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During this handout, we abuse notation in the following ways:

• We use ”Elements of a quotient group” and ”representatives of the quo-
tient group” interchangeably. So e.g. by L ∈ Γ∞\Γ we will mostly mean
L to be a representative of one of the elements of Γ∞\Γ.

• By b (mod d) we mean b ∈ Z/pZ; or also in accordance with the previous
point b ∈ {0, 1, . . . , p− 1}.

Hecke-Operators

Reminder, for n ≥ 1 the Hecke operator Tn on Mk is given by

Tnf = nk−1
∑

M∈Γ\Mn

f |kM = nk−1
∑
ad=n
d>0

∑
b mod d

f |k
(
a b
0 d

)
,

where

{(
a b
0 d

) ∣∣∣ ad = n, d > 0, b (mod d)

}
is a representative system of Γ\Mn.

In the previous week we also saw how the Hecke operator is an Endomorphism
of Sk and Mk for all even k ≥ 12. We also saw the following theorem.

Lemma 0.1. For f =
∑∞

m=0 af (m)qm ∈Mk, the Fourier series of Tnf is given
by

Tnf =

∞∑
m=0

aTnf (m)qm, aTnf (m) =
∑

d|(m,n)

dk−1af

(mn
d2

)
.

1 Simultaneous eigenform

A modular form f ∈ Mn is called a simultaneous eigenform of all Hecke-
operators Tn if

Tnf = λf (n)f

for all n ∈ N , with an appropriate eigenvalue λf (n) ∈ C.

Lemma 1.1. For a non-constant f ∈Mk the following are equivalent:

1. f is a simultaneous eigenform for all Tn.
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2. We have that af (1) ̸= 0 and for all m ∈ N0, n ∈ N the following equality
holds:

af (m)af (n) = af (1)
∑

d|(m,n)

dk−1af (mn/d
2).

For such f , the eigenvalues are given by λf (n) = af (n)/af (1). For coprime
m,n, we then also have

af (m)af (n) = af (1)af (mn).

Proof. Assume that f is a simultaneous eigenform of all Tn. Comparing the
m-th coefficient of λf (n)f and Tnf (see Lemma 0.1) gives us the equation

λf (n)af (m) = aTnf (m) =
∑

d|(m,n)

dk−1af (mn/d
2).

For m = 1 this gives us λf (n)af (1) = af (n). So if we had af (1) = 0, then
af (n) = 0 for all n, which contradicts the assumption that f is non-constant.
So we must have af (1) ̸= 0 and λf (n) = af (n)/af (1). Plugging this into the
above equation gives us

af (n)af (m) = af (1)
∑

d|(n,m)

dk−1af (mn/d
2),

as wanted.
For the other direction, equation 2. together with lemma 0.1, gives us that

Tnf =
af (n)

f (1)
f for all n ∈ N. So f is indeed a simultaneous eigenform of all Tn.

For a normed simultaneous eigenform f , that is af (1) = 1, the coefficients
are multiplicative by the above lemma and fulfil

af (m)af (n) = af (nm)

for (n.m) = 1. With this we can show that the Fourier coefficients of the
∆-function are multiplicative.

Theorem 1.2. The ∆-function is a normed eigenform of all Tn with

Tn∆ = τ(n)∆.

For the Fourier coefficients τ(n) of ∆, we have the identity

τ(m)τ(n) =
∑

d|(n,m)

d11τ(mn/d2)

for all n,m ∈ N. So in particular we have

τ(m)τ(n) = τ(nm)

for (n,m) = 1.
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Proof. Since Tn is an endomorphism of S12C∆, the cusp form Tn∆ must be a
multiple of ∆, that is Tn∆ = λ∆(n)∆ for an appropriate λ∆(n) ∈ C. So we
have that ∆ is a simultaneous eigenform of all Tn. Since ∆ is normed, the result
follows from lemma 1.1

We can also show that the Eisenstein series Ek (and even more general, the
Poincaré series Pm,k) are simultaneous eigenforms as well. For the proof of that
we will need a quick lemma.

Lemma 1.3. The set

S :=

{(
a b
0 d

)
L
∣∣∣ ad = n, d > 0, b (mod d), L ∈ Γ∞\Γ

}
is a representative system of Γ∞\Mn.

Proof. For S to be a representative system, we need that no two elements in S
are similar in respect to Γ∞ and that every Matrix M ∈ Mn can be written
as a matrix in Γ∞ times one of the matrices in S. Note that the matrices

Tn =

(
1 n
0 1

)
and

(
a b
0 d

)
commute. we have

Tn

(
a b
0 d

)
L =

(
α β
0 δ

)
L′

⇔ 1

n

(
δ −β
0 α

)(
a b
0 d

)
= L′L−1T−n ∈ Γ ⇔ 1

n

(
δ −β
0 α

)(
a b
0 d

)
TnL = L′.

And since the matrix on the LHS of the second equation should have integer
entries, we must have that a = α = n

d = n
δ , which makes the matrix actually be

in Γ∞. So with that in mind, from the third line we get that L = L′ mod Γ∞,
proving the first part.

For the second part, let

(
A B
C D

)
be a matrix in Mn. Let g := gcd(C,D),

C ′ := C
g and D′ := D

g . Since C
′ and D′are coprime, we can pick α, β ∈ Z such

that

(
α β
C ′ D′

)
is in Γ. Now note that

(
A B
C D

)(
α β
C ′ D′

)−1

=

(
AD′ −BC ′ −Aβ +Bα

0 −Cβ +Dα,

)
=

(
a b
0 d

)
,

which is an upper triangular matrix with integer entries and determinant n.
There exists a unique n, such that b = b′+nd with 0 ≤ b′ < d. So multiplication

of the matrix

(
a b
0 d

)
with T−n will lead to a matrix as in the set S as desired,

finishing the proof.

Theorem 1.4. For even k ≥ 4 the Eisenstein-series Ek is a simultaneous
eigenform of all Tn with

TnEk = σk−1(n)Ek.

The following relation holds for all n,m ∈ N:

σk−1(n)σk−1(m) =
∑

d|(n,m)

dk−1σk−1(mn/d
2).

In particular σk−1 is multiplicative.
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Proof. Plugging in the series formulation of Ek into the definition of the Hecke-
operator, gives us

TnEk = nk−1
∑

M∈Γ\Mn

∑
L∈Γ∞\Γ

1|kLM = nk−1
∑

A∈Γ∞\Mn

1|kA.

We can now show that the set

S :=

{(
a b
0 d

)
L
∣∣∣ ad = n, d > 0, b (mod d), L ∈ Γ∞\Γ

}
is also a set of representatives of Γ\Mn.
Using this, we have

TnEk =nk−1
∑
ad=n
d>0

∑
b mod d

∑
L∈Γ∞\Γ

1

k

(
a b
0 d

)
L

=nk−1
∑
d|n

d1−k
∑

L∈Γ∞\Γ

1|kL = σk−1(n)Ek.

So the function −Bk

2k Ek is a normed simultaneous eigenform, whose n-th Fourier-
coefficient is equal to σk−1(n). The desired relations follow from lemma 1.1.

With a similar proof, one can also describe the action of the Hecke operator
on the Poincaré-series by the following theorem.

Theorem 1.5. For all n,m ∈ N we have

TnPm,k =
∑

d|(n,m)

(n/d)k−1Pmn/d2,k.

Proof. Note that theorem 1.4 is just the special case m = 0 of this theorem.
Analogously to the proof of theorem 1.4, we have

TnPm,k =nk−1
∑

A∈Γ∞\Mn

e2πimτ |kA

=nk−1
∑
ad=n
d>0

∑
b mod d

∑
L∈Γ∞\Γ

e2πimτ

k

(
a b
0 d

)
L

=nk−1
∑
d|n

∑
b mod d

∑
L∈Γ∞\Γ

d−ke2πim
b
d τe2πim

n
d2

τ |kL.

Now we use the fact that∑
b mod d

e2πm
b
d τ =

{
d if d | m
0 if d ∤ m,

giving us

TnPm,k =nk−1
∑

d|(n,m)

d1−k
∑

L∈Γ∞\Γ

e2πi
mn
d2

τ |kL

=
∑

d|(n,m)

(n/d))
k−1

Pmn/d2,k,

as desired.
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2 The algebra of Hecke-operators

In the previous talk, it was shown that the Hecke operators define an Endomor-
phism on the Vector space Mk. Let Hk be the subalgebra of all endomorphisms
on Mk, generated by the Hecke operators Tn, that is all endomorphisms equal
to a polynomial expression in the Ti. We call Hk the Hecke algebra in weight
k. The focus of this section will be to prove the following theorem.

Theorem 2.1. The Hecke algebra HK is a commutative subalgebra of End(Mk)
which is generated by all Tp with p prime. Furthermore, for all m,n ∈ N, we
have

TmTn =
∑

d|(n,m)

dk−1Tmn/d2 . (1)

In particular, for m,n coprime we have

TmTn = Tmn, (2)

and for every prime p and for all r ∈ N we have

TprTp = Tpr+1 + pk−1Tpr−1 . (3)

With this theorem, we can expand on lemma 1.1:

Korollar 2.2. For a non-constant f ∈Mk, the following are equivalent:

1. f is a simultaneous eigenform of all Tn, where n ∈ N.

2. f is a simultaneous eigenform of all Tp, where p prime.

3. For every prime p and all m ∈ N0, we have

af (p)af (m) = af (1)
(
af (mp) + pk−1af (m/p)

)
where we take af (m/p) = 0 if p ∤ m.

The proof of theorem 2.1 is split into four parts: Equation (2), then equation
(3), followed by its generalization Cor. 2.7 and then finally the full form of
equation (1). The fact that the subalgebra is commutative follows immediately
from (1), as the right-hand side is symmetric in m and n, so we must have
TmTn = TnTm.

Lemma 2.3. Let m,n ∈ N be coprime and a1, a2, d1, d2 ∈ N such that a1d1 =
m, a2d2 = n. Then the map

ψ : (b1, b2) 7→ b12 := a2b1 + b2d1,

defines a bijection between all pairs of integers b1 (mod d1), b2 (mod d2) and
all b12 (mod d1d2).

Proof. Since the two sets are of equal finite size, it suffices to show that ψ is
injective.
Assume that φ(b1, b2) = φ(b′1, b

′
2). Looking at the equation mod d1 gives us:

a2b1 ≡ a2b
′
1 (mod d1)

And since gcd(a2, d1) | gcd(m,n) = 1, we can divide by a2, leading us to b1 = b′1.
By looking at the remaining equality mod d2, gives us b2d1 = b′2d1 (mod d2).
Noting that gcd(d1, d2) = 1, leads to b2 = b′2 analogously to the above.

5



Theorem 2.4. For (n.m) = 1 we have TmTn = Tmn.

Proof. For f ∈Mk we have

TmTnf = (mn)k−1
∑

a1d1=m

∑
a2d2=n

(d1d2)
−k

∑
b1 (mod d1)

∑
b2 (mod d2)

f

(
a1a2τ + a2b1 + b2d1

d1d2

)

= (mn)k−1
∑

ad=mn

d−k
∑

b mod d

f
aτ + b

d
= Tmnf,

where we used a = a1a2, d = d1d2 and b = a2b1 + b2d1.

For the second part, we will need a similar lemma as 2.3.

Lemma 2.5. 1. The function ψ : (bν , a) 7→ cν := bν + apν , defines a bi-
jection between all pair of integers bν (mod pν), a (mod p) and all cν
(mod pν+1).

2. If bnu goes through a representative system of (mod pν), then bν runs
through a representative system of pν−1 exactly p times.

Proof. Since the map ψ is between two finite sets, it suffices to show injectivity.
Assume that we have ψ(bν , a) = ψ(b′ν , a

′).
Reducing the equality down to (mod p)ν instantly gives us bν = b′ν , leaving us
with pνa = pνa′ (mod p)ν+1. This is equivalent to ⇔ pν(a− a′) = 0, which can
only be true if a− a′ = (mod p) implying that a = a′.

Part 2 can be seen, by noting that for any given bν there are exactly p − 1
other b′ν (mod pν), which have the same residue mod pν−1. More precisely,
the p− 1 possibilities are {bν + kpν−1 | 1 ≤ k ≤ p− 1}.

Theorem 2.6. For every prime p and all r ∈ N, we have

TprTp = Tpr+1 + pk−1Tpr−1 .

Proof. For f ∈Mk we have

TprTpf =pr(k−1)
r∑

ν=0

p−νk
∑

bν mod pν

Tpf

(
pr−ντ + bν

pν

)
(1)

=p(r+1)(k−1)f(pr+1τ) + pr(k−1)−1
∑

a mod p

f

(
prτ + a

p

)
+ (2)

pr(k−1)
r∑

ν=1

p−νk
∑

bν mod pν

pk−1f

(
pr−ντ + bν

pν−1

)
+

1

p

∑
a mod p

f

(
pr−ντ + cν

pν+1

) ,
(3)

where cν = bν + apν . Note that the two lines (2) and (3) come from separating
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the cases ν = 0 and ν > 0. With the previous lemma, this is equal to

TprTpf =p(r+1)(k−1)f(pr+1τ)+ (4)

pr(k−1)
r∑

ν=1

p−(ν−1)k
∑

bν mod pν−1

f

(
p(r−1)−(ν−1)τ + bν

pν−1

)
+ (5)

pr(k−1)
r∑

ν=0

p−νk−1
∑

cν mod pν+1

f

(
p(r+1)−(ν+1)τ + cν

pν+1

)
(6)

=p(r+1)(k−1)f(pr+1τ) + pr(k−1)−(r−1)(k−1)Tpr−1f+ (7)

p(r+1)(k−1)
r∑

ν=0

p−(ν+1)k
∑

cν mod pν+1

f

(
p(r+1)−(ν+1)τ + cν

pν+1

)
(8)

=pk−1Tpr−1f + Tpr+1f. (9)

Note that line (2) is the case ν = 0 in line (6). Similarly the first term in line
(4) and (7) is the case ν = −1 is the sum of line (8), creating Tpr+1f .

Korollar 2.7. For a prime p and r, s ∈ N0, we have

TprTps =

min(r,s)∑
ν=0

pν(k−1)Tpr+s−2ν .

Proof. We shall show the statement by induction on s, where the base case
s = 0 is trivial and s = 1 is given by the theorem 2.6.
Assume that the statement is true for all s′ < s. We have

TprTps−1Tp =

min(r,s−1)∑
ν=0

pν(k−1)Tpr+s−1−2νTp =

min(r,s−1)∑
ν=0

p(ν+1)(k−1)Tpr+s−2(ν+1) + pν(k−1)Tpr+s−2ν ,

but also

TprTps−1Tp = Tprpk−1Ts−2 + TprTs =

min(r,s−2)∑
ν=0

p(ν+1)(k−1)Tpr+s−2(ν+1) + TprTps ,

where Tp−1 is taken to be 0. So in the case r ≤ s− 2 < s, we have

TprTps =

r∑
ν=0

pν(k−1)Tpr+s−2ν

as wanted. In the other case we have

TprTps = ps(k−1)Tpr+s−2s +

s−1∑
ν=0

pν(k−1)Tpr+s−2ν =

min(s,r)∑
ν=0

pν(k−1)Tpr+s−2ν ,

where we used that Tpr+s−2s = 0, if r = s− 1.

Now all that is left is to show equation (1) in Thm. 2.1. We do this by
induction on the amount of prime divisors of gcd(n,m). The base case is when
gcd(n,m) = 1 and is given by thm. 2.4.
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For the induction step, assume that p is a prime divisor of n and m and m =
m′pr, n = n′ps, where of course (n′, p) = (m′, p) = 1. We then have

TmTn =Tm′TprTn′Tps

=Tm′Tn′TprTps

=

 ∑
d|(n′,m′)

dk−1Tmn/d2

 ∑
d|pmin(r,s)

dk−1Tpr+s/d2


=

∑
d1|(m′,n′)
d2|(pr,ps)

(d1d2)
k−1Tn′m′/d2

1
Tpr+s/d2

2

=
∑

d|(n,m)

dk−1Tmn/d2 .

3 Self-adjointness of the Hecke-operators

Reminder, we know the following about the Petersson inner product.

Lemma 3.1. Let k ≥ 4 be even and m ∈ N. For f =
∑∞

n=1 af (n)q
n ∈ Sk the

following formula holds.

⟨f, Pm,k⟩ =
(k − 2)!

(4πm)k−1
af (m).

With this we can show that the Hecke operator Tn is self-adjoint regarding
the Petersson inner product.

Theorem 3.2. For f, g ∈ Sk and n ∈ N, we have

⟨Tnf, g⟩ = ⟨f, Tng⟩,

Proof. Beacause of Sk = 0 for k < 12 and k odd, we can assume that k ≥ 12
and that k is even. Since in this case, Sk is generated by the Poincaré series
Pm,k, it suffices to show the equality for g = Pm,k. Using lemma 3.1, 0.1 and
1.5, we have

⟨Tnf, Pm,k⟩ =
(k − 2)!

(4πm)k−1
aTnf (m)

=
(k − 2)!

(4πm)k−1

∑
d|(m,n)

dk−1af (mn/d
2)

=
(k − 2)!

(4πm)k−1

∑
d|(m,n)

dk−1 (4πmn/d
2)k−1

(k − 2)!
⟨f, Pmn/d2,k⟩

=

〈
f,

∑
d|(m,n)

(n/d)k−1Pmn/d2,k

〉
= ⟨f, TnPm,k⟩
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It is known from linear algebra that a family of commutative self-adjoint
operators can be simultaneously diagonalized on finite-dimensional spaces, i.e.
that there is a basis consisting of eigenvectors of all operators. This means that
there is a basis consisting of simultaneous eigenforms of all operators. Moreover
the eigenvalues of self-adjoint operators are real, and eigenvectors to different
eigenvalues are orthogonal. From this we obtain:

Theorem 3.3. The space Sk has an orthonormal basis sonsisting of simuta-
neous eigenforms, with all real fourier coefficients.

Proof. According to the above statement from linear algebra, the spacee Sk has
a basis consisting of simultaneous eigenforms with real eigenvalues. Wlog we
can assume that these eigenforms are normed.
If two normed forms f, g had the same eigenvalues λf (n) = λg(n), then they

would be equal to each other. Indeed, we would have af (n) =
λf (n)
af (1)

= λf (n) =
λg(n)
ag(1)

= ag(n). And since eigenvectors to different eigenvalues are orthogonal,

the normed basis is indeed an orthonormal one. Also by the same equation
above af (n) = λf (n) ∈ R all fourier coefficents are real.
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