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In this talk, we will begin by introducing the Petersson inner product of two
modular formsâone of them being a cusp form. We’ll explore its basic properties
and show that the Eisenstein series is orthogonal to cusp forms under this inner
product. Following this, we will define the Poincaré series and prove that they
form a basis for the space of cusp forms. Finally, we’ll conclude with an overview
of Hecke operators.

Notation and Reminders

Here are some essential definitions and results from the previous talks that’ll be
relevant for this talk:

Definition 0.1. The upper half-plane is, denoted H, is the set {z ∈ C|ℑ(z) >
0}.

Definition 0.2. Let k ∈ Z. Mk denotes the vector space of all modular forms
of weight k and Sk denotes the vector space of all modular forms of weight k.

Definition 0.3. The group Γ = SL2(Z) = {M ∈ Z2×2 : det(M) = 1} is the full
modular group.

Definition 0.4. The standard fundamental domain, denoted F , for Γ is the set

F =

{
z ∈ H

∣∣∣∣ |z| ≥ 1, −1

2
≤ ℜ(z) ≤ 1

2

}
.

Lemma 0.1. If f ∈ Mk and g ∈ Ml, then fg ∈ Mk+l. If f or g is a cusp form,
then fg is also a cusp form.

Definition 0.5. Let k ≥ 4 be even. The Eisenstein series is defined as

Gk(z) =
∑

(m,n)∈Z2

(m,n) ̸=(0,0)

(mz + n)−k

for any z ∈ H.

Definition 0.6. Let k ∈ Z. For M = ( a b
b c ) ∈ Γ and f : H → C, the

weight-k slash operator is defined as

(f |kM)(z) = j(M, z)−kf(Mz)

for any z ∈ H. Here, j(M, z) = cz + d denotes the automorphic factor.
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Definition 0.7. Let k ∈ Z. A function f : H → C is a modular form of weight
k for Γ if

1. f is holomorphic on H.

2. For any M ∈ Γ: (f |kM) = f .

3. f has a Fourier expansion of the form

f(z) =

∞∑
n=0

af (n)q
n

with q = e2πiz.

Remark. Writing z = x+ iy ∈ H, the coefficients an(f) are defined as

an(f) =

∫ 1

0

f(x+ iy)e−2πin(x+iy)dx

where y > 0 can be arbitrarily chosen.

Definition 0.8. Let k ≥ 4 be even. The normalized Eisenstein series is defined
as

Ek(z) =
Gk(z)

2ζ(k)

for any z ∈ H. Here, ζ denotes the Riemann zeta function.

Lemma 0.2. Let k ≥ 4 be even. The normalized Eisenstein series can be written
as

Ek =
∑

M∈Γ∞\Γ

1|kM

Here, Γ∞ denotes the subgroup {±Tn|n ∈ Z}, where T = ( 1 1
0 1 ) ∈ Γ.

The Petersson Inner Product

To define the Petersson inner product, we will employ a measure known as the
hyperbolic measure. Below is its definition:

Definition 0.9. On the upper half plane H, we define the so-called hyperbolic
measure. For z = x+ iy ∈ H:

dµ(z) =
dxdy

y2
.

where dxdy denotes the two-dimensional Lebesgue measure on C.

Lemma 0.3. dµ is invariant under SL2(R), i.e. for M ∈ SL2(R): dµ(Mz) =
dµ(z).
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Proof. Let z = x + iy ∈ H and M = ( a b
c d ) ∈ SL2(R) arbitrary. Then, we

compute the following:

Mz =
az + b

cz + d
=

a(x+ iy) + b

c(x+ iy) + d
= · · · = (ad+ bc)x+ bd+ ac(x2 + y2) + iy

c2(x2 + y2) + 2cdx+ d2

(0.1)

=: u(x, y) + iv(x, y)

We remark that since x, y, u, v ∈ R, we may use the well-known change of
variables formula in R2 and write: dudv = |det(J)|dxdy where J is defined to
be the Jacobian matrix

J =

(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
Using the above equation (0.1), we compute det(J) = 1

y2 . Since z = x+ iy ∈ H,

y > 0 and, consequently, |det(J)| = | 1
y2 | = 1

y2 . Hence, we conclude: dudv =
dxdy
y2 .

Having defined the hyperbolic measure, we now proceed to define the hyper-
bolic volume.

Definition 0.10. The hyperbolic volume of a subset A ⊆ H is

vol(A) =

∫
A

dµ(z).

Theorem 0.4. The standard fundamental domain F for Γ has the hyperbolic
volume vol(F) = π

3 . It also holds that vol(F) = vol(F◦) = π
3 .

Proof. A direct computation shows:

vol(F) =

∫ 1
2

− 1
2

∫ ∞

√
1−x2

1

y2
dy dx =

∫ 1
2

− 1
2

1√
1− x2

dx = 2arcsin
1

2
=

π

3
.

After defining the hyperbolic measure and volume, we can proceed with the
definiton of the Petersson inner product.

Definition 0.11. Let f, g ∈ Mk be such that f ∈ Sk or g ∈ Sk.
The Petersson inner product of f and g is defined as

⟨f, g⟩ :=
∫
F
f(z)g(z)ℑ(z)kdµ(z)

Next step is showing that this definiton is well-defined, i.e. the Petersson
inner product is indeed an inner product.

Theorem 0.5. Let f, g ∈ Mk be such that f ∈ Sk or g ∈ Sk. Then the Petersson
inner product ⟨f, g⟩ converges absolutely and has the following properties:

1. ⟨f, g⟩ is linear in f and conjugate linear in g;

2. ⟨f, g⟩ = ⟨g, f⟩;
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3. ⟨f, f⟩ ≥ 0 for f ∈ Sk, and ⟨f, f⟩ = 0 if and only if f = 0.

In particular, ⟨f, g⟩ defines an inner product, i.e. a positive definite Hermitian
sesquilinear form.

Before we begin proving the theorem, let’s recall an important result dis-
cussed in a previous talk: As we’ve seen in the proof of the Hecke-Bound theo-
rem, if f ∈ Sk, then the function h defined as h(z) = Im(z)k/2 |f(z)| for z ∈ H
is bounded in the upper half-plane H. This will be useful below.

Proof. Since f or g ∈ Sk, fg ∈ S2k by Lemma 0.1. Since fg ∈ S2k, the function
h defined as h(z) = ℑ(z)k |f(z)g(z)| for z ∈ H is bounded in H. We’ve shown
in Theorem 0.3 that vol(F) = π

3 . In particular, F has finite volume. Then, it
follows that ⟨f, g⟩ is absolutely convergent since∫

F
|f(z)g(z)ℑ(z)k| dµ(z) =

∫
F
ℑ(z)k|f(z)g(z)| dµ(z)

=

∫
F
ℑ(z)k|f(z)g(z)| dµ(z)

=

∫
F
h(z) dµ(z)

converges.
Property 1 follows easily from the definition: Indeed, for any f1, f2 ∈ Mk

and a ∈ R, we have:

⟨f1 + af2, g⟩ :=
∫
F
(f1(z) + af2(z))g(z)ℑ(z)k dµ(z)

=

∫
F
f1(z)g(z)ℑ(z)k dµ(z) + a

∫
F
f2(z)g(z)ℑ(z)k dµ(z)

= ⟨f1.g⟩+ a⟨f2, g⟩

Likewise, for any g1, g2 ∈ Mk and a ∈ R:

⟨f, g1 + ag2⟩ =
∫
F
f(z)(g1(z) + ag2(z))ℑ(z)k dµ(z)

=

∫
F
f(z)g1(z)ℑ(z)k dµ(z) + a

∫
F
f(z)g2(z)ℑ(z)k dµ(z)

= ⟨f, g1⟩+ a⟨f, g2⟩.

To show property 2, we compute:

⟨f, g⟩ =
∫
F
f(z)g(z)ℑ(z)kdµ(z) =

∫
F
f(z)g(z)ℑ(z)kdµ(z) = ⟨g, f⟩.

Similarly for property 3,

⟨f, f⟩ =
∫
F
f(z)f(z)ℑ(z)kdµ(z) =

∫
F
|f(z)|2 ℑ(z)kdµ(z) ≥ 0

since both |f(z)|2 and ℑ(z)k are non-negative.
If f = 0, ⟨f, f⟩ = 0 clearly holds. If ⟨f, f⟩ = 0, it must necessarily hold that

|f(z)|2 ℑ(z)k = 0 which is the case if and only if |f(z)|2 = 0, because ℑ(z) > 0
for ∀z ∈ H. Hence, f = 0. This concludes the proof of property 3.
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Remark. If both f and g are required to be cusp forms of weight k, the vector
space Sk can be equipped with an inner product and be turned into an inner
product space. It is essential that either f ∈ Sk or g ∈ Sk. In general, f ∈ Sk

if and only if the function h(z) = ℑ(z)k/2|f(z)| for z ∈ H is bounded on the
upper half-plane H. A proof of this can be found in [4].

In the following, we wish to show that the Petersson inner product is inde-
pendent from the choice of a fundamental domain. To do so, we’ll first begin
by formally defining what a fundamental domain is for any subgroup of SL2(R).
We denote by G◦ the interior of a set G.

Definition 0.12. Let Λ ⊆ SL2(R) be a subgroup. A fundamental domain G
for Λ is a set with the following properties:

1. G is closed in H;

2. ∀z ∈ H ∃M ∈ Λ: Mz ∈ G;

3. If z,Mz ∈ G◦ for some M ∈ Λ, then M = ±I2.

Theorem 0.6. Let φ : H → C be a continuous and bounded function. Let
Γ(φ) := {λ ∈ Γ : φ(λz) = φ(z) for ∀z ∈ H} be the invariant subgroup of φ. Let
Λ ⊆ Γ(φ) be some subgroup. If G1 and G2 are fundamental domains for Λ, then
we have: ∫

G1

φ(z) dµ(z) =

∫
G2

φ(z) dµ(z).

Proof. Since G1 and G2 are fundamental domains for Λ, we have:

H =
⋃

M∈Λ

M−1G1 =
⋃

M∈Λ

MG2

Although the unions are not disjoint, the points that occur multiple times form
a null set. Hence, we can compute:∫

G1

φ(z)dµ(z) =
∑
M∈Λ

∫
MG2∩G1

φ(z)dµ(z)

=
∑
M∈Λ

∫
G2∩M−1G1

φ(Mz)dµ(Mz)

=

∫
G2

φ(z)dµ(z).

At the second step, we do a change of variables. Furthermore, notice that in
both steps, we use the following two facts:

1. Λ ⊆ Γ(φ), so in particular, φ(Mz) = φ(z) for ∀M ∈ Λ.

2. By Lemma 0.2, dµ is invariant under all Λ ⊆ SL2(R), i.e. ∀M ∈ Λ :
dµ(Mz) = dµ(z).

This concludes the proof.
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Let’s explore why Theorem 0.6 implies that the Petersson inner product is
independent of the choice of a fundamental domain. Consider the function:

φf,g : H → C

z 7→ f(z)g(z)ℑ(z)k

for f, g ∈ Mk such that f ∈ Sk or g ∈ Sk.
First step is showing that φf,g is continuous and bounded on H: Since f and

g are modular forms, they are holomorphic on H. This implies, in particular,
that f and g are continuous on H. It’s a well-known fact that the imaginary
function ℑ is continuous. Hence, the function φf,g is continuous onH. Moreover,
we assume that f or g is a cusp form. This implies that f(z) or g(z) vanishes for
ℑ(z) → ∞. Hence, φf,g(z) = f(z)g(z)ℑk(z) → 0 as ℑ(z) → ∞. This implies
that φf,g is bounded on H.

Next step is showing that φf,g is invariant under Γ. For any z ∈ H and any
M =

(
a b
c d

)
∈ Γ, we compute the following:

φf,g(Mz) = f(Mz)g(Mz)ℑ(Mz)k = (cz + d)kf(z)(cz + d)kg(z)
ℑ(z)k

|cz + d|2k

= f(z)g(z)ℑ(z)k

= φf,g(z)

In this computation, we use the following two facts:

1. The modular forms f and g are weakly modular of weight k, i.e. f(Mz) =
(cz + d)kf(z) and g(Mz) = (cz + d)kg(z).

2. It holds:

ℑ(Mz) =
ℑ(z)

|cz + d|2

This is an important property of the Möbius transformation.

Hence, Theorem 0.6 is applicable and it follows that the Petersson inner
product is independent from the choice of a fundamental domain. Subsequently,
we’ll show that Eisenstein series are orthogonal to cusp forms.

Theorem 0.7. Let k ≥ 4 be even. For any f ∈ Sk, we have ⟨Ek, f⟩ = 0.

Proof. The proof involves a direct computation of ⟨Ek, f⟩, using the definition
of Ek as specified in Lemma 0.2. Let M = ( a b

c d ) ∈ Γ∞ \ Γ and z ∈ H be
arbitrary.

By Definition 0.6, we first compute the following:

(1|kM)(z) = j(M, z)−k
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Hence, the following holds:

⟨Ek, f⟩ =
∫
F

 ∑
M∈Γ∞\Γ

(1|kM)(z)

 f(z)ℑ(z)kdµ(z)

=

∫
F

 ∑
M∈Γ∞\Γ

j(M, z)−k

 f(z)ℑ(z)kdµ(z)

=
∑

M∈Γ∞\Γ

∫
F
j(M, z)−kf(z)ℑ(z)kdµ(z)

=
∑

M∈Γ∞\Γ

∫
F

f(Mz)

(cz + d)2k
ℑ(z)kdµ(z)

Note that here we used the fact that f is a modular form. Hence, f(Mz) =
j(M, z)kf(z). This implies in particular:

j(M, z)−kf(z) =
f(Mz)

j(M, z)2k
=

f(Mz)

(cz + d)2k

In the following step, we’ll use the following property of the Möbius transfor-
mation:

ℑ(Mz) =
ℑ(z)

|cz + d|2

Since k is even, this implies that

ℑ(z)k = ℑ(Mz)k|cz + d|2k = ℑ(Mz)k(cz + d)2k

Hence, we proceed as the following:

=
∑

M∈Γ∞\Γ

∫
F
f(Mz)ℑ(Mz)kdµ(z)

Using the invariance of dµ under SL2(R)

=
∑

M∈Γ∞\Γ

∫
F
f(Mz)ℑ(Mz)kdµ(Mz)

Under a change of variables

=
∑

M∈Γ∞\Γ

∫
MF

f(z)ℑ(z)kdµ(z)

=

∫
⋃

M∈Γ∞\Γ MF
f(z)ℑ(z)kdµ(z)
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Notice that
⋃

M∈Γ∞\Γ MF is a fundamental domain for Γ∞. It’s also true

that {z ∈ H|0 ≤ ℜ(z) ≤ 1} is a fundamental domain for Γ∞. Since we’ve shown
that the Petersson inner product is independent of the choice of a fundamental
domain, we’re allowed to compute ⟨Ek, f⟩ over {z ∈ H|0 ≤ ℜ(z) ≤ 1}. Hence,
writing z = x+ iy, we get the following result:

⟨Ek, f⟩ =
∫
{z∈H|0≤ℜ(z)≤1}

f(z)ℑ(z)kdµ(z)

=

∫ ∞

0

∫ 1

0

f(x+ iy)ykdµ(x+ iy)

=

∫ ∞

0

∫ 1

0

f(x+ iy)yk−2dxdy

=

∫ ∞

0

(∫ 1

0

f(x+ iy)dx

)
yk−2dy

By the remark below Definiton 0.7,
∫ 1

0
f(x+ iy)dx = af (0). Since f is a

cusp form, af (0) = 0. Hence, we get: ⟨Ek, f⟩ = 0.

Remark. As a result of the Valence formula, we were able to show that for
k ≥ 4: Mk = CEk ⊕ Sk. Hence, Theorem 0.7 shows that the decomposition is
orthogonal with respect to the Petersson inner product.

Poincaré Series

Definition 0.13. For k ≥ 4 even and m ∈ N we define the m-th Poincaré series
as follows

Pm,k(τ) =
∑

M∈Γ∞\Γ

exp(2πimτ)|kM

The goal of this chapter is to show that Pm,k for m ∈ N and k ≥ 4 is a basis
of the vector space Sk.

Remark. A representation system for Γ∞\Γ is given by {(c, d) ∈ Z2|gcd(c, d) =

1}. To see this, note that Γ∞ has a single generator, the matrix T =

(
1 1
0 1

)
and for a arbitrary matrix M =

(
a b
c d

)
∈ Γ and n ∈ Z we can write

(
a′ b′

c′ d′

)
=

(
a+ nc b+ nd

c d

)
=

(
1 n
0 1

)(
a b
c d

)
= TnM (1)

So we see directly c′, d′ = c, d. Further note that since it has to hold detM = 1
that for given c, d there are unique a, b which fulfills the equation i.e. a, b are
determined through given c, d. We can also see that a′ = a + nc, b′ = b + nd.
So given c, d with gcd(c, d) = 1 (so the determinant can be 1), the matrix M ′ is
defined.

Remark. This definition makes also sense form = 0, but then we have P0,k = Ek

the normed Eisenstein series. Since this acts differently then the Poincaré series
we exclude it from the definition.
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Lemma 0.8. It holds Pm,k ∈ Sk.

Proof. We can show that Pm,k is absolute and uniformly convergent the same
way as for the Eisenstein-series. With the Weierstrasse-convergence theorem it
follows again that Pm,k is holomorphic on H. The invariance under the k-slash
Operator holds, since for any functions f , any L ∈ Γ and Λ subgroup of Γ it
holds

g|kL(τ) =

 ∑
M∈Λ\Γ

f(τ)|kM

 |kL

=
∑

M∈Λ\Γ

f(τ)|kM |kL

=
∑

M∈Λ\Γ

f(τ)|kML

=
∑

M∈Λ\Γ

f(τ)|kM

= g(τ)

since ML again goes thorugh a representation system Λ\Γ. Replacing g with
Pm,k (and Λ with Γ∞ the statement follows. Notice that there is also an intuition
for this: Γ∞ is generated by the Matrix representing a Translation of 1. Since
exp(2πiτ) is 1-periodic it is clear that it is invariant under the k-slash operator.
We skip the Fourier Expansion of Pm,k because it is too complicated. The
coefficients itself are infinite series again. For further information consult the
book of Iwanic. Lastly we have to show that limy→∞ |Pm,k| remains bounded.

lim
y→∞

|Pm,k(x+ iy)| =

∣∣∣∣∣∣
∑

M∈Γ∞\Γ

exp(2πimM(x+ iy))

j(M,x+ iy)k

∣∣∣∣∣∣
≤ lim

y→∞

∑
M∈Γ∞\Γ

∣∣∣∣exp(2πmM(x+ iy)

j(M,x+ iy)k

∣∣∣∣
=

∑
M∈Γ∞\Γ

lim
y→∞

|exp(2πimM(x+ iy))|
|j(M,x+ iy)|k

=
∑

M∈Γ∞\Γ

lim
y→∞

exp(2πim(2i Im(M(x+ iy)))1/2

|j(M,x+ iy)|k

=
∑

M∈Γ∞\Γ

lim
y→∞

exp(−2πm y
|j(M,x+iy)|2 )

|j(M,x+ iy)|k
−→ 0

The limit is clear in the case c = 0. In the case c ̸= 0 notice that |j(M,x+ iy)|2 ∼
y2 and by inserting this it becomes clear that the expression tends to 0 in this
case aswell. Since all coefficients of the sum tend to 0, the sum converges to 0
and the lemma is proven.
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Lemma 0.9. Let n ≥ 4 even and m ∈ N. For f =
∑∞

n=1 af (n)q
n ∈ Sk it holds

⟨f, Pm,k⟩ =
(k − 2)!

(4πm)k−1
af (m).

Proof. Let f ∈ Sk be arbitrary. We first make the weight-k slash operator of
the series explicit

Pm,k =
∑

M∈Γ∞\Γ

j(M, τ)−kexp(2πimMτ)

where j(M, τ) = (cτ + d) denotes the well known automorphiefactor, for M =(
a b
c d

)
∈ Γ. We now plug this together with f into our definition of the Pe-

tersson inner product and use the ”Entfaltungstrick” from last chapter to get

⟨f, Pm,k⟩ =
∫
F
f(z)

∑
M∈Γ∞\Γ

j(M, τ)−kexp(2πimMτ)Im(z)kdµ(z)

=
∑

M∈Γ∞\Γ

∫
F
f(z)j(M, τ)−kexp(2πimMτ)Im(z)kdµ(z)

=
∑

M∈Γ∞\Γ

∫
MF

f(M−1z)j(M,M−1τ)−kexp(2πimMM−1τ)Im(M−1z)kdµ(M−1z)

=
∑

M∈Γ∞\Γ

∫
MF

j(M−1, z)kf(z)j(M−1, z)kexp(2πimz)
Im(z)k

|j(M−1, z)|2k
dµ(z)

=
∑

M∈Γ∞\Γ

∫
MF

f(z)exp(−2πimz̄)Im(z)kdµ(z)

=

∫
∪M∈Γ∞\ΓMF

f(z)exp(−2πimz̄)Im(z)kdµ(z)

=

∫ ∞

0

∫ 1

0

f(x+ iy)exp(−2πim(x− iy))yk
dxdy

y2

=

∫ ∞

0

∫ 1

0

(

∞∑
n=0

af (n)exp(2πin(x+ iy)))exp(−2πim(x− iy))yk−2dxdy

=

∞∑
n=0

af (n)

∫ ∞

0

∫ 1

0

exp(2πi(n−m)x)exp(−2π(n+m)y)yk−2dxdy

=

∞∑
n=0

af (n)

∫ 1

0

exp(2πi(n−m)x)dx

∫ ∞

0

exp(−2π(n+m)y)yk−2dy

We substitute with matrix M−1, notice that there should also be a term with
|det(DM−1)| but this is 1 because det(M) = 1. To get to equality 4 we use

f(M−1z) = j(M−1, z)kf(z)

as a consequence of invariance of modular forms under slash-operation,

j(M,M−1z) = j(M−1, z)
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which can easily be checked,

Im(M−1z) =
y

j(M−1, z)

from chapter 2.2 in [3],
dµ(M1z) = dµ(z)

from the previous chapter.
We seperatly calculate the two Integrals in the last equality∫ 1

0

exp(2πi(n−m)x)dx =

{∫ 1

0
1dx = 1 m = n

[ −i(1−exp(2πim)exp(2πin)
2π(m−n) ]10 = 0 m ̸= n

so the sum vanishes except the term with n = m and with∫ ∞

0

exp(−4πmy)yk−2 =
Γ(k − 1)

(4πm)k−1

the proof concludes.

It remains to show that the Poincaré series are a basis of Sk.

Lemma 0.10. Let k ≥ 4 be even and m ∈ N arbitrary. Then the subspace of
Poincaré series P in Sk is the whole of Sk, the the vectorspace of cusp forms.

Proof. Let P be the span of all Poincaré series. For f ∈ P⊥ it holds by our
previous lemma and the definition of orthogonality that

(k − 2)!

(4πm)k−1
af (m) = ⟨f, Pm,k⟩ = 0

for all m ∈ N. Thus af (m) = 0 ∀m ∈ N and thus f = 0, which implies P⊥ = 0
and thus P = Sk.

Hecke operator

The purpose of this chapter is to define the Hecke operator, which we show
to be an Endomorphisms on the C -Vector space of all modular forms.

Definition 0.14. For n ∈ N we define the set

Mn = {M ∈ Z2×2 : det(M) = n}

of the integer 2× 2 matrices with determinant n.

The group Γ acts onMn from left and right through (matrix-)multiplication.

• This is well defined: It is well known that det(AB) = det(A)det(B) for
appropriate Matrices, especially for 2× 2 matrices. Thus the result of the
above defined group action is again in Mn.

• Identity axiom group action: The identity matrix I is the neutral element
of Γ and multiplication with it leaves any matrix invariant.
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• Compatibility axiom group action: For any two matrices A,B ∈ Γ and
C ∈ Mm its clear it holds (AB)C = A(BC).

The defining properties of a group guarantee that the set of orbits of (points
x in) Mn under the action of Γ form a partition of Mn, associated to the
equivalence relation that two elements are equal if they have the same orbit.
We denote the quotient space as Γ\Mn := Mn/ ∼.

The next Lemma gives us now a representation system for Γ\Mn.

Lemma 0.11. A representation system of Γ\Mn is given through the set{(
a b
0 d

)
: a, b, d ∈ Z, ad = n, d > 0, b (mod d)

}
It has cardinality σ1(n), especially its finite.

Proof. We first show every matrix in Mn is equivalent to a matrix from our

representation-system. For this let

(
a b
c d

)
∈ Mn be arbitrary. If a, c are

relative prime choose γ, δ ∈ Z as δ = a, γ = −c, then clearly γ, δ are also
relativ prime and aγ + cδ = 0. If a, c are not relativ prime, first divide with
their greatest common divisor, befor choosing γ, δ the same way. In this case
γ, δ are also relativ prime and aγ + cδ = 0 also holds. Now choose α, β ∈ Z

such that αγ − δβ = 1, i.e.

(
α β
γ δ

)
∈ Γ. The existence of such α, β follows

BÃ©zout’s identity and the fact that γ, δ are relativ prime. It now holds(
α β
γ δ

)(
a b
c d

)
=

(
a′ b′

0 d′

)
for some a′, b′, d′ ∈ Z. Since the determinant of the left side equals n, it fol-
lows the determinant of the right side also has to be equal n. Thus a′d′ = n.
Further we can assume d′ > 0 since otherwise we just multiply with −I and

lastly by multiplication with

(
1 1
0 1

)n

for any n ∈ N can we change b′ modulo d′.

Now we show that any two different matrices of our representation system are

unequal with respect to the equivalence relation. Let

(
α β
γ δ

)
∈ Γ such that

(
α β
γ δ

)(
a b
0 d

)
=

(
a′ b′

0 d′

)
Multiplication of the left hand side of the equality yields γa = 0 and thus γ = 0
(a ̸= 0 because ad = n). Since γ = 0 and the determinant of matrices in Γ has
to be 1, it follows that αδ = 1 and thus α = δ = ±1. But it has to hold d, d′ > 0
which implies δ > 0 and thus α = δ = 1. Inserting the values gives us(

α β
γ δ

)
=

(
1 β
0 1

)
=

(
1 1
0 1

)β

Especially it follows a = a′ and d = d′. Lastly it holds b′ = b+ βd = b (mod d).
It remains to proof the cardinality is finite.
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Let k ∈ Z and f : H → C. We now want to extend the definition of the
weight-k slash operator to matrices M ∈ Mn by defining

(f |kM)(τ) = (cτ + d)−kf(Mτ)

where c, d and M are related by the representation system defined in Lemma
0.11.

Definition 0.15. For n ∈ N the Hecke-Operator Tn on f ∈ Mk (the C-
Vectorspace of all Modular forms) is defined as

Tnf = nk−1
∑

M∈Γ\Mn

f |kM

Since by definition elements of Mk are invariant under the slash operation
of Γ, it follows that the definition does not relay on the representation system
of Γ\Mn. By using the representation system of lemma 0.11 we can thus write
the Hecke operator as

(Tnf)(τ) = nk−1
∑
ad=n
d>0

d−k
∑

b (mod d)

f

(
aτ + b

d

)

We can thus describe how the Hecke operator acts on the Fourier-expansion
of f ∈ Mk.

Lemma 0.12. Let f(τ) =
∑∞

m=0 af (m)qm ∈ Mk with q = exp(2πiτ). Then

Tnf =

∞∑
m=0

aTnf (m)qm

aTnf (m) =
∑

d|(m,n)

dk−1af

(mn

d2

)
Also it holds aTnf (0) = σk−1(n)af (0) and aTnf (1) = af (n), where σk−1(n) is
the generalized divisor function.

Proof. Start by inserting the Fourier expansion of f into the explicit description
of the Hecke operator above (Definition 0.15) to get

(Tnf)(τ) = nk−1
∑
ad=n
d>0

d−k
∑

b (mod d)

∞∑
m=0

af (m) qm

= nk−1
∑
ad=n
d>0

d−k
∑

b (mod d)

∞∑
m=0

af (m) exp

(
2πi

(
aτ + b

d

))m

= nk−1
∑
ad=n
d>0

d−k
∑

b (mod d)

∞∑
m=0

af (m) exp

(
2πimaτ

d

)
exp

(
2πimb

d

)

Remember that by definition it holds f(τ) =
∑∞

m=0 af (m)exp(2πiτ)m for every
τ ∈ H, i.e. the sum is at least conditional convergent. We want to use this to
exchange the sums with the following claim:
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Claim 1. Let I be a non-empty finite Set and
∑∞

l=0 bl some conditional conver-
gent sum. Then we can exchange the sum:

∑
i∈I

∞∑
l=0

bl =
∑
i∈I

lim
k→∞

k∑
l=0

bl

= lim
k→∞

∑
i∈I

k∑
l=0

bl

= lim
k→∞

k∑
l=0

∑
i∈I

bl

=

∞∑
l=0

∑
i∈I

bl

where the second equality is due to addition being continuous, and the third we
swap two finite sums.

Applying this claim to the above equality yields us

= nk−1
∑
ad=n
d>0

d−k
∞∑

m=0

∑
b (mod d)

af (m) exp

(
2πi

(
aτ + b

d

))m

= nk−1
∑
ad=n
d>0

d−k
∞∑

m=0

∑
b (mod d)

af (m) exp

(
2πimaτ

d

)
exp

(
2πimb

d

)

= nk−1
∑
ad=n
d>0

d−k
∞∑

m=0

af (m) exp

(
2πimaτ

d

) ∑
b (mod d)

exp

(
2πimb

d

)
(2)

We now have 2 Cases:

Claim 2. Let d|m, then ∃l ∈ Z such that ld = m. Insert this above to get

=
∑

b (mod d)

exp

(
2πildb

d

)
=

∑
b (mod d)

exp (2πilb)

and since l, b ∈ Z every term is equal to 1 and there are d terms the sum simplifys
to d.
Now let d ∤ m. It is well known that exp

(
2πib
d

)
for b ∈ {0, 1, ..., d − 1} are the

solutions for the equation
zd = 1 (3)

Another way to write this is ζb for b ∈ {0, 1, ..., d− 1} and ζ = exp
(
2πi
d

)
. This

looks almost like our terms, we just have an additional m. We now notice that
for any solution for (3 ζb it holds ζmb = 1 aswell, since ζmb = (ζb)m = (1)m = 1.
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We thus know that such an m maps solutions of 3 to solutions of 3. Further
notice that we can assume m < d because for a ≡ bmodd it holds: Let a = b+ ld
for some 0 ≤ b < dl ∈ Z, then ζa = ζb+ld = ζbζld = ζb. But we cant yet say if
this is bijectiv, which would allow us to drop the m entirely in the sum, because
it would only permute the order of terms.
To now see how exp

(
2πimb

d

)
and exp

(
2πib
d

)
are related, note that {ζb | b ∈

{0, 1, 2, ..., d − 1} } with multiplication ζb1ζb2 = ζb1+b2 mod d is a group and
by ζb 7→ b is isomorphic to the cyclic group of order d Z/dZ. Now given an
m ∈ Z/dZ (i.e. m < d as above) we can define the left-multiplication map
lm(b) = mb ∀b ∈ Z/dZ. Note that since m has an inverse as a element of a
group and lm−1 lm(b) = m−1mb = b ∀b ∈ Z/dZ. We have shown lm has an in-
verse map and thus is bijectiv, thus such an m just acts as a permutation on the
group. Taking our isomorphismus back we conclude

∑
b (mod d) exp

(
2πimb

d

)
=∑

b (mod d) exp
(
2πib
d

)
, since we know that m just permutes the terms and we

sum over all of them.

This allows us now to proof that such a sum is zero. This is geometricaly
intuitiv since the d-unit roots are just evenly spread out on the unit circle and
the complex sum is expected to be in the ”middle” at zero. But we want to give
a more formal, algebraic proof:

Claim 3. Let P be a polynomial equation anX
n+an−1X

n−1+ ...+a1x+a0 = 0
such that an ̸= 0. Then the sum of the roots of P is −an−1

an

Proof. By the fundamental theorem of algebra we know such a polynomial has
n roots x1, ..., xn. Then we can rewrite P in factored form as: anΠ

n
k=1(x−xk) =

an(x − x1)(x − x2) · · · (x − xn). Multiplying this out, P can be expressed as:
an(x

n − (x1 + x2 + ... + xn)x
n−1 + ... + (−1)nx1x2x · · · xn) = 0, where the

coefficients xn−2, xn−3... are irrelevant. Equating the powers of x, it follows
that: −an(x1 + x2 + ...+ xn) = an−1 and thus the claim follows.

We can continue at Claim 2: Since we have the d-solutions to the polynomial
zd−1 = 0 applying to above formula gives us directly that the sum has to vanish,
which finishes Claim 2.

Utilising this result we can now finally simplify (2) further. Writing m = dr
we get

nk−1
∑
ad=n
d>0

d−k
∞∑

m=0

af (m) exp

(
2πimaτ

d

) ∑
b (mod d)

exp

(
2πimb

d

)
= nk−1

∑
ad=n
d>0

d1−k
∞∑
r=0

af (dr) exp(2πiarτ)

=
∑
a|n

ak−1
∞∑
r=0

af (rn/a)exp(2πiarτ)
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and for m = ar we finally get

Tnf =

∞∑
m=0

∑
a|(m,n)

ak−1af (mn/a2)exp(2πimτ)

which finishes the proof.

We now want to use this for the following theorem.

Theorem 0.13. For n ∈ N the Hecke-Operator Tn defines an Endomorphism on
Mk and Sk

Proof. It is clear that Tn is linear. As a finite sum of holomorphic functions
Tnf is also holomorphic. Now let L ∈ Γ, then it holds

(Tnf)|kL = nk−1
∑

M∈Γ\Mn

f |kM |kL

= nk−1
∑

M∈Γ\Mn

f |kML = nk−1
∑

M∈Γ\Mn

f |kM = Tnf
(4)

where the second equality follows by the cocycle relation from chapter 2.2 in [3],
so that it holds f |kM |kL = f |kML for all M,L ∈SL2(R) and the third since
ML for M ∈ Γ\Mn also goes through a representation system of Γ\Mn, so Tnf
satisfies invariance under the k-slash operator. From lemma 0.12 we also get
the fourier expansion of Tnf , starting by n = 0. Also if f ∈ Sk then af (0) = 0
and by lemma 0.12 again aTnf = 0 and thus Tnf ∈ Sk, which concludes the
proof.
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