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1 The Eisenstein series of weight 2

In the first part of this talk, we will answer a question that comes up naturally
when looking at the definition of Eisenstein series: Why can we only define it
for even numbers greater or equal to 4?

Reminder For k ≥ 4 even, we defined the Eisenstein series Gk : H → C,

Gk(τ) =
∑

(m,n)∈Z2\{(0,0)}

(mτ + n)−k (1)

and showed that it is a modular form of weight k. Furthermore, its Fourier
expansion is given by

Gk(τ) = 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e
2πinτ , (2)

where ζ(k) =
∑∞

n=1 n
−k is the Riemann zeta function and σk−1(n) =

∑
d|n d

k−1

is the sum of positive divisors function.

If we try to extend the definition of Gk to other integers k, we find that the
sum (1) vanishes for odd k ≥ 3, since we then have an absolutely convergent
series and −(mτ + n)−k = (−mτ − n)−k for m,n ∈ Z.

For k = 1, 2, it turns out that the series is not absolutely convergent, hence
the functionsG1 andG2 are only well-defined once we fix an order of summation,
as there is no conventional order to sum over Z2\{0}. For k = 1, we again have
the property −(mτ + n)−k = (−mτ − n)−k for m,n ∈ Z, which makes the
series vanish for the most natural summation orders over Z2\{(0, 0)}. In the
following, we shall take a closer look at the more interesting case of k = 2, i.e.
the Eisenstein series of weight 2.
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Firstly, we need to fix our order of summation. The one we choose is

G2(τ) =
∑

n∈Z\{0}

n−2 +
∑

m∈Z\{0}

(
∑
n∈Z

(mτ + n)−2) (3)

where we employ the usual conventions of

∑
k∈Z

≡ lim
K→∞

K∑
k=−K

,
∑

k∈Z\{0}

≡ lim
K→∞

−1∑
k=−K

+

K∑
k=1

.

By defining G2 in this way, the expression (2) for the Fourier expansion still
holds true. Indeed, when proving this formula a few weeks ago, we began by
fixing the summation order in the exact way as in (3). We did not need absolute
convergence outside of that, hence the same proof works.

We already know that we cannot find modular forms of weight 2, but let us
see how close we got with G2. G2 would be weight 2 modular form, if it satisfied
the following conditions:

1. G2 is holomorphic on H.

2. G2(τ + 1) = G2(τ) for all τ ∈ H.

3. G2(− 1
τ ) = τ2G2(τ) for all τ ∈ H.

4. The Fourier coefficients ck(G2) vanish for all k < 0.

Recall that the second and third conditions are equivalent to the invariance
under the 2-slash operator, since they correspond to the invariance under two
generators of the modular group Γ.

Proposition 1.1 The function G2 satisfies the conditions 1,2 and 4 above.

Proof As noted, we have the Fourier expansion

G2(τ) = 2ζ(2)− 8π2
∞∑

n=1

σ1(n)e
2πinτ . (4)

From this we immediately obtain condition 4. For condition 2, we compute

G2(τ + 1) =
∑

n∈Z\{0}

n−2 +
∑

m∈Z\{0}

(
∑
n∈Z

(mτ +m+ n)−2)

=
∑

n∈Z\{0}

n−2 +
∑

m∈Z\{0}

(
∑
n′∈Z

(mτ + n′)−2) = G2(τ).

Note that the index shifting here will not change the value of the (conditionally
convergent) series, since the inner series are in fact absolutely convergent.
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Finally, we again use the Fourier expansion to show that G2 is holomorphic.
Note that the series

∞∑
n=1

σ1(n)e
2πinτ =

∞∑
n=1

σ1(n)

e2πinIm(τ)
e2πinRe(τ) (5)

converges absolutely for τ ∈ H, i.e. Im(τ) > 0, since
σ1(n) ≤ 1 + · · · + n ∈ O(n2). Moreover, we can see that it even converges
uniformly on sets that satisfy Im(z) ≥ c > 0 and in particular on compact
subsets of H. Hence the partial sums converge locally uniformly to G2, which
implies that G2 is holomorphic by a well-known result in complex analysis (see
e.g. [1, Thm. 2.21]). □

While G2 fails to satisfy the last condition of weight 2 modular forms, it
only misses the mark by a linear summand:

Proposition 1.2 We have G2(− 1
τ ) = τ2G2(τ)− 2πiτ for τ ∈ H.

A proof of this statement can be found in [2, Sec. 2.7].
We can use G2 to define a function that transforms like a weight 2 modular

form while sacrificing holomorphicity.

Example 1.3 The non-holomorphic Eisenstein series
G∗

2(τ) := G2(τ)− π
Im(τ) is invariant under the 2-slash operator.

Proof We need to check that G∗
2(τ + 1) = G∗

2(τ) and G∗
2(− 1

τ ) = τ2G∗
2(τ) hold

for all τ ∈ H. The first is clearly true since we already know that G2 and Im(·)
are 1-periodic. Setting a := Re(τ), b := Im(τ), we have Im(− 1

τ ) =
b

a2+b2 . We
check that:

τ2G∗
2 −G∗

2(−
1

τ
) = τ2(G2(τ)−

π

Im(τ)
)−G2(−

1

τ
) +

π

Im(− 1
τ )

= τ2G2(τ)−
π(a+ bi)2

b
− τ2G2(τ) + 2πi(a+ bi) +

π(a2 + b2)

b

= −π(a2 + 2iab− b2)

b
+ 2πia− 2πb+

πa2

b
+ πb = 0,

where we used the previous proposition for the second equality. □

2 The Dedekind-Eta function

In the second half of the talk we will introduce the Dedekind-Eta function and
use it to prove an alternative representation of the Ramanujan-Delta function
∆.

Definition 2.1 The Dedekind-Eta function is defined as

η(τ) = q1/24
∞∏

n=1

(1− qn)

for τ ∈ H, where we have set q = e2πiτ
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The product converges absolutely and locally uniformly on H and thus defines
a holomorphic function on H with η(τ) ̸= 0 for all τ ∈ H. This convergence is
proven using the following result from complex analysis (see e.g. [3, Ch. 14]).

Lemma 2.2 Let {an} be a sequence of complex numbers. Then, if the sum∑
n∈N |an| converges, the infinite product

∏
n∈N(1 − an) converges absolutely

to a non-zero value. Furthermore, if
∑

n∈N |an| converges uniformly, so does∏
n∈N(1− an).

Using this, we can reduce the convergence of the Dedekind-Eta function to the
convergence of the infinite sum

∑
n∈N |qn| =

∑
n∈N |e2πiτn|.

Before continuing with the transformation property of the Dedekind-Eta func-
tion and deducing from this the product expansion of the Ramanujan-Delta
function, we will briefly take a look at one possible use of the Dedekind-Eta
function: proving the asymptotic growth of the partition function. We recall
the definition of the partition function p(n)

Definition 2.3 Let n ∈ N. We define the partition function at n p(n) to be the
number of distinct ways of representing n as a sum of positive integers. Here the
order of the terms in the sum is irrelevant and we set the convention p(0) = 1
the unique empty sum.

Hardy and Ramanujan conjectured the following asymptotic for the partition
function:

p(n) ∼ 1

4n
√
3
exp

(
π

√
2n

3

)
as n → ∞

This was improved by Rademacher,using the Dedekind-Eta function, resulting
in the following convergent series expression for p(n):

p(n) =
1

π
√
2

∞∑
k=1

Ak(n)
√
k
d

dn

(
1√

n− 1/24
sinh

[
π

k

√
2

3
(n− 1/24)

])

How did Rademacher use the Dedekind-Eta function in his proof? For this we
will examine the relation between the partition function and the Dedekind-Eta
function. Firstly, let us recall the definition of a generating function:

Definition 2.4 Let {an} be a sequence. Then we define the generating function
of that sequence as the formal power series

f(q) =

∞∑
n=0

anq
n

We can view the values of the partition function as a series and thus write the
generating function of the partition function:

f(q) =

∞∑
n=0

p(n)qn
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By Euler we have the following expression for this generating function:

f(q) =

∞∏
n=1

(1− qn)−1

This bears remarkable similarity to the Dedekind-Eta function. In particular
we get the following relation:

f(q) = q1/24
1

η(τ)

Now that we have established some motivation for the definition of the Dedekind-
Eta function, we will proceed with its relation to the Eisenstein-series of weight
2.

Lemma 2.5 For τ ∈ H it holds

η′(τ)

η(τ)
=

i

4π
G2(τ)

Proof We calculate the logarithmic derivative of η as follows:

η′(τ)

η(τ)
=

∂

∂τ
log(η(τ)) =

∂

∂τ

(
1

24
log(q) +

∞∑
n=1

log(1− qn)

)

=
2πi

24
+

∞∑
n=1

−2πinqn

1− qn
=

πi

12

(
1− 24

∞∑
n=1

nqn

1− qn

)

=
πi

12

1− 24
∑
n≥1

n
∑
m≥1

qnm


where we have used the convergence of the geometric sum

∑
m≥1 q

nm = qn

1−qn .

Now we rewrite this further using the sum-of-divisors function σ1(n) =
∑

d|n d

η′(τ)

η(τ)
=

πi

12
(1− 24

∑
n≥1

σ1(n)q
n) =

i

4π
G2(τ)

where in the last step we have plugged in the definition of the Eisenstein-series
of weight 2: G2(τ) = π2/3 + 8π2

∑∞
n=1 σ1(n)q

n □

From this we now want to deduce a transformation property of η. We first arrive
at an auxiliary result.

Lemma 2.6 For τ ∈ H it holds

η(τ + 1) = e2πi/24η(τ)

and

η(−1/τ) =
√
−iτη(τ)

where we mean the principal branch of the square root.
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Proof The first equality follows immediately from the definition of η:

η(τ + 1) = eπi(τ+1)/12
∞∏

n=1

(1− e2πi(τ+1)) = eπi/12η(τ)

For the second equality we consider again the logarithmic derivative and define
the following helping function.

f(τ) =
η′(τ)

η(τ)
=

i

4π
G2(τ)

Using the transformation law of the Eisenstein-series of weight 2 i.e.

G2(−1/τ) = τ2G2(τ)− 2πiτ

we get the following identity for f(τ):

f

(
−1

τ

)
1

τ2
− f(τ)− 1

2τ
= 0 ∀τ ∈ H

We define a second helping function:

g(y) =
η(i/y)

η(iy)
√
y

for y > 0

which fulfills the following equation

−i
g′(y)

g(y)
= f(i/y)

i

(iy)2
− f(iy)− 1

2iy
= 0

From this it follows in particular that g′(y) = 0 for all y > 0 and so g is constant
there i.e.

η(i/y) = γ
√
yη(iy)

with γ constant. To find this constant we plug in y = 1 and find γ = 1 and
therefore

η(i/y) =
√
yη(iy) for y > 0 (6)

We now have two holomorphic functions that agree on y > 0 which has an
accumulation point in H. Therefore, by the identity theorem, they agree on all
of H and we get the desired equality. □

From this, we can deduce a transformation property of the Dedekind-Eta func-
tion under the action of the group Γ = SL2(Z), which we will state without
proof.
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Lemma 2.7 For

(
a b
c d

)
∈ Γ we have the following transformation-law:

η

(
aτ + b

cτ + d

)
= νη

(
a b
c d

)√
cτ + d η(τ)

Where νη

(
a b
c d

)
is a 24th root of unity.

It is thus natural to call η a modular form of weight 1/2.
Before continuing with the product expansion of the Ramanujan-Delta function,
we will see an application of the transformation law to the partition-function,
using the relation between the two that we found earlier. In particular, we will
use the transformation-law to prove an asymptotic behaviour of the generating
function of the partition function.

Lemma 2.8 We have the following asymptotic behaviour of the generating func-
tion of the partition function:

f(q) ∼
√
−τi exp

(
πi

12τ

)
for τ → 0, τ ∈ H

Proof Recall that we can write

f(q) =
q1/24

η(τ)
:= g(τ) (7)

We replace τ with −1/τ and get

g(−1/τ)exp

(
πi

12τ

)
=

1

η(−1/τ)
=

1

η(τ)
√
τ/i

Where in the last step we have used the transformation property of the Dedekind-
Eta function. Combining this with the expression of the generating function
Eq. (7), we get:

f(q) = g(τ) = q1/24g(−1/τ)
√

τ/i exp

(
πi

12τ

)
Since the first two terms approach 1 as τ → 0 we get the final desired result.□

Finally, we want to use the transformation law of the Dedekind-Eta function to
prove the product expansion of the Ramanujan-Delta function.

Corollary 2.9 We have the following product expansion of the Ramanujan-
Delta function

∆ = η24 = q

∞∏
n=1

(1− qn)24
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Proof Let T and S denote the transformations τ → τ + 1 and τ → −1/τ
respectively. From Lemma 2.6 we know

η24|12T = (1)−12e48πi/24η24(τ) = η24

η24|12S = τ−12(−iτ)12η24 = η24

Since these two generate SL2(Z), we get η24 ∈ M12. If we look at the expansion
of the product, we can see that it has no constant term, i.e. aη24(0) = 0 and
we therefore have η24 ∈ S12. Due to the classification of cusp forms we saw
last week, this means that η24 ∈ C∆. The coefficient of η24 at q is 1 and so,
comparing to the coefficients of the Ramanujan-Delta function and using the
classification, we get η24 = ∆ □
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