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General informations

The talks should take between 80-90 minutes. Two students share a talk. A script in latex is
required. The seminar takes place Wednesdays from 10-12 in HG G26.5, starting on 28.02. until
29.05. (12 talks; no meetings on 21.02., 03.04. and 01.05.).

We follow the lecture notes [9] and [10], which are based on the book [5]. Most of the material
can also be found in the book [4], which is available in german or in english. A nice and short
overview over the modular forms part is given in [1]. The other references contain useful additional
material and different viewpoints.

Topics

1 Elliptic functions (V. Michel, S. Ruppanner)

Recall the definition of meromorphic functions on C. Define the set of periods of a meromorphic
function and show that it is either {0}, Zwf , or Zw1 + Zw2. Define lattices in C and their funda-
mental parallelograms, and explain how the fundamental parallelogram can be viewed as a torus.
If time permits, discuss the convergence of Eisenstein series, see [9, Section 2.3]. Define elliptic
functions and mention that they form a field. State and prove the four theorems of Liouville.

References: [9], Section 2.1–2.2 and 3.1–3.2 (and Section 2.3 if time permits)
See also [4], Section V.1

2 The Weierstrass ℘-function (M. Corpataux, L. Schlemmer)

Start with [9, Section 4.1] and define the Weierstrass ℘-function. Mention that
∑
w∈Ω(z − w)−k

converges absolutely for k ≥ 3, but not for k = 2, but omit the proof. Show that the ℘-function
converges and defines an elliptic function. Then give its properties from [9, Section 3.3], and
afterwards prove that ℘ and ℘′ generate the field of elliptic functions, see [9, Section 3.4]. Define
the Eisenstein series Gk and compute the Laurent expansion of ℘. Show the two differential
equations ℘′2 = 4(℘ − e1)(℘ − e2)(℘ − e3) and ℘′2 = 4℘3 − g2℘ − g3. If time permits, give the
identities of Eisenstein series from Corollary 4.3.5.

References: [9], Section 3.3–3.4 and Section 4
See also [4], Section V.2 and V.3

3 Complex elliptic curves (D. Blättler, E. Staikov)

Prove the addition theorem for the ℘-function. Define complex elliptic curves and show that the
map z + Ω 7→ (℘(z), ℘′(z)) defines a bijection between C/Ω and the elliptic curve E(Ω). Explain
the geometric addition law on elliptic curves and show that it is compatible with the natural
addition on C/Ω under the above bijection.

References: [9], Section 7
See also [4], Appendix A to Section V.3, and Section V.4
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4 The Weierstrass σ and ζ-functions (M. Daniele, A. David)

Briefly discuss the convergence of infinite products. Define the Weierstrass σ and ζ-functions
and explain their connection to the ℘-function. Show that the Weierstrass η-function is a group
homomorphism and prove the Legendre relation. Prove the transformation law for σ. Prove Abel’s
theorem on the existence of elliptic functions with prescribed zeros and poles, see [9, Theorem
6.3.1]. If time permits, define the Jacobi theta function and mention that it can also be used to
construct elliptic functions with prescribed zeros and poles, [9, Lemma 6.4.1 and Corollary 6.4.3].

References: [9], Section 6.1–6.3 (Section 6.4 if time permits)
See also [4], Section V.6

5 The modular group and modular forms (S. Hadzhistoykov, B. Heim)

Introduce the modular group SL2(Z) and its action on the upper half-plane by fractional line-
ar transformations (Moebius transformations); prove that T and S generate SL2(Z); sketch the
fundamental domain and explain its properties; if time permits, explain elliptic points; define the
factor of automorphy and modular forms; explain what Fourier expansions are and give the inte-
gral formula for their coefficients; prove the Hecke bound and that there are no modular forms of
negative weight.

References: [10], Section 2.1 – 2.2
See also [4], Section VI.1 and VI.2, and the part on Complex Fourier series in Section III.5

6 Eisenstein series and the Delta function (G. Hüglin, J. Menzi)

Introduce the Eisenstein series Gk and relate the to the Eisenstein series associated to the lattice
Zτ+Z defined in the talk on the ℘-function. Show convergence, modularity and the computation of
the Fourier expansion; define the normalized Eisenstein series Ek and give its alternative definition
using the slash operator; explain that one can write every modular form as an Eisenstein series
plus a cusp form; give the evaluation of the Riemann zeta function at even natural numbers
in terms of Bernoulli numbers, and use this to show that Ek has rational Fourier coefficients;
introduce Ramanujan’s Delta function and show that it is a cusp form of weight 12; mention the
following things without proof: product expansion, multiplicative coefficients, some congruences,
Ramanujan conjecture (Deligne bound), Lehmer’s conjecture.

References: [10], Section 2.3 – 2.4

7 The valence formula and the structure of Mk (J. Schütt, J. Sommer)

Explain the order of a modular form at a point in the upper half-plane and at ∞; state, explain,
and prove the valence formula; show that multiplication with ∆ yields isomorphism Mk

∼= Sk+12

and use this to prove the structure theorem for Mk for small k; prove the dimension formula for
Mk and that it has a basis of products of Eisenstein series.

References: [10], Section 2.5
See also [4], Section VI.2 and Section VI.3

8 The j-invariant, the Eisenstein series of weight 2, and the Dedekind
eta function (C. Veit, A.Ying)

Define the j-invariant and determine its orders; define modular functions and show that every
modular function is a rational function in j; mention that j : Γ\H → C is a bijection; define the
holomorphic (but non-modular) Eisenstein series G2 and compute its Fourier expansion; prove its
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modular transformation law; define the non-holomorphic (but modular) Eisenstein series G∗2 and
the normalized versions E2 and E∗2 ; define the Dedekind eta function η as an infinite product, and

show that η′

η = i
4πG2; deduce the modular transformation properties of η; show that η24 = ∆ and

thereby prove the product expansion of ∆.

References: [10], Section 2.6 – 2.8

9 Modular forms for congruence subgroups and the four-squares-theorem
(J. Roshardt, A. Weidmann)

Define congruence subgroups, in particular Γ(N),Γ1(N),Γ0(N) and show that they have finite
index in SL2(Z); write down the explicit formula for their indices; introduce cusps; define modular
forms for congruence subgroups, and explain what their expansion at different cusps are; introduce
Eisenstein series for Γ0(N), in particular of weight 2; investigate the trace tr(f) and product π(f);
prove Sturm’s bound on the dimension of spaces of modular forms for congruence subgroups;
introduce the Jacobi theta function and prove its transformation under τ 7→ − 1

4τ using Poisson
summation; show that ϑ4 ∈M2(Γ0(4)), but omit some details of the proof if necessary; state and
prove the four-squares-theorem (omit some technical details, but make it clear how modular forms,
in particular the theta function and Eisenstein series, come into play).

References: [10], Section 2.9– 2.10
See also [12], Section on “Sums of two and four squares”.

10 The Petersson inner product and Poincaré series; Hecke operators I
(N. Avci, M. Portmann)

Introduce the hyperbolic volume element and the Petersson inner product of two modular forms
(one of which is a cusp form); prove its basic properties; show that the inner product is independent
of the choice of fundamental domain; prove that Eisenstein series are orthogonal to cusp forms;
define Poincaré series and show that they are cusp forms; prove that the inner product of a cusp
form f with the m-th Poincaré series gives (essentially) the m-th coefficient of f ; show that the
Poincaré series span the space of cusp forms; introduce the set Mn of integral matrices with
determinant n, and give a system of representatives for SL2(Z)\Mn; define Hecke operators and
prove its action on the Fourier expansion; infer that Hecke operatos define endomorphisms of Mk

and Sk.

References: [10], Section 3.1–3.3

11 Hecke operators II (F. Keta)

Recall the definition and basic properties of Hecke operators from the last talk; explain what a
simultaneous Hecke eigenform is and show what this means on the level of Fourier coefficients; show
that ∆ is a simultaneous eigenform and prove that its coefficients are multiplicative; show that the
Eisenstein series Ek is an eigenform, and state the formula for the action of Hecke operators on
Poincaré series; prove that the algebra of Hecke operators is commutative and generated by the Tp
for primes p, and give the precise composition laws (omit some details of the proof if necessary);
show that the Hecke operators are self-adjoint with respect to the Petersson inner product; use
this to show that Sk has an orthonormal basis of simultaneous Hecke eigenforms.

References: [10], Section 3.3–3.5
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12 The Birch and Swinnerton-Dyer Conjecture (R. Angst, M. Olsen)

Recall the definition of elliptic curves over Q, and state Mordell’s Theorem. Explain the rank of
a rational elliptic curve, and its meaning for the number of rational points; explain the content
of the Birch and Swinnerton-Dyer Conjecture; give some historical overview and some remarks
on the state of the Conjecture; explain the application to the Congruent Number Problem via
Tunnell’s Theorem. If time permits, mention the Modularity Theorem and thereby indicate the
connection of the BSD Conjecture to modular forms.

References: [6, 7]

Contact

Dr. Markus Schwagenscheidt, mschwagen@ethz.ch
https://people.math.ethz.ch/~mschwagen/ellipticfunctionsmodularforms
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