The valence formula and the structure of M_{k}

Jossi Schütt and Joel Sommer

Wednesday, 17 April 2024

1 The valence formula

1.1 Preliminaries

Recall

- the complex upper half-plane $\mathbb{H}:=\{\tau \in \mathbb{C}: \Im(\tau)>0\}$,
- the modular group $\Gamma:=\mathrm{SL}_{2}(\mathbb{Z}):=\left\{A \in M_{2 \times 2}(\mathbb{Z}): \operatorname{det} A=1\right\}$,
- the Möbius transformations defined for $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{R})$ and $\tau \in \mathbb{H}$ as

$$
M \tau=\frac{a \tau+b}{c \tau+d}
$$

With this, a modular form of weight $k \in \mathbb{Z}$ is defined as a function $f: \mathbb{H} \rightarrow \mathbb{C}$ such that

1. f is holomorphic on \mathbb{H},
2. $f(M \tau):=f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)$,
3. f has a Fourier expansion of the form

$$
f(\tau)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}
$$

where $q=e^{2 \pi i \tau}$
Now, let $f \in M_{k}$ be a modular form of weight k. As a holomorphic function on \mathbb{H}, it has a Taylor expansion at each point $a \in \mathbb{H}$ of the form

$$
f(\tau)=\sum_{n=0}^{\infty} c_{f, a}(n)(\tau-a)^{n}
$$

with coefficients $c_{f, a}(n) \in \mathbb{C}$. We define the order of f at a by

$$
\operatorname{ord}_{a}(f)=\min \left\{n \in \mathbb{N}_{0}: c_{f, a}(n) \neq 0\right\}
$$

and we define the order of f at ∞ by

$$
\operatorname{ord}_{\infty}(f)=\min \left\{n \in \mathbb{N}_{0}: a_{f}(n) \neq 0\right\}
$$

Finally, note that f is 1 -periodic, i.e.

$$
f(\tau+1)=f(\tau) \quad \forall \tau \in \mathbb{H}
$$

This follows directly from condition 2 in the definition of a modular form when taking $M=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$.

1.2 The valence formula

With these definitions, we can state and prove a formula for the sum of the orders of a modular form:

Theorem 1.1 (Valence formula). Let i be the imaginary unit and $\rho=e^{i \frac{\pi}{3}}$. For $f \in M_{k}$ with $f \neq 0$,

$$
\operatorname{ord}_{\infty}(f)+\frac{1}{2} \operatorname{ord}_{i}(f)+\frac{1}{3} \operatorname{ord}_{\rho}(f)+\sum_{\substack{\tau \in \Gamma \backslash \mathbb{H} \\ \tau \neq i, \rho \bmod \Gamma}} \operatorname{ord}_{\tau}(f)=\frac{k}{12}
$$

Remark 1.1. 1. The formula is also called the $k / 12$-formula. If we define $\operatorname{ord}(\infty)=1$ and the order of a point $\tau \in \mathbb{H}$ as

$$
\operatorname{ord}(\tau)=\frac{1}{2}\left|\Gamma_{\tau}\right|= \begin{cases}3, & \text { if } \tau=\rho \quad(\bmod \Gamma) \\ 2, & \text { if } \tau=i \quad(\bmod \Gamma) \\ 1, & \text { otherwise }\end{cases}
$$

we can write the valence formula more compactly as

$$
\sum_{\tau \in \Gamma \backslash \mathbb{H} \cup\{\infty\}} \frac{\operatorname{ord}_{\tau}(f)}{\operatorname{ord}(\tau)}=\frac{k}{12} .
$$

2. The sum on the left-hand side of the valence formula is finite, as the zeros of $0 \neq f \in M_{k}$ do not accumulate in $\Gamma \backslash \mathbb{H}$.

Example 1.2. From the valence formula, it follows that the Eisenstein series E_{4} (or E_{6}) has a simple zero at $\tau=\rho$ (or $\tau=i$) and no further zeros modulo Γ. This can be obtained by comparing the coefficients and since the order is an element of \mathbb{N}_{0}.

We now proceed to prove the weight formula. First, recall the fundamental domain \mathcal{F} :

$$
\mathcal{F}=\{\tau \in \mathbb{H}:|\tau| \geq 1,-1 / 2 \geq \Re(\tau) \geq 1 / 2\}
$$

Figure 1: The fundamental domain \mathcal{F}, which contains the points i, ρ, and ρ^{2}. If we remove the left edge and the part of \mathcal{F} which lies on the segment of the unit circle whose real part is <0, this is a system of representants for the quotient Γ / \mathbb{H}. Graphic from [1].

Proof of Theorem 1.1. The sum is well-defined: We claim that for $f \in M_{k}$,

$$
\operatorname{ord}_{M \tau}(f)=\operatorname{ord}_{\tau}(f)
$$

for all $\tau \in \mathbb{H}$ and $M \in \Gamma$. Indeed, this follows directly from the second condition in the definition of a modular form by noting that

$$
f(M \tau)=\underbrace{(c \tau+d)^{k}}_{\neq 0} f(\tau) .
$$

Hence, the order of f at τ depends only on the class of τ in $\Gamma \backslash \mathbb{H}$ and the sum on the left-hand side of the weight formula is well-defined.

The formula: Let

$$
f=\sum_{n=n_{0}}^{\infty} a_{f}(n) q^{n} \in M_{k}
$$

with $f \neq 0$ and $a_{f}\left(n_{0}\right) \neq 0$. In particular, $n_{0}=\operatorname{ord}_{\infty}(f)$. There exists a $T>0$ such that $f(\tau)$ has no zeros for $\operatorname{Im}(\tau)>T$. Otherwise, the zeros of the function $g(q)=\sum_{n=0}^{\infty} a_{f}(n) q^{n}$ (which is holomorphic for $|q|<1$) would accumulate at $q=0$, implying $g(q)=0$ for all $|q|<1$, which contradicts $f \neq 0$. For simplicity, let's assume f also has no zeros on the boundary of the fundamental domain \mathcal{F}. Later, we will see why this is allowed. We now consider the following path γ in $\mathbb{H}:$

Figure 2: The path γ, taken from [1]
Here, $\varepsilon>0$ is chosen small enough so that the circles around i, ρ, and ρ^{2} do not contain any zeros inside \mathcal{F}. Note that γ has winding number 1 .

According to the residue theorem, with $F=f^{\prime} / f$, we have the formula

$$
\int_{\gamma} F(\tau) d \tau=2 \pi i \sum_{w \in \mathcal{F}^{\circ}} \operatorname{ord}_{w}(f)
$$

where \mathcal{F}° denotes the interior of \mathcal{F}. This is because F only has poles where f vanishes. Since the right-hand side does not depend on ε, we can take the limit $\varepsilon \rightarrow 0$ on the left-hand side. We compute the integrals over the individual subpaths:

- The path γ_{0} : The function $F=f^{\prime} / f$ is 1-periodic and has a Fourier expansion of the form

$$
F(\tau)=\frac{2 \pi i \sum_{n=n_{0}}^{\infty} n a_{f}(n) q^{n}}{\sum_{n=n_{0}}^{\infty} a_{f}(n) q^{n}}=2 \pi i n_{0}+\ldots
$$

We parameterize $-\gamma_{0}$ (where the minus indicates the reversal of orientation) by $x \mapsto x+i T$ with $x \in[-1 / 2,1 / 2]$. Then,

$$
\int_{\gamma_{0}} F(\tau) d \tau=-\int_{-1 / 2}^{1 / 2} F(x+i T) d x=-2 \pi i n_{0}=-2 \pi i \operatorname{ord}_{\infty}(f)
$$

- The paths γ_{1} and γ_{1}^{\prime} : Since F is 1-periodic, and γ_{1}^{\prime} is the reverse of γ_{1}, we have

$$
\int_{\gamma_{1}} F(\tau) d \tau+\int_{\gamma_{1}^{\prime}} F(\tau) d \tau=0
$$

- The paths γ_{2} and γ_{2}^{\prime} : Given $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$, the function $F=f^{\prime} / f$ transforms as follows:
Since $f(M \tau)=(c \tau+d)^{k} f(\tau)$, applying the chain rule on the left-hand side and the product rule on the right-hand side gives

$$
f^{\prime}(M \tau) \frac{d M \tau}{d \tau}=k(c \tau+d)^{k-1} f(\tau)+(c \tau+d)^{k} f^{\prime}(\tau)
$$

and hence

$$
F(M \tau) d M \tau=\left(\frac{k c}{c \tau+d}+F(\tau)\right) d \tau
$$

The matrix $S=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ maps γ_{2} to $-\gamma_{2}^{\prime}$. Hence,

$$
\int_{\gamma_{2}^{\prime}} F(\tau) d \tau=-\int_{S \gamma_{2}} F(\tau) d \tau=-\int_{\gamma_{2}} F(S \tau) d S \tau=-\int_{\gamma_{2}}\left(\frac{k}{\tau}+F(\tau)\right) d \tau
$$

and thus

$$
\int_{\gamma_{2}} F(\tau) d \tau+\int_{\gamma_{2}^{\prime}} F(\tau)=-k \int_{\gamma_{2}} \frac{d \tau}{\tau}
$$

Using a substitution $\tau \mapsto e^{i t}$, further computation yields

$$
\lim _{\varepsilon \rightarrow 0}\left(\int_{\gamma_{2}} \frac{d \tau}{\tau}\right)=\int_{i}^{\rho} \frac{d \tau}{\tau}=-\frac{2 \pi i}{12}
$$

- The paths $\gamma_{\rho}, \gamma_{\rho^{2}}$, and γ_{i} : The function $F(\tau)$ has a Laurent expansion around ρ of the form

$$
F(\tau)=\sum_{n=-1}^{\infty} c_{F}(n)(\tau-\rho)^{n}
$$

Here, $c_{F}(-1)=\operatorname{ord}_{\rho}(f)$, which can be seen by substituting the Taylor expansion of f into $F=f^{\prime} / f$.
We write

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\rho}} F(\tau) d \tau=\lim _{\varepsilon \rightarrow 0}\left(c_{F}(-1) \int_{\gamma_{\rho}} \frac{d \tau}{\tau-\rho}+\int_{\gamma_{\rho}}\left(F(\tau)-\frac{c_{F}(-1)}{\tau-\rho}\right) d \tau\right) .
$$

The second integral vanishes as $\varepsilon \rightarrow 0$ since the integrand is holomorphic at $\tau=\rho$ and the length of the integration path approaches 0 . With $c_{F}(-1)=\operatorname{ord}_{\rho}(f)$, we obtain

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\rho}} F(\tau) d \tau=\operatorname{ord}_{\rho}(f) \lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\rho}} \frac{d \tau}{\tau-\rho}
$$

To compute the integral, we choose $\alpha=\alpha(\varepsilon)$ such that $e^{i \alpha}$ lies on the unit circle to the left of ρ and $\left|e^{i \alpha}-\rho\right|=\varepsilon$. Let $\varphi=\varphi(\varepsilon)<0$ be the angle between $\rho+i \varepsilon$ and $e^{i \alpha}$.

Figure 3: The path γ_{ρ}, taken from [1]

Then, we can parameterize the path γ_{ρ} as

$$
\rho+\varepsilon e^{i t}, \quad \frac{\pi}{2}+\varphi \leq t \leq \frac{\pi}{2}
$$

Hence,

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\rho}} \frac{d \tau}{\tau-\rho}=\lim _{\varepsilon \rightarrow 0} \int_{\pi / 2+\varphi}^{\pi / 2} \frac{1}{\varepsilon e^{i t}} i \varepsilon e^{i t} d t=-i \lim _{\varepsilon \rightarrow 0} \varphi=\frac{\pi i}{3}
$$

Overall, we have

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\rho}} F(\tau) d \tau=-\frac{2 \pi i}{6} \operatorname{ord}_{\rho}(f)
$$

Analogously, we show

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{\rho^{2}}} F(\tau) d \tau=-\frac{2 \pi i}{6} \operatorname{ord}_{\rho}(f)
$$

and

$$
\lim _{\varepsilon \rightarrow 0} \int_{\gamma_{i}} F(\tau) d \tau=-\frac{2 \pi i}{2} \operatorname{ord}_{i}(f)
$$

Combining all paths, we obtain the valence formula from 1.1. If zeros lie on the boundary of \mathcal{F}, as with i, ρ, and ρ^{2}, we excise small circles around the zeros. The additional boundary integrals are treated similarly to above.

Lemma 1.2. The Δ-function does not have any zeros on \mathbb{H}. In particular, it induces an Isomorphism

$$
M_{k} \rightarrow S_{k+12}, \quad f \mapsto \Delta \cdot f
$$

Proof. Recall that if $f \in M_{k}$ and $g \in M_{l}$, then $f g \in M_{k+l}$. Moreover, if f or g is a cusp form, then so is $f g$. Since $\Delta \in S_{12}$, the map is well-defined. To see that Δ does not vanish on \mathbb{H} we make use of the valence formula. For $k=12$, the RHS of the formula equals 1 . Moreover $\operatorname{ord}_{\infty}(\Delta)=1$. Since $\operatorname{ord}_{\tau}(\Delta) \geq 0$ for all $\tau \in \mathbb{H}$, the valence formula implies $\operatorname{ord}_{\tau}(\Delta)=0$ for all $\tau \in \mathbb{H}$, i.e. $\Delta(\tau) \neq 0$ for all $\tau \in \mathbb{H}$. Thus the map

$$
S_{k+12} \rightarrow M_{k}, \quad g \mapsto g / \Delta
$$

is well-defined and yields an inverse to $f \mapsto f \cdot \Delta$
Theorem 1.3. For $k \leq 12$ the spaces M_{k} and S_{k} are given as follows:

1. $M_{k}=S_{k}=\{0\}$ for $k<0$.
2. $M_{0}=\mathbb{C}$ and $S_{0}=\{0\}$.
3. $M_{2}=S_{2}=\{0\}$.
4. $M_{k}=\mathbb{C} E_{k}$ and $S_{k}=\{0\}$ for $k=4,6,8,10$.
5. $S_{12}=\mathbb{C} \Delta$ and $M_{12}=\mathbb{C} E_{12} \oplus \mathbb{C} \Delta$.

Proof. 1. For $k<0$, the RHS of the valence formula is negative, while the LHS is always positive (the valence formula holds for $f \neq 0$).
2. Assume $f \in M_{0}$ is not constant. Then $f-f(i)$ is not constant either and vanishes at i. Hence the LHS of the valence formula applied to $f-f(i)$ is greater or equal to $\frac{1}{2}$, and the RHS is equal to 0 .
3. For $k=2$, the RHS of the valence formula is equal to $\frac{1}{6}$. The LHS cannot attain the value $\frac{1}{6}$, since $\operatorname{ord}_{\infty}(f)$ and $\operatorname{ord}_{\tau}(f), \tau \in \mathbb{H}$, are whole numbers.
4. For $k=4,6,8,10$ and $f \in S_{k}$ we have $f / \Delta \in M_{k-12}$ is a modular form of negative weight, which by the first point vanishes identically. Since the map $f \mapsto f / \Delta$ is injective, it follows that $S_{k}=\{0\}$. Hence also $M_{k}=\mathbb{C} E_{k} \oplus S_{k}=\mathbb{C} E_{k}$.
5. Let $f \in S_{12}$ be a cusp form. Then $f / \Delta \in M_{0}$ is a modular form of weight 0 , hence constant.

Theorem 1.4. For even $k>2$ we have the following dimension formula

$$
\operatorname{dim}\left(M_{k}\right)= \begin{cases}\left\lfloor\frac{k}{12}\right\rfloor, & \text { if } k \equiv 2 \quad(\bmod 12) \\ \left\lfloor\frac{k}{12}\right\rfloor+1, & \text { if } k \not \equiv 2 \quad(\bmod 12)\end{cases}
$$

and $\operatorname{dim}\left(S_{k}\right)=\operatorname{dim}\left(M_{k}\right)-1$
Proof. We do induction on k. By the previous theorem the formula is valid for $k=4,6,8,10,12$. Let now $k>12$ and assume that the dimension formula
holds for all weights less than k. Since the map $S_{k} \rightarrow M_{k-12}, f \mapsto f / \Delta$ is an isomorphism, we get

$$
\begin{aligned}
\operatorname{dim}\left(M_{k}\right) & =1+\operatorname{dim}\left(S_{k}\right)=1+\operatorname{dim}\left(M_{k-12}\right) \\
& =1+\left\{\begin{array}{lll}
\left\lfloor\frac{k-12}{12}\right\rfloor, & \text { if } k-12 \equiv 2 \quad(\bmod 12) \\
\left\lfloor\frac{k-12}{12}\right\rfloor+1, & \text { if } k-12 \not \equiv 2 & (\bmod 12),
\end{array}\right. \\
& =\left\{\begin{array}{lll}
\left\lfloor\frac{k}{12}\right\rfloor, & \text { if } k \equiv 2 & (\bmod 12) \\
\left\lfloor\frac{k}{12}\right\rfloor+1, & \text { if } k \not \equiv 2 & (\bmod 12),
\end{array}\right.
\end{aligned}
$$

which is the desired dimension formula.
Theorem 1.5. For even $k \geq 4$, a basis of M_{k} is given by the functions

$$
E_{4}^{\alpha} E_{6}^{\beta}, \quad \alpha, \beta \in \mathbb{N}_{0}, 4 \alpha+6 \beta=k
$$

In particular, every modular form $f \in M_{k}$ can be written uniquely as a polynomial in E_{4} and E_{6}, i.e. we have an isomorphism of rings

$$
M_{*}=\bigoplus_{\substack{k=0 \\ k \text { even }}}^{\infty} M_{k} \cong \mathbb{C}\left[E_{4}, E_{6}\right] \cong \mathbb{C}[X, Y]
$$

Proof. We prove by induction on $k \geq 0$ that we can write every $f \in M_{k}$ as a polynomial in E_{4} and E_{6}. The monomials will then be of the form $C E_{4}^{\alpha} E_{6}^{\beta}$ with $4 \alpha+6 \beta=k$, so that f can be written as a linear combination of the $E_{4}^{\alpha} E_{6}^{\beta}$.

For $k=0,2,4,6$ the statement is true due to theorem 1.3. For $k=8$ and $k=10$, from a dimension argument and by comparing the constant Fourier coefficients, we have $E_{8}=E_{4}^{2}$ and $E_{10}=E_{4} E_{6}$.

Let now $k \geq 12$ and assume that every modular form of weight less than k can be written as a polynomial in E_{4} and E_{6}. Choose $\alpha, \beta \in \mathbb{N}_{0}$ sucht that $4 \alpha+6 \beta=k$. Then $E_{4}^{\alpha} E_{6}^{\beta}$ has weight k and constant Fourier coefficient 1 . By decomposing each $f \in M_{k}$ adequately, it follows that $M_{k}=\mathbb{C} E_{4}^{\alpha} E_{6}^{\beta} \bigoplus S_{k}$. Now, for $f \in S_{k}$ we have $f=g \cdot \Delta$ for some $g \in M_{k-12}$, which by induction hypothesis can be written as a polynomial in E_{4} and E_{6}. Since we also have $\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}$, it follows that f can be written as a polynomial in E_{4} and E_{6}. We have thus showed that every modular form $f \in M_{k}$ can be written as a linear combination of the functions

$$
E_{4}^{\alpha} E_{6}^{\beta}, \quad \alpha, \beta \in \mathbb{N}_{0}, 4 \alpha+6 \beta=k .
$$

Since the set of all $\alpha, \beta \in \mathbb{N}_{0}$ such that $4 \alpha+6 \beta=k$ has cardinality equal to $\operatorname{dim}\left(M_{k}\right)$, these functions form a basis of the space M_{k}.

Remark 1.3. In particular, note the astonishing fact that for each k the basis of M_{k} consists of functions with entire Fourier coefficients.

References

[1] Markus Schwagenscheidt, Modulformen, lecture notes, available online.

