}$, since $\operatorname{ord}_{\infty}(f)$ and $\operatorname{ord}_{\tau}(f)$, $\tau \in \mathbb{H}$, are whole numbers.
 - 4. For k = 4, 6, 8, 10 and $f \in S_k$ we have $f/\Delta \in M_{k-12}$ is a modular form of negative weight, which by the first point vanishes identically. Since the map $f \mapsto f/\Delta$ is injective, it follows that $S_k = \{0\}$. Hence also $M_k = \mathbb{C}E_k \oplus S_k = \mathbb{C}E_k$.
 - 5. Let $f \in S_{12}$ be a cusp form. Then $f/\Delta \in M_0$ is a modular form of weight 0, hence constant.

Theorem 1.4. For even k > 2 we have the following dimension formula

$$\dim(M_k) = \begin{cases} \left\lfloor \frac{k}{12} \right\rfloor, & \text{if } k \equiv 2 \pmod{12} \\ \left\lfloor \frac{k}{12} \right\rfloor + 1, & \text{if } k \not\equiv 2 \pmod{12}. \end{cases}$$

and $\dim(S_k) = \dim(M_k) - 1$

Proof. We do induction on k. By the previous theorem the formula is valid for k = 4, 6, 8, 10, 12. Let now k > 12 and assume that the dimension formula

holds for all weights less than k. Since the map $S_k \to M_{k-12}, f \mapsto f/\Delta$ is an isomorphism, we get

$$\dim (M_k) = 1 + \dim (S_k) = 1 + \dim (M_{k-12})$$
$$= 1 + \left\{ \begin{bmatrix} \frac{k-12}{12} \end{bmatrix}, & \text{if } k - 12 \equiv 2 \pmod{12} \\ \lfloor \frac{k-12}{12} \rfloor + 1, & \text{if } k - 12 \not\equiv 2 \pmod{12}, \\ \end{bmatrix} = \left\{ \begin{bmatrix} \frac{k}{12} \end{bmatrix}, & \text{if } k \equiv 2 \pmod{12} \\ \lfloor \frac{k}{12} \rfloor + 1, & \text{if } k \not\equiv 2 \pmod{12}, \\ \end{bmatrix} \right\}$$

which is the desired dimension formula.

(

Theorem 1.5. For even $k \ge 4$, a basis of M_k is given by the functions

$$E_4^{\alpha} E_6^{\beta}, \quad \alpha, \beta \in \mathbb{N}_0, 4\alpha + 6\beta = k.$$

In particular, every modular form $f \in M_k$ can be written uniquely as a polynomial in E_4 and E_6 , i.e. we have an isomorphism of rings

$$M_* = \bigoplus_{\substack{k=0\\k \text{ even}}}^{\infty} M_k \cong \mathbb{C} [E_4, E_6] \cong \mathbb{C} [X, Y]$$

Proof. We prove by induction on $k \ge 0$ that we can write every $f \in M_k$ as a polynomial in E_4 and E_6 . The monomials will then be of the form $CE_4^{\alpha}E_6^{\beta}$ with $4\alpha + 6\beta = k$, so that f can be written as a linear combination of the $E_4^{\alpha}E_6^{\beta}$.

For k = 0, 2, 4, 6 the statement is true due to theorem 1.3. For k = 8 and k = 10, from a dimension argument and by comparing the constant Fourier coefficients, we have $E_8 = E_4^2$ and $E_{10} = E_4 E_6$.

Let now $k \geq 12$ and assume that every modular form of weight less than k can be written as a polynomial in E_4 and E_6 . Choose $\alpha, \beta \in \mathbb{N}_0$ such that $4\alpha + 6\beta = k$. Then $E_4^{\alpha} E_6^{\beta}$ has weight k and constant Fourier coefficient 1. By decomposing each $f \in M_k$ adequately, it follows that $M_k = \mathbb{C}E_4^{\alpha} E_6^{\beta} \bigoplus S_k$. Now, for $f \in S_k$ we have $f = g \cdot \Delta$ for some $g \in M_{k-12}$, which by induction hypothesis can be written as a polynomial in E_4 and E_6 . Since we also have $\Delta = \frac{E_4^3 - E_6^2}{1728}$, it follows that f can be written as a polynomial in E_4 and E_6 . We have thus showed that every modular form $f \in M_k$ can be written as a linear combination of the functions

$$E_4^{\alpha} E_6^{\beta}, \quad \alpha, \beta \in \mathbb{N}_0, 4\alpha + 6\beta = k.$$

Since the set of all $\alpha, \beta \in \mathbb{N}_0$ such that $4\alpha + 6\beta = k$ has cardinality equal to $\dim(M_k)$, these functions form a basis of the space M_k .

Remark 1.3. In particular, note the astonishing fact that for each k the basis of M_k consists of functions with *entire* Fourier coefficients.

References

[1] Markus Schwagenscheidt, Modulformen, lecture notes, available online.