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1 The valence formula

1.1 Preliminaries

Recall

• the complex upper half-plane H := {τ ∈ C : ℑ(τ) > 0},

• the modular group Γ := SL2(Z) := {A ∈ M2×2(Z) : detA = 1},

• the Möbius transformations defined for M =
(
a b
c d

)
∈ SL2(R) and τ ∈ H

as

Mτ =
aτ + b

cτ + d
.

With this, a modular form of weight k ∈ Z is defined as a function f : H → C
such that

1. f is holomorphic on H,

2. f(Mτ) := f(aτ+b
cτ+d ) = (cτ + d)kf(τ),

3. f has a Fourier expansion of the form

f(τ) =

∞∑
n=0

af (n)q
n,

where q = e2πiτ

Now, let f ∈ Mk be a modular form of weight k. As a holomorphic function
on H, it has a Taylor expansion at each point a ∈ H of the form

f(τ) =

∞∑
n=0

cf,a(n)(τ − a)n

with coefficients cf,a(n) ∈ C. We define the order of f at a by

orda(f) = min {n ∈ N0 : cf,a(n) ̸= 0} ,

and we define the order of f at ∞ by

ord∞(f) = min {n ∈ N0 : af (n) ̸= 0} .
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Finally, note that f is 1-periodic, i.e.

f(τ + 1) = f(τ) ∀τ ∈ H.

This follows directly from condition 2 in the definition of a modular form when
taking M =

(
1 1
0 1

)
.

1.2 The valence formula

With these definitions, we can state and prove a formula for the sum of the
orders of a modular form:

Theorem 1.1 (Valence formula). Let i be the imaginary unit and ρ = ei
π
3 . For

f ∈ Mk with f ̸= 0,

ord∞(f) +
1

2
ordi(f) +

1

3
ordρ(f) +

∑
τ∈Γ\H

τ ̸=i,ρ mod Γ

ordτ (f) =
k

12

Remark 1.1. 1. The formula is also called the k/12-formula. If we define
ord(∞) = 1 and the order of a point τ ∈ H as

ord(τ) =
1

2
|Γτ | =

 3, if τ = ρ (modΓ)
2, if τ = i (modΓ)
1, otherwise

we can write the valence formula more compactly as∑
τ∈Γ\H∪{∞}

ordτ (f)

ord(τ)
=

k

12
.

2. The sum on the left-hand side of the valence formula is finite, as the zeros
of 0 ̸= f ∈ Mk do not accumulate in Γ\H.

Example 1.2. From the valence formula, it follows that the Eisenstein series
E4 (or E6) has a simple zero at τ = ρ (or τ = i) and no further zeros modulo
Γ. This can be obtained by comparing the coefficients and since the order is an
element of N0.

We now proceed to prove the weight formula. First, recall the fundamental
domain F :

F = {τ ∈ H : |τ | ≥ 1,−1/2 ≥ ℜ(τ) ≥ 1/2}.
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Figure 1: The fundamental domain F , which contains the points i, ρ, and ρ2. If
we remove the left edge and the part of F which lies on the segment of the unit
circle whose real part is < 0, this is a system of representants for the quotient
Γ/H. Graphic from [1].

Proof of Theorem 1.1. The sum is well-defined: We claim that for f ∈ Mk,

ordMτ (f) = ordτ (f)

for all τ ∈ H and M ∈ Γ. Indeed, this follows directly from the second condition
in the definition of a modular form by noting that

f(Mτ) = (cτ + d)k︸ ︷︷ ︸
̸=0

f(τ).

Hence, the order of f at τ depends only on the class of τ in Γ\H and the
sum on the left-hand side of the weight formula is well-defined.

The formula: Let

f =

∞∑
n=n0

af (n)q
n ∈ Mk

with f ̸= 0 and af (n0) ̸= 0. In particular, n0 = ord∞(f). There exists a T > 0
such that f(τ) has no zeros for Im(τ) > T . Otherwise, the zeros of the function
g(q) =

∑∞
n=0 af (n)q

n (which is holomorphic for |q| < 1) would accumulate at
q = 0, implying g(q) = 0 for all |q| < 1, which contradicts f ̸= 0. For simplicity,
let’s assume f also has no zeros on the boundary of the fundamental domain F .
Later, we will see why this is allowed. We now consider the following path γ in
H:
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Figure 2: The path γ, taken from [1]

Here, ε > 0 is chosen small enough so that the circles around i, ρ, and ρ2 do
not contain any zeros inside F . Note that γ has winding number 1.

According to the residue theorem, with F = f ′/f , we have the formula∫
γ

F (τ)dτ = 2πi
∑

w∈F◦

ordw(f)

where F◦ denotes the interior of F . This is because F only has poles where
f vanishes. Since the right-hand side does not depend on ε, we can take the
limit ε → 0 on the left-hand side. We compute the integrals over the individual
subpaths:

• The path γ0: The function F = f ′/f is 1-periodic and has a Fourier
expansion of the form

F (τ) =
2πi

∑∞
n=n0

naf (n)q
n∑∞

n=n0
af (n)qn

= 2πin0 + . . .

We parameterize −γ0 (where the minus indicates the reversal of orienta-
tion) by x 7→ x+ iT with x ∈ [−1/2, 1/2]. Then,

∫
γ0

F (τ)dτ = −
∫ 1/2

−1/2

F (x+ iT )dx = −2πin0 = −2πi ord∞(f)

• The paths γ1 and γ′
1: Since F is 1-periodic, and γ′

1 is the reverse of γ1, we
have ∫

γ1

F (τ)dτ +

∫
γ′
1

F (τ)dτ = 0
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• The paths γ2 and γ′
2: Given M =

(
a b
c d

)
∈ Γ, the function F = f ′/f

transforms as follows:

Since f(Mτ) = (cτ + d)kf(τ), applying the chain rule on the left-hand
side and the product rule on the right-hand side gives

f ′(Mτ)
dMτ

dτ
= k(cτ + d)k−1f(τ) + (cτ + d)kf ′(τ),

and hence

F (Mτ)dMτ =

(
kc

cτ + d
+ F (τ)

)
dτ

The matrix S =
(
0 −1
1 0

)
maps γ2 to −γ′

2. Hence,

∫
γ′
2

F (τ)dτ = −
∫
Sγ2

F (τ)dτ = −
∫
γ2

F (Sτ)dSτ = −
∫
γ2

(
k

τ
+ F (τ)

)
dτ

and thus ∫
γ2

F (τ)dτ +

∫
γ′
2

F (τ) = −k

∫
γ2

dτ

τ

Using a substitution τ 7→ eit, further computation yields

lim
ε→0

(∫
γ2

dτ

τ

)
=

∫ ρ

i

dτ

τ
= −2πi

12
.

• The paths γρ, γρ2 , and γi: The function F (τ) has a Laurent expansion
around ρ of the form

F (τ) =

∞∑
n=−1

cF (n)(τ − ρ)n

Here, cF (−1) = ordρ(f), which can be seen by substituting the Taylor
expansion of f into F = f ′/f .

We write

lim
ε→0

∫
γρ

F (τ)dτ = lim
ε→0

(
cF (−1)

∫
γρ

dτ

τ − ρ
+

∫
γρ

(
F (τ)− cF (−1)

τ − ρ

)
dτ

)
.

The second integral vanishes as ε → 0 since the integrand is holomorphic
at τ = ρ and the length of the integration path approaches 0. With
cF (−1) = ordρ(f), we obtain

lim
ε→0

∫
γρ

F (τ)dτ = ordρ(f) lim
ε→0

∫
γρ

dτ

τ − ρ

To compute the integral, we choose α = α(ε) such that eiα lies on the unit
circle to the left of ρ and

∣∣eiα − ρ
∣∣ = ε. Let φ = φ(ε) < 0 be the angle

between ρ+ iε and eiα.
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Figure 3: The path γρ, taken from [1]

Then, we can parameterize the path γρ as

ρ+ εeit,
π

2
+ φ ≤ t ≤ π

2

Hence,

lim
ε→0

∫
γρ

dτ

τ − ρ
= lim

ε→0

∫ π/2

π/2+φ

1

εeit
iεeitdt = −i lim

ε→0
φ =

πi

3

Overall, we have

lim
ε→0

∫
γρ

F (τ)dτ = −2πi

6
ordρ(f)

Analogously, we show

lim
ε→0

∫
γρ2

F (τ)dτ = −2πi

6
ordρ(f)

and

lim
ε→0

∫
γi

F (τ)dτ = −2πi

2
ordi(f).

Combining all paths, we obtain the valence formula from 1.1. If zeros lie
on the boundary of F , as with i, ρ, and ρ2, we excise small circles around the
zeros. The additional boundary integrals are treated similarly to above.

Lemma 1.2. The ∆-function does not have any zeros on H. In particular, it
induces an Isomorphism

Mk → Sk+12, f 7→ ∆ · f
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Proof. Recall that if f ∈ Mk and g ∈ Ml, then fg ∈ Mk+l. Moreover, if f or g is
a cusp form, then so is fg. Since ∆ ∈ S12, the map is well-defined. To see that
∆ does not vanish on H we make use of the valence formula. For k = 12, the
RHS of the formula equals 1. Moreover ord∞(∆) = 1. Since ordτ (∆) ≥ 0 for
all τ ∈ H, the valence formula implies ordτ (∆) = 0 for all τ ∈ H, i.e. ∆(τ) ̸= 0
for all τ ∈ H. Thus the map

Sk+12 → Mk, g 7→ g/∆

is well-defined and yields an inverse to f 7→ f ·∆

Theorem 1.3. For k ≤ 12 the spaces Mk and Sk are given as follows:

1. Mk = Sk = {0} for k < 0 .

2. M0 = C and S0 = {0}.

3. M2 = S2 = {0}.

4. Mk = CEk and Sk = {0} for k = 4, 6, 8, 10.

5. S12 = C∆ and M12 = CE12 ⊕ C∆.

Proof. 1. For k < 0, the RHS of the valence formula is negative, while the
LHS is always positive (the valence formula holds for f ̸= 0).

2. Assume f ∈ M0 is not constant. Then f − f(i) is not constant either and
vanishes at i. Hence the LHS of the valence formula applied to f − f(i) is
greater or equal to 1

2 , and the RHS is equal to 0.

3. For k = 2, the RHS of the valence formula is equal to 1
6 . The LHS cannot

attain the value 1
6 , since ord∞(f) and ordτ (f), τ ∈ H, are whole numbers.

4. For k = 4, 6, 8, 10 and f ∈ Sk we have f/∆ ∈ Mk−12 is a modular form
of negative weight, which by the first point vanishes identically. Since
the map f 7→ f/∆ is injective, it follows that Sk = {0}. Hence also
Mk = CEk ⊕ Sk = CEk.

5. Let f ∈ S12 be a cusp form. Then f/∆ ∈ M0 is a modular form of weight
0, hence constant.

Theorem 1.4. For even k > 2 we have the following dimension formula

dim(Mk) =

{⌊
k
12

⌋
, if k ≡ 2 (mod 12)⌊

k
12

⌋
+ 1, if k ̸≡ 2 (mod 12).

and dim(Sk) = dim(Mk)− 1

Proof. We do induction on k. By the previous theorem the formula is valid
for k = 4, 6, 8, 10, 12. Let now k > 12 and assume that the dimension formula
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holds for all weights less than k. Since the map Sk → Mk−12, f 7→ f/∆ is an
isomorphism, we get

dim (Mk) = 1 + dim (Sk) = 1 + dim (Mk−12)

= 1 +

{⌊
k−12
12

⌋
, if k − 12 ≡ 2 (mod 12)⌊

k−12
12

⌋
+ 1, if k − 12 ̸≡ 2 (mod 12),

=

{⌊
k
12

⌋
, if k ≡ 2 (mod 12)⌊

k
12

⌋
+ 1, if k ̸≡ 2 (mod 12),

which is the desired dimension formula.

Theorem 1.5. For even k ≥ 4, a basis of Mk is given by the functions

Eα
4 E

β
6 , α, β ∈ N0, 4α+ 6β = k.

In particular, every modular form f ∈ Mk can be written uniquely as a polyno-
mial in E4 and E6, i.e. we have an isomorphism of rings

M∗ =

∞⊕
k=0

k even

Mk
∼= C [E4, E6] ∼= C[X,Y ]

Proof. We prove by induction on k ≥ 0 that we can write every f ∈ Mk as a
polynomial in E4 and E6. The monomials will then be of the form CEα

4 E
β
6 with

4α+ 6β = k, so that f can be written as a linear combination of the Eα
4 E

β
6 .

For k = 0, 2, 4, 6 the statement is true due to theorem 1.3. For k = 8 and
k = 10, from a dimension argument and by comparing the constant Fourier
coefficients, we have E8 = E2

4 and E10 = E4E6.
Let now k ≥ 12 and assume that every modular form of weight less than

k can be written as a polynomial in E4 and E6. Choose α, β ∈ N0 sucht that
4α + 6β = k. Then Eα

4 E
β
6 has weight k and constant Fourier coefficient 1.

By decomposing each f ∈ Mk adequately, it follows that Mk = CEα
4 E

β
6

⊕
Sk.

Now, for f ∈ Sk we have f = g · ∆ for some g ∈ Mk−12, which by induction
hypothesis can be written as a polynomial in E4 and E6. Since we also have

∆ =
E3

4−E2
6

1728 , it follows that f can be written as a polynomial in E4 and E6. We
have thus showed that every modular form f ∈ Mk can be written as a linear
combination of the functions

Eα
4 E

β
6 , α, β ∈ N0, 4α+ 6β = k.

Since the set of all α, β ∈ N0 such that 4α + 6β = k has cardinality equal to
dim(Mk), these functions form a basis of the space Mk.

Remark 1.3. In particular, note the astonishing fact that for each k the basis
of Mk consists of functions with entire Fourier coefficients.
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