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1 Modular forms for congruence subgroups

1.1 Congruence subgroups: Definition and basic facts

Definition. The principle congruence group of level N is the subgroup

Γ(N) :=

{(
a b
c d

)
∈ Γ :

(
a b
c d

)
≡
(
1 0
0 1

)
(mod N)

}
≤ Γ := SL2(Z).

Remark 1. Γ(N) is simply the kernel of Γ → SL2(Z/NZ) because M ∈
Γ(N) ⇔ M ≡ id2 (mod N).

Definition. A subgroup Λ ≤ Γ is called a congruence subgroup of level N if it
contains the principle congruence group of level N:

Γ(N) ≤ Λ ≤ Γ

Example 1. Two important examples are

Γ1(N) :=

{(
a b
c d

)
∈ Γ :

(
a b
c d

)
≡
(
1 ∗
0 1

)
(mod N)

}
and

Γ0(N) :=

{(
a b
c d

)
∈ Γ :

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
(mod N)

}
.

Observe that we have

Γ(N) ≤ Γ1(N) ≤ Γ0(N) ≤ Γ.

Lemma 1.1. A congruence subgroup Λ ≤ Γ has finite index in Γ.

Proof. As we have Γ(N) ≤ Λ we have a sujection Γ/Γ(N) ↠ Γ/Λ. Hence, in
particular

|Γ/Λ| ≤ |Γ/Γ(N)| = |Γ/ ker(Γ → SL2(Z/NZ))|
= |im(Γ → SL2(Z/NZ))|
≤ |SL2(Z/NZ))| ≤ N4 < ∞
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Remark 2. The question of whether every subgroup of finite index is in fact a
congruence subgroup is one that has and still does attract a lot of attention. It
is the so-called congruence subgroup problem. The answer of SL2(Z) is actually
negative. However, for higher dimensions and the rings of integers of other
number fields the answer also can be positive.1

Example 2. One can explicitly calculate these finite indices. Some examples
are

see also Exercise 1.2.3 on page 21 of [2].

1.2 Cusps

We again can let the matrices act on numbers – here we take the rationals and
some symbol for infinite by Möbius transformations, i.e., for α

β ∈ Q ∪ {∞} and(
a b
c d

)
∈ Γ we set (

a b
c d

)
α

β
=

aα
β + b

cαβ + d
=

aα+ bβ

cα+ dβ

where we use the convention ±1
0 = ∞.

Definition. For Λ ≤ Γ a congruence subgroup, we call the elements of Q ∪ {∞}⧸∼Λ,
i.e., the orbits of Q ∪∞ under Λ, the cusps of Λ.

Lemma 1.2. For Λ ≤ Γ a congruence subgroup we have
∣∣∣Q ∪ {∞}⧸∼Λ

∣∣∣ < ∞,

i.e., every congruence subgroup has only finitely many cusps.

Proof. For every element a
c ∈ Q∪ {∞} not both a and c can be zero. Thus, we

can extend

(
a
c

)
to a matrix in SL(2,Z). Observe also that(

a u
c w

)
∞ =

(
a u
c w

)
1

0
=

a · 1 + 0

c · 1 + 0
=

a

c

Hence, every cusp can be written in the form M∞ for some M ∈ Γ. Note
moreover, that if M1 ∼Λ M2, i.e., if ∃G ∈ Λ : GM1 = M2 then we also have
that ∃G ∈ Λ : GM1∞ = M2∞ ⇔ M1∞ ∼Λ M2∞. But we already know by
Lemma 1.1 that there are only finitely many cosets of Λ in Γ. Thus, there can
also only be finitely many orbits under the action of Λ.

1The interested reader may also consult
https://encyclopediaofmath.org/wiki/Congruence_subgroup_problem or directly https://

doi.org/10.1007/BF02684586.
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In fact one even can explicitly find the number of cusps for given groups.

Example 3.

1. Γ has only one cusp. This is in fact equivalent to SL2(Z) acting transitively
on Q∪{∞}. This is so due to Bézout’s theorem.2 Caution: SL2(Z) does
not act transitively on H but obviously H contains elements that Q∪{∞}
does not so this is no contradiction.

2. Γ0(p) for p prime has exactly two cusps. One can see this by applying an
element of

(
a b
pγ d

)
∈ Γ0(p), i.e., p ∤ a, d, to two easy points, e.g. 0 and ∞:(

a b
pγ d

)
0 =

a0 + b

pγ0 + d
=

b

d(
a b
pγ d

)
∞ =

a∞+ b

pγ∞+ d
=

a

pγ
.

We see that the orbit of 0 are all rationals whose denominator is not
divisible by p (and so in particular can never be zero) and the orbit of
∞ is formed by all rationals whose denominator is divisible by p but not
their numerator (and so it is in particular never zero). This clearly is a
partition of the rationals and so we indeed have found two distinct orbits,
which are the only orbits.

1.3 Modular forms for congruence subgroups

We want to enlarge the space of modular forms we are considering. Thus, we
have to weaken the conditions for being a modular form. The first condition
will stay the same, for the second we will simply replace the whole group by our
favourite congruence subgroup Λ and adapt condition 3 to the special choice of
subgroup we made.

Definition. Let Λ be a congruence subgroup of level N . A function f : H → C
is called a modular form of weight k for Λ if

1. f is holomorphic on H

2. ∀L ∈ Λ : f |kL = f

3. For every G ∈ Γ f |kG has a Fourier series expansion fo the form

(f |kG)(τ) =

∞∑
n=0

af,G(n)q
n
N

for some coefficients af,G ∈ C.

If we have af,G(0) = 0 for all G ∈ Γ we say that f is a cusp form.
For the vector space of all weight k modular forms for a congruence subgroup
Λ ≤ Γ we write Mk(Λ) and analogously for the space of cusp forms for Λ we
write Sk(Λ).

2For a spelled out discussion let me refer you to the second part of https://math.

stackexchange.com/a/3589564
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Remark 3. Two remarks to the third condition:

• Having such a Fourier expansion is equivalent to f |kG remaining bounded
for Im(τ) → ∞ for all G ∈ Γ.

• If we have G1 ∼Λ G2 for G1, G2 ∈ Γ then we also have f |kG1 = f |kG2

because as this is a well defined group action we have (f |k(LG1))(z) =
((f |kL)|kG1)(z) and by the second condition we have f |kL = f for L ∈
Λ. Hence, it also suffices to check the third condition for a system of
representatives of Λ⧹Γ – of which we already know that it is finite.

Definition. Given a
c ∈ Q ∪ {∞} we already saw in the proof of Lemma 1.2

that we can write G∞ = a
c for some G ∈ Γ. We then call the Fourier expansion

of f |kG the expansion of f at the cusp a
c .

Remark 4. This is not well-defined, i.e., there is no unique Fourier expansion
associated to a cusp a

c : If we have M ∈ Γ such that M∞ = a
c then also

±M
(
1 j
0 1

)
∞ = a

c for j ∈ Z. On the other hand, a quick calculation (it’s really
quick, I bet you nearly can do it in your head) shows that(

f |k
(
G

(
1 j
0 1

)))
(z) = (±1)k (f |kG) (z + j).

So if (f |kG) (z) =
∑∞

n=0 af,G(n)
(
e

2πiz
N

)n
is a Fourier expansion of f |kM , i.e.,

a Fourier expansion of f at the cusp M∞ = a
c , then ∀j ∈ Z also(

f |k
(
±G

(
1 j
0 1

)))
(z) = (±1)k

∞∑
n=0

af,G(n)
(
e

2πi(z+j)
N

)n
=

∞∑
n=0

(±1)kaf,G(n)e
2πi
N jn

(
e

2πiz
N

)n
=

∞∑
n=0

ãf,G(n)
(
e

2πiz
N

)n
is a just as valid expansion of f at the cusp M

(
1 j
0 1

)
∞ = a

c . (Compare also
with [2] page 17 et seq.)

Lemma 1.3. For every f ∈ Mk(Γ) and every N ∈ N we have f(Nz) ∈
Mk(Γ0(N)).

Proof. That f(Nz) is still holomorphic and has no negative Fourier coefficients is
rather obvious. Hence, we only have to test whether f(Nz) transforms correctly
under the weight k action of elements in Γ0(N) namely not at all. Denote
MN : z 7→ Nz and let L =

(
a b
c d

)
∈ Γ0(N) be arbitrary then ∃γ ∈ Z : c = Nγ

and so

((f ◦MN )|kL) (z) = (cz + d)−k(f ◦MN )

(
az + b

cz + d

)
= (γ(Nz) + d)−kf

(
a(Nz) +Nb

γ(Nz) + d

)
=

(
f |k
(
a Nb
γ d

))
(Nz)
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Now since ad − γNb = ad − bc = 1 we have
(
a Nb
γ d

)
∈ SL2(Z) and so because

f ∈ Mk we get (
f |k
(
a Nb
γ d

))
(Nz) = f(Nz) = (f ◦MN )(z).

Example 4.

1. For N ∈ N and 4 ≤ k ∈ Z an example of a modular form of weight k for
Γ0(N) is the Eisensteinreihe

Ek,Γ0(N)(z) :=
∑

[M ] ∈ Γ∞⧹Γ0(N)

(1|kM) (z)

for Γ∞ the subgroup generated by the matrix ( 1 1
0 1 ), i.e., Γ∞ := {± ( 1 1

0 1 )
n
:

n ∈ Z}. Compare this also with the usual normalized Eisenstein series. We
actually already proved in a previous talk a very analogous representation
for those (see also [1], Bemerkung 2.3.7.).

2. What about weight 2? As we defined the above very analogous to how
we defined the usual Eisenstein series and for them we had a fuss with
the weight 2 case, one would suspect that this case also now demands
a special treatment. Remember that we had two types of normalized
Eisenstein series of weight 2: One, we called it E∗

2 (z), was a modular form
of weight 2 but not holomorphic and the other one, we called it E2(z) was
holomorphic but not a modular form. Maybe we can make us of some of
the work we already have put in. For example by the proof of the above
lemma 1.3 we would have E∗

2 (Nz) transforms correctly under the weight
2 action of Γ0(N). However, it of course still would not be holomorphic.
But we have by the definition of E∗

2 :

E∗
2 (Nz) = E2(Nz)− 3

πIm(Nz)
= E2(Nz)− 3

NπIm(z)
.

So maybe NE∗
2 (Nz)+ 3

πIm(z) could work? But no, that does not transform

correctly anymore. How about

E∗
2 (z)−NE∗

2 (Nz) = E2(z)−
3

πIm(z)
−NE2(Nz) +N

3

NπIm(z)

= E2(z)−NE2(Nz) ?

This is transforms correctly under the weight 2 action of Γ0(N) as it is
a linear combination of E∗

2 and it is holomorphic with the right Fourier
expansion as it is a linear combination of E2. Hence, we define

E2,Γ0(N)(z) := E2(z)−NE2(Nz) ∈ M2(Γ0(N)).

3. We want to add as a little side remark, that in fact modular forms to Γ0(N)
can be written as a product of powers of the Dedekind eta function. For
example S2(Γ0(11)) = ⟨η2(z)η2(11z)⟩. But unfortunately, we do not have
time nor space to follow this interesting path further down.
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1.4 Lifting modular forms for congruence subgroups to
modular forms for all of SL2(Z)

The goal of this section is just as the title says: Given a modular form to a
congruence subgroup we want to associated a modular for for all of SL2(Z) to
it.

Definition. For a congruence subgroup Λ ≤ SL2(Z) we define for f ∈ Mk(Λ)

tr(f) :=
∑

[M ] ∈ Λ⧹Γ
f |kM (1)

and

π(f) :=
∏

[M ] ∈ Λ⧹Γ
f |kM.

Eq. 1 is also called the trace of f .

Remark 5. Observe that the sum and product are actually just taken over a
system of representatives of Λ⧹Γ. As we already have show that such as system
is always finite (because Λ has finite index), we sort of can think of the above
sum and product as being finite ones.

Proposition 1.4. Let Λ ≤ Γ be a congruence subgroup with index ℓ := [Γ : Λ].
Then we have ∀f ∈ M |k(Λ) :

tr(f) ∈ M |k π(f) ∈ M |kℓ

Proof. As discussed the sum and the product are basically finite and thus, being
holomorphic and having such a Fourier series expansion are preserved. So it is
only left to show the invariance under the weight k action of Λ. So let R be
a set of representatives for Λ⧹Γ then ∀G ∈ Γ also R′ := {MG : M ∈ R} is a
system of representatives for Λ⧹Γ and so we have ∀G ∈ Γ using the group action
property and the linearity of the action

tr(f)|kG =

 ∑
[M ] ∈ Λ⧹Γ

f |kM

∣∣∣∣∣∣
k

G

=
∑

[M ] ∈ Λ⧹Γ
(f |kM)|kG

=
∑

[M ] ∈ Λ⧹Γ
f |k(MG)

=
∑

[M ] ∈R

f |k(MG)

=
∑

[N ] ∈R′

f |kN = tr(f).
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And similarly for π(f)

π(f)|kℓG =

 ∏
[M ] ∈ Λ⧹Γ

f |kM

∣∣∣∣∣∣
kℓ

G

=
∏

[M ] ∈R

(f |kM)|kG

=
∏

[M ] ∈R

f |k(MG)

=
∏

[N ] ∈R′

f |kN = tr(f).

Example 5.

• For k ≥ 4 we have tr(Ek,Γ0(N)) = Ek. The difference in the definition
of these to series was that once we took a system of representatives for

Γ∞
⧹Γ0(N) and once for Γ∞

⧹Γ. But for the trace we exactly sum over a

system of representatives for Γ0(N)⧹Γ, hence, we get the above identity.

• For k = 2 we get tr(E2,Γ0(N)) = 0 as by the above proposition 1.4 we have
tr(E2,Γ0(N)) ∈ M2 = {0}.

1.5 Sturm’s bound on the dimension of spaces of modular
forms

In this section we will estimate the dimension of Mk(Λ). Recall that we already
determined the dimension of Mk (Thm 2.5.6 in [1])

dim(Mk) =


0 if k < 0 or k odd,

1 if k = 0,

⌊ k
12⌋ if k ≡ 2 (mod 12),

⌊ k
12⌋+ 1 if k ̸≡ 2 (mod 12).

We will show the following: If Λ ⊆ Γ is a congruence subgroup of level N
and index ℓ := [Γ : Λ]. Then for k ≥ 0 it holds that

dim(Mk(Λ)) ≤ ⌊klN
12

⌋+ 1.

This is called the Sturm’s bound. Note that if Λ = Γ then N = ℓ = 1 and the
inequality holds by Thm 2.5.6 in [1].

The main result needed to prove Sturm’s bound is the following:

Proposition 1.5. Let Λ be a congruence group of level N of index l = [Γ : Λ]
and k ≥ 0. Let L ∈ Γ and f ∈ Mk(Λ) with fourier series

f |kL =

∞∑
n=0

af,L(n)q
n/N .
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From

af,L(n) = 0 for 0 ≤ n ≤ kℓN

12

it follows that f = 0

Proof. For g = π(f) ∈ Mkℓ it holds that ag(n) = 0 for 0 ≤ n ≤ kℓ
12 . Hence,

ord∞(g) > kℓ
12 . Recall that if g ̸= 0,

ord∞(g) +
1

2
ordi(g) +

1

3
ordρ(g) +

∑
τ∈Γ\H

τ ̸=i,ρ mod Γ

ordτ (g) =
kℓ

12

where ρ = eπi/3 by Thm. 2.3.1 in [1]. Since all the terms in this equation are
nonnegative, we arrive at a contradiction. Hence,

π(f) =
∏

M∈Λ\Γ

f |kM = 0.

The identity theorem tells us that for an M ∈ Λ\Γ, f |kM = 0. And therefore,

f = f |kMM−1 = (f |kM)|kM−1 = 0.

Corollary 1.6 (Sturm’s bound). Using the notation from last theorem it holds
that

dimMk(Λ) ≤
⌊
kℓN

12

⌋
+ 1

Proof. Let f1, . . . , fr ∈ Mk(Λ) with r >
⌊
kℓN
12

⌋
+ 1. By choosing coefficients

α1, . . . , αr ∈ C, not all zero, appropriately, we can achieve that in
∑r

i=1 αifi all
fourier coefficients of index 0 ≤ n ≤ kℓN

12 vanish. It follows that
∑r

i=1 αifi = 0
which means that fi are linearly dependent.

Example 6. Let Λ = Γ0(2). The index of Γ0(2) in Γ is ℓ = [Γ : Γ0(2)] = 3 and
the level is N = 2. According to corollary 1.6,

dimM2(Γ0(2)) ≤ ⌊2 · 3 · 2
12

⌋+ 1 = 2

Moreover, dimS2(Γ0(2)) = 0 because if f ∈ S2(Λ) we get that π(f) ∈ S6 ⇒ f =
0. One can show that dimM2(Γ0(2)) = 1

For k ≥ 2 there are explicit formulas for the dimension of Mk(Λ) and of
Sk(Λ). The proof uses the Riemann-Roch theorem.

Proposition 1.7. Let Λ be a congruence subgroup of level N . The following
holds:

1. If k < 0, Mk(Λ) = {0}

2. M0(Λ) = C
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Proof. Let f ∈ Mk(Λ) and ℓ = [Γ : Λ]. It holds that π(f) ∈ Mkl. From talk
5 about the modular group and modular forms (Thm 5.7) we know that for
k < 0 it holds that Mkl = 0. Hence, g = 0 and by the same reasoning as in
proposition 1.5 f = 0. If k = 0 Sturm’s bound tells us that dim(M0(Λ)) ≤ 1.
All constant functions are modular forms of weight 0 for Γ and so C ⊆ M0(Λ)
and so, M0(Λ) = C.

2 Jacobi theta function

In this section we discuss the properties of the Jacobi theta function and we will
show that ϑ4 ∈ M2(Γ0(4)).

Definition. The series

ϑ(τ) =
∑
n∈Z

qn
2

= 1 + 2q + 2q4 + 2q9 + . . .

is called the Jacobi theta function. Here we use q = e2πiτ for brevity.

Claim. The Jacobi theta function is holomorphic on H.

Proof. Note that on {τ ∈ H | Im(τ) ≥ c} for some fixed c > 0,
∑

n∈Z |qn
2 | =∑

n∈Z e
−2πℑ(τ)n2 ≤

∑
n∈Z e

−2πcn2

. So on {τ ∈ H | Im(τ) ≥ c} ϑ converges
absolutely uniformly. This shows that ϑ is holomorphic on H.

Claim. Moreover, ϑ satisfies the transformation properties

ϑ(τ + 1) = ϑ(τ) (2)

ϑ(τ) + ϑ(τ +
1

2
) = 2ϑ(4τ). (3)

Proof. Equation (2) is a consequence of q = e2πiτ = e2πi(τ+1).
For equation (3) note that

ϑ(τ +
1

2
) =

∑
n∈Z

(e2πi(τ+
1
2 ))n

2

=
∑
n∈Z

(−q)n
2

where q = e2πiτ

⇒ ϑ(τ) + ϑ(τ +
1

2
) =

∑
n∈Z

qn
2

+ (−q)n
2

= 2
∑
n∈Z

q(2n)
2

= 2ϑ(4τ).

Actually, we would hope that there might be a k ∈ N such that ϑ even is a
modular form of weight k. For that we have to check if

1. ϑ is holomorphic on H
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2. ϑ(τ + 1) = ϑ(τ)

3. ϑ(− 1
τ ) = τkϑ(τ)

4. ϑ can be written as a Fourier series of the form ϑ(τ) =
∑∞

n=0 aϑ(n)q
n

with q = e2πiτ .

1, 2 and 4 are clearly satisfied. Let’s check 3:

Proposition 2.1. For all τ ∈ H it holds that

ϑ(−1

τ
) =

√
−iτ/2ϑ(τ/4).

Equivalently,

ϑ(− 1

4τ
) =

√
−2iτϑ(τ) (4)

for all τ ∈ H.

So the answer to whether ϑ is a modular form, will unfortunately be negative.
For the proof of this Proposition we use the Poisson summation formula that
might be familiar to you from analysis 4. We will not give a proof here.

Lemma 2.2 (Poisson summation formula). Take a function f ∈ S(R) in the
Schwartz space. It holds that∑

n∈Z
f(n) =

∑
k∈Z

f̂(k).

Recall that a Schwartz function is a smooth function f : R → C such that

sup

∣∣∣∣xα dβ

dxβ
f(x)

∣∣∣∣ < ∞

for all α, β ∈ N0, i.e., f and all it’s derivatives decay faster than the inverse of
any polynomial.

Example 7. One can check that e−πx2

is an example of a Schwartz function

and the fourier transform is given by ê−πx2 = e−πx2

.

Proof of proposition 2.1. By the identity theorem it’s enough to show 2.1 in the
case that τ = it/2 for t > 0. (This set possesses an accumulation point in H).
We need to show∑

n∈Z
e−πn2/t = ϑ(

i

2t
)

!
=

√
−2i

it

2
ϑ(

it

2
) =

√
t
∑
n∈Z

e−πn2t

for t > 0. We will apply the Poisson summation formula for ft(x) = e−πx2/t. A
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calculation shows that f̂t(n) =
√
tf1/t(n).

f̂t(n) =

∫
R
e−πx2/te−2πinxdx

=
√
t

∫
R
e−πx2

e−2πin
√
txdx

=
√
t

∫
R
e−πx2

e−2πin
√
txdx by substituting x by x/

√
t

=
√
tê−πx2(

√
tn)

=
√
te−πn2t (because ê−πx2 = e−πx2

)

=
√
tf1/t(n).

Thus, by the Poisson summation formula we get that∑
n∈Z

e−πn2/t =
∑
n∈Z

ft(n) =
∑
n∈Z

f̂t(n) =
∑
n∈Z

√
tf1/t(n) =

√
t
∑
n∈Z

e−πn2t.

This is what we wanted to show.

Proposition 2.1 shows that ϑ(− 1
τ ) ̸= τkϑ(τ) and ϑ ̸∈ Mk. However, the

following proposition holds:

Proposition 2.3. It holds that ϑ4 ∈ M2(Γ0(4)).

Proof. We need to check that

1. ϑ4 is holomorphic on H,

2. ϑ4|2M = ϑ4 for all M ∈ Γ0(4),

3. For each L ∈ Γ, the Fourier expansion of ϑ4|2L is of the form

(ϑ4|2L)(τ) =
∞∑

n=0

aL(n)q
n/N .

Ad item 1: We already know that ϑ is holomorphic on H. Ad item 2: One can
show that Γ0(4) is generated by the matrices

−I =

(
−1 0
0 −1

)
, T =

(
1 1
0 1

)
, U =

(
−1 0
4 −1

)
.

We already showed that ϑ(τ + 1) = ϑ(τ) and so ϑ transforms correctly under
T . We can also check that ϑ4 transforms correctly under −I:

ϑ|2(−I) = (−1)2ϑ

(
−τ

−1

)
= ϑ(τ).
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For U we use the Jacobi transformation formula:

ϑ4(Uτ) = ϑ4

(
− τ

4τ − 1

)
= ϑ4

(
− 1

4(1− 1
4τ )

)

=

(√
−2i(1− 1

4τ
)

)4

ϑ4

(
1− 1

4τ

)

=

(√
−2i(1− 1

4τ
)

)4

ϑ4

(
− 1

4τ

)

=

(√
−2i(1− 1

4τ
)

)4

(
√
−2iτ)4ϑ4(τ)

= (−4τ + 1)2ϑ4(τ) = j(U, τ)2ϑ4(τ).

Ad item 3: It is enough to show that f is holomorphic at the cusps of Γ0(4).
Γ0(4) has the three cusps 0, 1

2 ,∞. By definition, ϑ4 is holomorphic at ∞. For
the other cusps note that

S∞ = 0, L∞ =

(
1 0
2 1

)
∞ = 1/2.

We apply the Jacobi transformation to get that

ϑ4|2S = τ−2ϑ4

(
− 1

4 τ
4

)
= τ−2

(√
−2i

τ

4

)4

ϑ4
(τ
4

)
= −1

4
ϑ4
(τ
4

)
.

and

ϑ4|2L = (2τ + 1)−2ϑ4

(
τ

2τ + 1

)
= (2τ + 1)−2ϑ4

(
− 1

4(− 1
2 − 1

4τ )

)
= (2τ + 1)−2

(√
2i(

1

2
+

1

4τ

)
ϑ4

(
−1

2
− 1

4τ

)
= − 1

4τ2
ϑ4

(
−1

2
− 1

4τ

)
.

From the Jacobi transformation and equation (3) we get that

ϑ

(
−1

2
− 1

4τ

)
=

√
−2iτ

∑
n∈Z

e2πi(n+1/2)2τ .

3 Four squares theorem

In this section we want to demonstrate how effortlessly a cute theorem – that
was proven by Lagrange in the 18th century – can be proven, using the theory
we have developed so far.

Theorem 3.1. Let n ∈ N be arbitrary. Then there exist x1, x2, x3, x4 ∈ Z such
that

n = x2
1 + x2

2 + x2
3 + x2

4 ,

i.e., every natural number can be written as the sum of four square.
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Proof. For n ∈ N define the representation number r4(n) := |{(x1, x2, x3, x4) ∈
Z4 : n = x2

1 + x2
2 + x2

3 + x2
4}|, where r stands for representation and 4 for the

number of squares. Now if we can prove that r4(n) is positive for every n ∈ N
then we have proven the first part (i.e., the existence part) of the theorem. As
we took all this time to study the theta function we now also would like to put
it to use. Indeed we can, as we have

ϑ4(τ) =

(∑
n∈Z

qn
2

)4

=
∑

x1,x2,x3,x4∈Z
qx

2
1+x2

2+x2
3+x2

4 =

∞∑
n=0

r4(n)q
n.

So if we were to know the Fourier coefficients for every n ∈ N then we would be
done. Then what do we know about ϑ4? Well, by calculating a huge product
(1+2q+2q4 +2q9 + . . . )4 we could find the coefficient for every n. But how do
we use this to show that all of them are non-zero, without calculating infinitely
many of them? Well, we also have see in proposition 2.3 that ϑ4 ∈ M2(Γ0(4))
– and actually that is all we need to find an explicit formula for the Fourier
coefficients of ϑ4: One can show that E2(z) − 2E2(2z) and E2(z) − 4E2(4z)
form a basis for M2(Γ0(4)), see [3]. Hence, also ϑ4 is a linear combination of
these two functions – and we know the Fourier expansion of those two functions

as we already have seen that E2(z) = 1− 24
∑∞

n=1

(∑
d|n d

)
qn.

So all that is left to do, is to find the linear combination of these two functions
which is equal to ϑ4. To cut a long story (or search) short we will prove the
following claim:

Claim. ϑ4(τ) = 1
3 (4E2(4τ)− E2(τ))

Proof of Claim. To prove this claim we can compare the Fourier coefficients of
both sides. Luckily, proposition 1.5 allows us to reduce this to only comparing
the the first few initial coefficients. More precisely, we instantiate proposition 1.5
with Λ = Γ0(4), L = I2, k = 2, N = 4 and as we can calculate using the formula
in example 2: ℓ = [Γ : Γ0(4)] = 6. Hence, we only need to check the first
2·6·4
12 = 4 coefficients. This can be done explicitly by hand (the first four Fourier

coefficients are 1, 8, 24 and 32). Claim.

The n-th Fourier coefficient of 1
3 (4E2(4τ)− E2(τ)) is 8

∑
{d|n, 4∤d} d as a direct

calculation shows, hence in particular it is always positive (as 1 always is part
of the sum). So, while proving the existence, on the way we also have proved
a formula for the amount of ways a natural number can be written in such a
way.

Corollary 3.2. As a corollary of the proof we even obtain a formula for the
number of ways in which a given natural number can be written as sums of four
squares:

|{(x1, x2, x3, x4) ∈ Z4 : n = x2
1 + x2

2 + x2
3 + x2

4}| = 8
∑
d|n
4∤d

d .

We can conclude not only that every natural number has an expansion as the
sum of four squares but in fact it even has at least eight such expansions –
which is also what one should have suspected, because if we know that n has

13



an expansion n = x2
1 + x2

2 + x2
3 + x2

4 and all the xi are nonzero, then for every
i we can replace xi with −xi. This will give us in total eight ways of writing n
as a sum of four squares.
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