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Mean-Variance Hedging and Stochastic Control:
Beyond the Brownian Setting

Olga Bobrovnytska and Martin Schweizer

Abstract—We show for continuous semimartingales in a processes, the adjoint equations turn out to lead to a coupled
general filtration how the mean-variance hedging problem can system ofoackward stochastic differential equatio(BSDES)
be teated as a linear-quadratic stochastic control problem. ¢4 the coefficients of the (quadratic) value functional. This has

The adjoint equations lead to backward stochastic differential led t int ti d it | LO stochasti
equations for the three coefficients of the quadratic value process, ed to new interest in and new results on general LQ stochastic

and we give necessary and sufficient conditions for the solvability control problems, and the mean-variance hedging problem has
of these generalized stochastic Riccati equations. Motivated been treated fairly explicitly by these methods.
from mathematical finance, this paper takes a first step toward  From the mathematical finance point of view, one drawback
Ilne_ar-quadratlc stochastic control in more general than Brownian of this approach is that almost all existing papers impose rather
settings. restrictive assumptions. To apply general results from LQ
~Index Terms—Backward stochastic differential equations, stochastic control, authors work with Itd processes and assume
linear-quadratic - stochastic control, mean-variance hedging, hat || their coefficients are uniformly bounded, which ex-
reverse Holder inequality, stochastic Riccati equations, vari- lud ticall | ¢ dels. M ' the th
ance-optimal martingale measure. cludes many practically relevant models. Moreover, the theory
of BSDEs is only rarely used beyond the setting of a filtration
generated by a Brownian motion and, thus, strongly relies
. INTRODUCTION on a martingale representation theorem. On the other hand,

TOCHASTIC control methods have a venerable history ifié mean-variance hedging problem has been solved in much

he field of financial engineering, and a number of Nobdligher generality by martingale and projection techniques. One
Prizes bear ample witness to the fruitfulness of this interactiotgn allow continuous semimartingales in general filtrations and
One can for instance think of Merton’s seminal contributions @y needs an absence-of-arbitrage condition; see [17] and [22]
portfolio optimization and option pricing, among other thingdOr recent overviews. The present paper is a first step toward
Even earlier, Harry Markowitz was concerned with mean-varft fusion beetween mathematical finance and LQ stochastic
ance analysis in financial markets, and this topic has retainedGftrol at this more general level. For related recent results, see
popularity even after 50 years; see, for instance, the survey [i ].
which contains more than 200 references. However, in contrast "€ paper is structured as follows. Section Il presents the
to portfolio optimization based on utility functions, mean-variasic model, explains the mean-variance hedging problem and
ance analysis in dynamic intertemporal frameworks has only &sts it in the form of an LQ stochastic control problem. Com-
cently been linked to stochastic control in a more systemafi#ing the martingale optimality principle with the natural guess
way. Our goal in this paper is to explore this avenue further affft the value process of this problem should have a quadratic

to show that it leads to results and insights in stochastic contf$fucture, we then derive a system of BSDEs for the conjectured
even beyond the usual settings. coefficientsa, b, c. Section 11l gives a necessary and sufficient

In a given financial market, thenean-variance hedging condition for the first of these BSDEs (for the quadratic coeffi-

problem is to find for a given payoff a best approximatio§i€nte) to be solvable under the sole assumption that the under-
by means of self-financing trading strategies; the optimaliiy'”g asset price processis continuous. One can also show that
criterion is the expected squared error. In a series of recdgit: IS the value process of a dual control problem, but we do not
papers, this problem has been formulated and treated adWg!l on this issue here. Section IV gives sufficient conditions
linear-quadratic(LQ) stochastic controproblem at increasing for the other BSDEs (for the linear and constant coefficiénts
levels of generality; see for instance [11], [13], [8], [7], [10],andc, respectlvely)_to b_e solyable. Apart from continuity %f _
[24], or [9] for an overview and a historical perspective. IWV€ need that the filtratiodt” is continuous and that the vari-

the general case where the market coefficients are rand8ff€-optimal martingale measuesatisfies the reverse Holder
inequalityR»(P). Finally, SectionV shows how one can explic-

itly construct a solution for the mean-variance hedging problem
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(MVH) problem, its formulation as a linear-quadratic stol = (1...1)T € IR% and then\ is given by \i = Xi/Si

chastic control (LQSC) problem, and the associated backwavih A\ = (oo ")~!(s — 71), provided thats, has full rank

stochastic differential equations (BSDES). The goal is to study< n P-a.s. for allt. A frequently encountered assumption is

the relations between these objects. that themarket price of riskp := ¢ " A = o " (oo ") " (pu—71),
Our starting point is a stochastic model for the evolution of thie bounded uniformly it andw; this implies that

discounted prices for finitely many assets in a financial market.

We begin with a finite time horizofi” > 0 and a probability T T
space(?, F, P) with a filtration = (F3)o<:<r satisfying /)‘s d(M)s As
the usual conditions of right-continuity and completenéss: 0

(S))o<t<r is anlR*-valued semimartingale and we think $if
as assef’s discounted price at timeé In addition, there is a =
riskless asset whose discounted price is 1 at all times.
Throughout this paper, we impose tstanding assumption
that

(us - 7‘sl)T(050;|—)_1(Ns - Tsl) ds

s | ds

Oty P

S is continuous 1)

is boundedP-a.s. as well. We shall refer to this entire setup as

the standard example with tisgandard assumptions
S=8,+M+A One very special feature of the standard example is that one

has a martingale representation theorem in the filtrafiofi .

with an IR%-valued continuous local martingal®/ and an This simplifies many things, and one of our goals here is to avoid

IR%-valued continuous adapted processof finite variation this type of assumption. O

(FV), both null at 0. In addition, we assume thfhas the form  We now return to our general setting and introduce the MVH

problem. Let® be a linear subspace of the set of &ff-valued

Hence,S can be uniquely written as

t

predictable S-integrable processes. The stochastic integral
Ay = /d<M>s Asp  0=t=T () processa(®) := [dS is thus well-defined for every € ©,
0 and we assume thatr(9) € L?(P) for everyd € 0, i.e.,

. . _ Gr(©) C L?(P). However, this is not enough to obtain good
d_ 2 _ T =
fo_r an@ \4alued predictable proces);e_LlOC(M), l.e., satis results; one also needs to impose integrability properties on
fying Jy A d(M), A, < oo p-as. This is a weak absence-0f; ) a5 a process. This issue will be addressed more carefully
arbitrage-type condition ofi; see [4] or [20]. later on (in Section I1) when the need arises.

Example: Thestandard examplto be keptin mindisamul- 110 mean-variance hedging probleffor H, with respect to
tidimensionaltd process modadf the following type. Le#V” be ©)is to

an IR™-valued Brownian motion ohQ, 7, P) and ' = IF"V

the P-augmentation of the filtration generated By. Let S =  minimize E[(H — vo — G7(¥))?]

t('SZ)i:Lm’d be the solution of the stochastic differential equa- over all pairgvy, ) € Rx ©  (3)
ions

whereH € L?(Fr, P) is a square-integrabl&r-measurable
random variable. The financial interpretation of (3) is as follows.
Any pair (v, ) describes a dynamic trading strategy which
starts at time 0 with initial capitaty, holds; shares of asset

with predictablelR?- and JR**"-valued processesands that 1 at time ¢ and is self-financing, thus leading to a wealth of
are P-a.s. on0, 7] Lebesgue-integrable and Lebesgue-squarks = vo + Gi(¥) at time¢. The random variablé/ models
integrable, respectively§ models undiscounted prices a8, the discounted payoff of some financial instrument. This is usu-
which is of the same form as the oth§f, describes an addi- &lly some obligation and so (3) has the goal of minimizing, by
tional asset that we use as a numeraire for discounting; so in 81 choice of a strategy, the average hedging error measured as
abstract setup, we considéf := 5¢/5° fori = 1,...,d. We the expected quadratic deviation of the final weadthfrom the

can for instance think c° as a reference stock or a zero coupol9etH . Mathematically, this amounts to projecting i (F)

bond with a suitable maturity. But for concreteness, we focus 8 the2I|nea.r subspadgr(©), and so (3) is 320Ivable for any

the special case wherd” = 0 so thatS® has finite variation. H € L°(P) if and only if Gr(®) is closed inL*(P). We will

5% is then called a (classicadavings accountr := ° is the reéturn to this in Sections Ill and V.

as; =5 | pyydt+> o dWi |, 55> 0

i=1

instantaneoushort rate andS’ takes the form The MVH problem is seen to be a special case bfasto-
chastic control problenif we rewrite it as
dS;’ = S;’ (u; — ) dt + Z atij thj . thﬂ =9, dS; =9, dM, + 192— d{(M), A, Vbﬂ = o
j=1

with the objective function
The condition thatd has the form (2) is then equivalent to as- Y 5
suming thaty, — 71 € rangéoyo;, ) P-a.s. for allt, with F(V,9)=F |:(VT ~ H) }
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which is to be minimized by the choice ¢fe ©. Thisis actu- V! = wvg + G¢(¥), the wealth we have achieved by using
ally a slight variation of (3) since, is taken as fixed. However, (vo, ) up to timet.
if one can solve the above problem for agyone can also solve  Our first result is simply thenartingale optimality principle

(3) by simply optimizing oveuy. for stochastic control in the present setting. Note that this result
Example: Inthe standard example introduced previously, thie valid without the assumption th&tis continuous. The proofis
LQSC problem is first written as a standard dynamic programming argument as for [12, Th. 4.1]

Y _ _ Y and, therefore, omitted. With slight anticipation, we also remark
dVy" = 9, diag(Sy)be dt + 0, diag(Se)or dWy, Vg’ =vo  that the imposed assumption on the family of random variables
with b = ;2 — 1 and with the same objective function as abover.t(z/}) is satisfied for the specific spaéethat we introduce later

. . . . .._In Section Il
To bring this closer to the usual formulations found in the liter- Proposition 1: Fix H € L*(Fr, P) andu, € IR. Assume

ature, we introduce that @ is such that for fixed and+, the family {T';(+)) [¢ €

wii= 0S¢, 0<t<T tO()} is stable under taking minima. Then
1) for eachd € ©, the procesg/(?) is a P-submartingale
which is the amount invested in assat timet. Then an obvious and has an RCLL version that we again denote/bg);
change of notation gives 2) a proces®)* ¢ O solves (4) if and only ifJ(9*) is a
P-martingale.
AV =n by dt 4w o dW, Vi = : . .
¢ = beat T onaiv, o = %o Because our stochastic control problem is quadratic, we guess
and ) that its value process has a quadratic structure as well. Since the
F(V,m)=F [(VT’T — H) } . optimal strategy is obtained by “setting the derivative equal to

_ _ 0,” we also guess that* andV'?" should be affinely related. It
If we compare this to a typical LQSC problem of the form  wijll turn out that both guesses are correct. Moreover, using the
first guess as an a priori assumption will help us to find a sys-
_ T T
dey = (A@)ze + Btyur) dt + (@, OF) +uy D) dWe o hio way of attacking the MVH problem. So let us see where

with random coefficients and objective function such an assumption gets us—again even without continuity of
S.
A Lemma 2:Fix H € L*(Fr,P) andvy € IR and sup-
F(z,u)=E / (z] Q(t)zs + z/ P(t)u, + u[ N(t)u,) dt  pose that there exists som#¢ € © such that for each ¢
0 [0, 7], J;(9*) is a quadratic function of,’ . Then, there exist

adapted stochastic procesaes, ¢ not depending ott such that
+ R(T)|zg —O(T))?| We have for every) € ©

J@) =a (V' —b) +a P-as, 0<t<T. (5
we see that we have the special case wheter, v =V is one- _ o ) .
dimensional andd = 0,B" = b = u—r1,0 = 0,D = Proof: By assumption/;(9*) = a,(V," —b)" +crisa
5,Q=0,P=0,N=0,R(T)=1,0(T) = H. ] Quadratic function o¥;”", with of courseF;-measurable coef-

In order to study the MVH problem (3), we now fix ficients. On the other hand, the definition'@ (") yields
5 . o
H ¢ L*(Fr, P) andyy € IR and consider the modified MVH Ji(9%) = essinfycroq-yTa(1))

problem to )

T
minimize E[(H — vy — Gr(¥))*] overalld € ©.  (4) = essinfyecoB | | H—VY — /% as, | | 7
t

The solution of (4), if it exists, will be denoted h§* and is

called an optimal strategy. As usual in stochastic control, it éﬁwd in the same way for any € ©

helpful to consider a dynamic version of (4). So, we introduce

for eachy € © andt € [0, 7] the set 2

T
_ o _ vy _
'Q(9) = {1 € O = ¥ onQ x [0,4]} H0) = essinlyco B (H Vi /w dS’”’) d
t

of all strategies that coincide with up to timet, we define the _
random variable§,(v) := E[(H — vo — Gr(1))2| ], and Thus we see that () has the same functional dependence of

we set V¥ as J,(0*) of V;V". This establishes (5) and also makes it
clear that the coefficients, b, ¢ do not depend od. g.e.d.
Ji(9) := essinfy,cromw)'t (1) Remarks:
=essinf { E[(H —vo — Gr(¥))* | F]|¢ € ‘O(9)} . 1) That the value proces&(¢*) has a quadratic structure
was earlier noticed or conjectured by several authors in
Since vg + Gr(y) = vy + Gi(¥) + ftT ¥, dS, for particular cases; see for instance [2] for a situation in fi-

¥ € 'O(9), () is the minimal expected squared hedging nite discrete time with finite?, [1] for a study of some
error conditional or#; if we start at timet with “initial capital” Markovian models in discrete and continuous time, or [8],
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[10], and [24] in the framework of an 1t6 process modelmention that solutions of (6)—(8) are, respectively, tuples
For the present setting, Mania and Tevzadze have very fe; A%, N%), (b, u®,4*, N*), and(c, N{©)), with properties still
cently proved in [16] under an additional assumption th&b be specified. Our goal is to study the solvability of these
J(¥*) is indeed a quadratic function &f”". However, equations under minimal assumptions.
the thrust of Lemma 2 is different because we want to ex- Equations (6)—(8) can be viewed as general versions of ear-
amine.J () for arbitrary¥ € ©. lier results derived under more specific assumptions. For the
2) The generality of Lemma 2 comes at a price becausecise of an Itd process model, we explain below how we recover
uses an unchecked assumption abéutand its proof some equations from [8]. Prior to that, [1] has studied the MVH
gives us so far no information about the structure or evgmoblem under Markovian assumptions in both discrete and con-
path regularity of the processesh, c. These issues will tinuous time; the general discrete-time case has been analyzed
be dealt with in future work. o (in an unpublished German diploma thesis) by Lehwel3—Litz-
By combining Proposition 1 and Lemma 2, we obtain in mann who eliminated the assumption in [2] thats finite.
conceptually straightforward way a systematic method to at-In discrete time, one can rigorously prove by backward in-
tack and solve the MVH problem. This goes as follows. Suphtuction both the martingale optimality principle and the fact that
pose we have obtained in some way the quadratic structure (b)?) has the quadratic structure (5), without having to assume
Assuminghata, b, ¢ from Lemma 2 are nice semimartingalesana priori relation betwee/(¢*) andV?"; this comes out as
we exploit the martingale optimality principle in Proposition Ja consequence. Again by backward induction, one can derive
to derive equations that 0, c ought to satisfy. Then we studya system of difference equations that, ¢ must satisfy. The
these equations and show how their solutions can be usedB®DEs (6)—(8) are precisely the continuous-time analogues.
construct an optimal strategy for the MVH problem. Hence the In continuous time and in a Markovian model, [1] derives a
equations provide at leastifficientconditions for the solvability system of three PDEs from the HIB equation associated to the
of the MVH problem. Because the derivation (which is sketchedVVH problem. In fact, the assumption th&{d*) is a quadratic
later) of the equations is only heuristic, we do not know yet fiinction of V¥~ implies in that Markovian situation tha (9*)
they are also necessary conditions. However, we think thisissa function;* of Vt”* and the underlying Markovian state
the case and relegate the issues of proving (5) and of a rigoreasiables. The martingale optimality principle reduces to the
derivation for the equations to future work. For some very ré&4JB equation forj*, and the coefficient functions, b, ¢ of the
cent progress, see also [24] and [16]. quadratic functiory* satisfy a coupled system of PDEs which
Soletus assume thatb, c are well-behaved semimartingalesonstitute the Markovian analogs of the BSDEs (6)—(8).
and that there exists an optimal stratéy Then we know from  Example: Let us look at the structure of (6) for the case of
(5) and Proposition 1 that() = a(V}? —b)?+cis a submartin- our standard example of an Ité process model. If we simply plug
gale for every? € © and a martingale fo# = ¥*. Hence if we in for M and(A{), we obtain the equation
use Itd’s formula to compute the canonical decomposition of
J (), we know that the minimum ovet of the finite variation
(FV) term must be 0 and attained #¥. If we do those calcula- day = ay
tions and formally differentiate with respect#p we first find
that* must be an affine function af(¢*). (This will actually + (AD) " diag(S;)ordW; + dNF (9)
be confirmed later; see Proposition 10 in Section V.) Plugging
this back in leads to an explicit expression for the FV part dfith a local martingaleV® that must be orthogonal tdf =
W a __
J(¥*), namely a quadratic function @¥(¥*). But J(v*) is a J diag(5)odW. Becausel" = I, this means thaN* =
martingale, so the FV part must vanish, and setting the coeffi’* W W'th S ker(fft) P-as. forallt. So if we setr =
cients of all powers o(¥9*) to be 0 produces (under suitable!” + »* with £ := o "diag(5)A?, we see that; is the pro-

1 T
ag

assumptions) the following system of equationsdof, c: jection of Y* on fangéfft ) P-a.s. for allt and, thus£® =
o' (oo ") taY® =: IIY®. Moreover,s, diag(S;)A\s = ¢ is
Al A2 in rangéo, ) P-a.s. for allt, sop'* = 0 and we obtain by
day = ay <>\t + t—) (M), <)\t + t—) squaring out from (9) the equation
+A%dM, +dN?, ap=1 (6) 1
Z/ " day = <|<Pt|2at +20] Y+ (V) To/]
dby = b dS, +- P dN“ - —t d(N®); + dN?, R
a;_ —1
br=H (7) x (o10) 0%") dt + Y, dW,
B0 ) e W o
dey = — o ANy — a—d(N")y + AN, = | et ar + 2¢, Y, + ” (") 1LY ) dt
cr=0. (8) + Y2 dW, (10)

Since we study these equations in detail in the rest of tfer the pair(a, Y *). This coincides (except for the interest rate
paper, we postpone most explanations for the moment. Wiich is 0 in our discounted situation) with [8, eq. (117)] and,
just note that (6)—(8) all are BSDEs, that (7) needs ingredhus, shows that our setting contains parts of that paper as a
ents from (6), and (8) even from both (6) and (7). We alsspecial case. It is also explained in [8] how (10) reduces to a
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PDE under Markovian assumptions; see, in particular, in [8, egoreover, each of these conditions implies that we can find a
(40)]. solution such that

[1l. EQUIVALENT MARTINGALE MEASURES AND SOLVABILITY a is bounded from above uniformly in

FORa t,w (P — a.s., tobe precige (13)
In this section, we relate the solvability of the BSDE (6)dor @nd )
to a property of absence of arbitrage. Quite remarkably, it turns Zisinthe clas®?,i.e., = (Z9)? is of clas$D)
out that there is a simple and natural necessary and sufficient ¢ a 5
underP for every@} € M. (14)

condition for a solution of (6) to exist.

Definition: An equivalent martingale measure (EMKby S
is a probability measur&® = P with ¢ = P on J, and such
that S is a local@-martingale. Thalensity processf @ with
respect taP is an RCLL version of the strictly positivE-mar-
tingale Z* = Ep[(dQ/dP)|F],0 <t < T.

We denote bylM . the set of all EMM'’s forS and byM?
the subset of thos® € M. such tha(dQ/dP) € L*(P). For C€
readers less familiar with mathematical finance, we point out 1
that equivalent martingale measures$aare the objects which SUre

Proof: “2) = 1)™ If we take a solution(a, A%, N*) and
defineN := [(1/a_)dN?, thenN is like N* in Mg 1o.(P)
andP-orthogonal tal/. Moreover,Z := £(— [ AdM +N) =
Z(a) is by (12) strictly positive and in\2(P). This implies
N € ME, . (P), henceN € N?, and the measur@ with
densityZr with respect taP is in Mf which proves 1).

)= 2)"0f Mf # (), the variance-optimal martingale mea-
P exists inM? sinceS is continuous, and we know that

are naturally dual to self-financing trading strategiesYomhe
assumption thalM . # @ is intimately related to a condition
of absence of arbitrage for our financial market; see [6] for
precise formulation. We also remark thi&f. # ¢ implies the
structure (2) ford becauses is continuous; see [20, Th. 1]. The

the process

dp
dP

a Z, = F 0<t<T (15)

7

Ep

more stringent requirement th&f# # () amounts to the condi- has the formZ = Z, + | ¢ dS for a deterministic constarf,

tion that the dual of the MVH problem should have nonempty,,q anr¢

domain.

Provided thatM? # (), the variance-optimal martingale
measureis the unique elemen of M2 that minimizes
1(dQ/dP)||r=(py over all Q € IM?2. This uses thatS is
continuous; see [5] and [21]. Also, becauSeds continuous,
anyZ< for Q € IM? is of the formZ®@ = £(— [ A dM + N9)
for some locally P-square-integrable localP-martingale
N€ null at 0 (for brevity, we writeN? € MZ | (P)) with
N@ P-orthogonal toM; see [20, Th. 1]. IfA/? denotes the
space of allv € Mg, (P) that areP-orthogonal taM and
such tha€(— [ AdM + N) is strictly positive and in\?(P),
we can parametriz&/Z by A2 via

:Z?:S(—/)\dMJrNQ)
T

for some N© ¢ ./\/2} . (1)

dQ

2 _ ~
= oo

Recall that the BSDE fot. has the form of (6). Asolution
of (6) is a triplet(a, A%, N) satisfying (6) and such thatis
a strictly positive RCLL semimartingale witth > 0, A” is
an IR%-valued predictablé//-integrable process, anii“ is a
local P-martingale null at 0¢ € Mo 1,.(P), for short) and
P-orthogonal taM (N® L M).

Theorem 3: The following statements are equivalent.

1) M? # 0.

2) The BSDE (6) has a solutidi@, A*, N*) such that

8<—/AdM+/£dN”’)

is strictly positive and in\M? (P).

Z(a) :

12)

-valued predictables-integrable process; see [5,
Lemma 2.2]. Becaus® = P, Z is strictly positive and can thus
be written asZ = Z, £( [ v dS) with v := {/Z. Note thaty
is M-integrable since/Z is locally boundedy is S-integrable
and.s is continuous with martingale pakf. On the other hand,
the density procesg” has the fornz” = £(— [AdM+N")
for someN € N2, Setting

P
~zZ

a:

and applying 1t6’s formula yields

So, if we set

da = —a_(A+7)dM +a_ dNT + a_yT d(M) .
r
Ai=—a_(A+v)=——F

ZZ <)\+ ) (16)

we see fromuy = Z}’/ZT = 1 and by plugging in that the
triplet (a, A®, N*) satisfies (6). Moreover; anda_ are both
strictly positive becaus® > 0is continuous and’” is a strictly
positive P-martingale;N* is like N a local P-martingale null
at 0 andP-orthogonal tal/; and A® is predictable and/-in-
tegrable becausg” andl/Z are locally bounded ani, v are
both M-integrable. Thus(a, A*, N¢) is a solution of (6), and
Z(a) = E(— [AdM + [(1/a_)dN*) = Z" is in M?(P)
because® € IM?2. This proves 2).

N e

and
N® ::/a, de)
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Since we know now that 1) and 2) are equivalent, we assume  use It6’s formula, we find that/V solves our BSDE (6).

1) and prove that := Z/Z satisfies (13) and (14). By the However, this was not the way we originally derived (6).
Bayes formula and Jensen’s inequality If IF is not continuous, matters become more com-
. plicated. The recent paper [15] again contains a BSDE
-, | 4P 1 P\? P for the procesd” from (18), but both the equation and
Z="Ep dP Fi| = —f’E [(ZT) ‘Ft} 22 its derivation become technically much more difficult.
Hence, working directly with:, as we do, appears to be
sothatwe get; < 1 P —a.s.forallt € [0, 7. Thisis (13). By the better approach. This has recently also been done in
the same computation [16].
1 1 2 2) We have already seen at the end of Section Il how the
—=——=F {(Zﬁ) |]-"T} BSDE (6) boils down to (10) in the framework of our

standard Itd6 process example. In the terminology of LQ
stochastic control, (10) is a particular case sfa@chastic

v (a)

for any stopping timer, and sinceP is variance-optimal, we Riccati equatior{SRE). Such equations have recently at-
have tracted a lot of attention; see for instance [7], [10], and
) L2 ) [24], or [9] for a survey. However, all these papers stay
E {(Zﬁ/ Zf) ‘]—}} <E {(Z?/Z?) ‘]—}} P — as. within the framework of a Brownian filtratiof” = """,
Our BSDE (6) could be called generalized SREand

(17) Theorem 3 is then an existence result in a general filtra-

tion. To be fair, we should add that the sharpness of our

Theorem 3 (necessary and sufficient conditions) is due to

the fact that our SRE has more structure than a general

SRE—Dboth (6) itself as well as its reduced form (13).

) I We have so far not made any uniqueness assertion about the
([r.7]]

for any Q@ € IMZ. In fact, if (17) fails for someQ on a set
B ¢ F. with P[B] > 0, one easily checks that the meas@¥e
with density process

solution of (6). In preparation for that, we now first explain how
one can construct the variance-optimal martingale meaBure
is in M2 and hasE[(dQ’/dPY] < E[(dP/dP)Q], contra- from a nice solution of the BSDE (6).

dicting the optimality ofP. Hence, we get Proposition 4: Suppose thaf\/? # (), and take any solution
(a,A% N%) of (6) satisfying (12) and (14). Then, the density

i i 7P
7' =Z"Ijo ) + <Z”IBF + == 7915
’ ZQ

T

) e )= : g
0< 1 (ZQ)Q <E [(Z?) ‘ﬁ} process of the variance-optimal martingale meagtire given
ar by
for any stopping time-, and sinceZ¢ € L?(P) for Q € IM?, gP _ ¢ <—/)\dM n / 1 dNa) _ (19)
this shows that (Z<)? is of clasg(D) underP. Hence, we also a-
have (14). g.e.d.

Proof: Since M? # (), we know from Theorem 3 that
. ) ] o at least one solution with the above properties exists, and that
1) Under the additional assumption that the filtratihhis Z(a) = E(— [ AdM + [(1/a_) dN*) s for any solution with
continuous (i.e., all locaP-martingales are continuous),(lz) the density process of_sonigi(a) c M2, So. we have
we could also derive the implication "> 2)” in The- 14 ghow thatQ(a) = P, i.e., Q(a) is variance-optimal, ifs
orem 3 from the results of Mania and Tevzadze in [14} 5¢ the extra property (14). We claim that for agye 1>
These authors consider the process [note the typo “sypiip, density procesg® = £(— [ AdM + N?), Itd’s formuliél

Remarks:

in their equation (2.7)] yields that(1/a)(Z®)? is a local P-submartingale, and a local
_ o/ o\ P-martingale for@ = Q(a). Thanks to the integrability condi-
Vii=essinfoepz B |:(ZT/Zt ) ‘ft} ; 0<t<T tion (14), we then actually have (tru#-submartingales and a

(18) (true) P-martingale and, thus, sineg- = 1
and derive in their Corollary 1 a BSDE (3.30) thamust JO\? . 1 (ZQ)2 . 1
dP o ar T - ao

satisfy. The proces¥ is the value process of the opti- E
mization problem dual to the MVH problem, namely that

for any @ € IM?, with equality forQ = Q(a). HenceQ(a) is
indeed variance-optimal.

of finding the variance-optimal martingale measure
V.= E {(Zﬁ/ ZF)Q‘ Ft:| It remains to justify the above claim, and this is mainly a
- t

Hence
matter of diligence in using 1t6’s formula; the only complication
1 P 7 stems from the fact thav® and N9 may be discontinuous.
= pbr [ZT‘E} =,F BecauseZ? = &(— [ AdM + N9) with N9 L M, we get
t t

by the Bayes formula, and we see thandV” are related 4(Z9)?) = (Z2)*(=2\dM +2dN°
by ¢ = 1/V. If we now start with the BSDE fol” and +AT d(M) A+ d[N?]) (20)
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and Ité’s formula gives fori =1,2. (24)
d <1> - _% da + ig d(a®) + A <1> + %Aa (21) Moreover, the proof of Proposition 4 shows tl(ﬂ_a/tc_zi)(Z_f’)2 is
a a” a” a a” a P-martingale for; = 1,2 and sinces?. = 1, this implies that

where we write as usua\l, = U, — U,_ for the jump at time a' = a®. Because (124) yieQIdf(l/al,) dN* = [(1/a?)dN?,
¢ of an RCLL proces#/. To computel(1/a), (Z?)?], we now we conclude thatv: = N= as well. If we use the BSDE (6)

i i 1 2 1 _ 2
use (20), (21), and the BSDE (6) together witfa, [N?]] = to write down the dyna_mlcs of* — a” and thenuse* = a _
AaA[N9], da, M] = d(M) A® and andN! = N2, we obtain that the zero process has a canonical

decomposition with locaP-martingale partf (A' — A%) dM,
dla, N9] = d[N®, N€] and this implies that\* = A? (in the spacel} (M), to be
= d((N®)°,(N9)°) + AN®AN® precise). . N g.e.d.
Remark: Results similar to Propositions 4 and 5 can also be
to obtain found in [14] or [15], but only under the additional assumption
1 that IF" is continuous or that the minimal martingale measure
d [57 (ZQ)Q} P (the EMM associated t& = 0 in (11)) exists and satisfies
9 the reverse Holder inequalitiz(P). Since we do no need this

= (Z9)? <12)\T d{MYA® — —-d((N*),(N9)°) here, explanation of the latter is postponed for the moment. In
a- a- the framework of the usual It6 process example, (19) can also

4 2A <1> ANQ £ A <1> A[NQ]> ' 22) be obtained by combining [8, egs. (134), (125), and (117}}.
a a The preceding results need no specific properties of the strate-
giesy we consider and so the choice®thas not been relevant
so far. This is so because (as already remarked and as evident
AN® = Aqg (23) fromthe proofs) can be expressed directly in terms of the dual
of the MVH problem. Fob andc, this is no longer the case, and
which follows immediately from the BSDE (6) sinc€ is e have to make a precise choice for We have decided to
continuous. Now, we apply the product rule {t/a)(Z9)?,  work here with the same space of strategies as in [3] and [19].
use (20)-(22) and plug in from the BSDE (6). Then, we use pefinition: The space® consists of all /R*-valued pre-
d[N?] = d((N?)°) + (AN®)? andA[N¥] = (AN?)? and, dictable S- mtegrable processed such that the stochastic
after collecting terms and simplifying, end up with integral G(9) = [ dS is in the spaces?(P) of semimartin-
gales. Equwalentlyz? € ©if and only if 4 is predictable and

o |[Eanos [iaon]

Note that we also have used

~(Z9)? = local P — martingale
a
+/(Z?)21d<<NQ—/idN") >
a a_
+§;< (AN?) r
</MM> +/|z9§d,4u|
T
0

+ A <—) (14+AN®)? + %Aa) .
a a”
In [3] and [19], this is also expressed by saying that
Finally, an elementary computation shows that the last sumgs - L?(M) N L2(A). It is easy to check for this space

< 00.

equal to © that for fixed ¢t and ¢, the family {I',(¢)) |4 € '©(9)}
(a_(1+ AN®) — a)? is stable under taking minima. Hence, the assumption of
Z aa? . Proposition 1 is satisfied.

For the MVH problem to be solvable for arbitrary
Because: is strictly positive, we therefore see thaya)(Z%)> H € L*(Fr, P), we wantGy(©) to be closed inL?(P). It
is indeed always a locdP-submartingale. Fof) = Q(a), we has been shown in [3] that this is here (whéres continuous)
have N = [(1/a_)dN®, henceAN® = (1/a_)Aa equivalent to the condition that the variance-optimal martingale
(a/a_) — 1 by (23), and plugging in shows thé\l/a)(ZQ)2 measureP satisfies the reverse Holder inequaliig(P); see
is then a localP-martingale since both drift terms vanish. Thig3, Th. 4.1]. The conditiorR,(P) is defined as follows.

proves our claim and completes the proof. g.e.d. Definition: We say that) € IM? satisfies theeverse Holder
We now use Proposition 4 to give a uniqueness result for theequality R»( P) if there is a constan®’ € (0, co) such that the
BSDE (6). density procesg? satisfies
Proposition 5: Suppose thali/? # §. Then (6) has a unique ) )
solution(a, A%, N¢) satisfying (12) and (14). Ep [(ZIQ) |]—“t} <C (Z?) P — as, 0<t<T.
Proof: If we have two such solutiong’, A*, N*) for i =

1,2, Proposition 4 tells us that ~ :
’ P Our next result shows thél, ( P) for P can be directly trans-

N _ T N lated into an additional property af This again sharpens pre-
Ha') =€ < /)\dM +/ al N ) =7 vious results in [14] and [15].
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Theorem 6: The following statements are equivalent.

1) M? # 0 and P satisfiesR, (P).

2) M? # p and some&) € IM? satisfiesRy(P).

3) The BSDE (6) has a solutigia, A*, N*) satisfying (12)
and in addition that

a 1s bounded from below uniformly in
t,w (P — a.s., tobe precige (25)

Proof. The equivalence of 1) and 2) is directly from [3,
Th. 4.1]. If 1) holds, the proof of Theorem 3 shows that we can
construct a solution to (6) with
1 Z 1

ay th

! 2E[(Z§’)2 |j’-"t} <0 P - as,

where we have used the Bayes formula &d7). This yields

3). Conversely, suppose that 3) holds and use Theorem 3 to
choose a solutiofz, A%, N*) such that we also have (12). Then
(1/a)(Z")* is aP-martingale by the proof of Proposition 4 and
sincear = 1, we get

=[]

due to (25). Thus, 1) holds and the proof is complete.

:Z—ti)Ef, [Zf|]—“t}

2)

0<t<T

ay
0<tLT

g.e.d.

IV. BSDESFORb AND ¢

In this section, we prove existence and uniqueness for the
solutions(b, u*, 4%, N*) and (¢, N()) of (7) and (8) for arbi-
trary H € L?(Fr,P), assuming that we have already solved
(6) for a. This will be done under the additional assumptions
that the filtrationZF" is continuous and tha® (or, equivalently
by Theorem 6, som& € IM?) satisfies the reverse Holder in-
equality Ro(P). If IF'is continuous, then, b, ¢ are actually all
continuous. But for ease of comparison with future extensions,
we shall still writea_ andb_ where this is appropriate.

Let us first recall the BSDE (7) fdr. We fix H € L?(Fr, P)
and a solution tripléa, A®, N) of the BSDE (6) fora. Then,
we consider (7). Aolutionof (7) is a quadrupléb, 12, y*, Nb)
satisfying (7) and such thdt is an RCLL semimartingale,
pb is an IR*-valued predictables-integrable process)’ is a
real-valued predictabl&/*-integrable process amd® is a locall
P-martingale null at 0 ané’-orthogonal to both/ and N .

Theorem 7:Suppose thathM? # . Take the solution
(a, A%, N*) of (6) satisfying (12) and (14). If the filtration
IF is continuous, the BSDE (7) fob then has a solution
(b, u*, %, N).

Proof: As usual, we denote by the variance-optimal
martingale measure.

1) Becauséd is in L?(P), the process

3)

b= Ep[H|F], 0<t<T (26)

is well-defined, can be chosen RCLL, is a semimartingale
and aﬁ’-martingale and hakr = H. Sinces is contin-
uous,b has undet” a Galtchouk—Kunita—Watanabe de-
composition

b:bo—i—/ude—i—Lb

where 1! is IR%-valued, predictable and-integrable,
and L’ is in My 10.(P) and P-orthogonal toS. [If P
satisfies in addition the reverse Holder inequality/ P),

[19, Th. 3] even implies thap® € L%(M,P) and
supg<,<r |Lt| € L3(P), i.e.,L* € R?(P).] However,

(7) prescribes the behavior bfunder P, not P, and so

we need to understand how the lodaimartingale L’
behaves undeP.

By Theorem 3 and Propostion 5, (6) has a unique solution
(a, A%, N¢) with (12) and (14). Thenf(1/a_)dN* is

in M2 ,..(P) and the density process” € M?(P) is
given by

Zf’:f:(—/AdMJr/idNa)
a_
according to (19) in Proposition 4. Hence,

(77, [(1/a_)dN*)y = [ Z"(1/a?)d(N°) exists and
Girsanov’s theorem tells us that

R;:/aidNa—/Z—lﬁd<Zf’,/aidNa>
- / ~ane / AN (27)

is a local P-martingale. Becausdl” is continuous,
is continuous and s&’ has underP a Galtchouk—Ku-
nita—Watanabe decomposition as

Lt = / " dR + N?
where * s predictable and R-integrable and
N® € Moc(P) is P-orthogonal toR. However,

due to (27) and sinceV?® is continuous,® is also
N®-integrable, and we obtain

db, = pbdS, + L dR, +dN?,  br=H
which is (7) due to the form oR. [If P satisfies in addi-
tion Ry (P), we know from 1) above thaty. € L?(P),

and [19, Th. 3] then implies that /a_)y* € L*(N®, P)
andN® € R?(P).]

To show thatV® is in Mg 1,.(P) and P-orthogonal to
both A and N*, we use the assumption th#t is con-
tinuous. Because all local martingales (under ghy=

P) are then continuous, orthogonality simply means that
the quadratic covariation process must vanish, and since
this can be computed pathwise, orthogonality is the same
under any ~ P. So,N* L Rimplies that{N*, N*)
0,L" L S implies that(L’, M) = 0 andN® L M im-
plies that{ R, M) = 0. Hence we also gétv’, M) = 0
and it only remains to show that the locBtmartingale
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NV is also a localP-martingale. However, (19) implies

that(Z, N*) = 0, hence alsd(1/4"), N*) = 0 since
all local martingales are continuous, and 8¢z ") N* €
Mo 1oc(P) and N? is indeed inMg 1o.(P). This com-

problem—known, that is, from martingale and projection
techniques as opposed to stochastic control and BSDEs.
But with some thought, the above solution can also be
guessed. In fact, the BSDE (7) is linear and it is well

pletes the proof. g.e.d. known that a change of measure is then often helpful in
Proposition 8: Consider the situation of Theorem 7 and as-  finding a solution. So, if we introducg (as a density
sume in addition thaP satisfies the reverse Holder inequality process for a change of measure)da= Z_(—A dM +

R,(P). Then (7) has a unique solutioh ;:°, ¢*, N*) satisfying
1
pb e LAH(M), a—wb € L*(N%), N’ e RY(P). (28)

Moreover,b is then inR?(P).

(1/a_)dN)with N L M, we get

1 ,(/)b _1/)b
d</ZdZ,/a—_dN>_zd<N>.

Because we want to have

Proof: That (7) does have a solution satisfying (28) under , ,
the given assumptions has already been argued in the proof of _ b (4 o ¥ a b
g p y g p db=p’dS + AN® — — d(N®) + dN

Theorem 7. To prove uniqueness, take two solutions of (7) and a_ aZ

denote their difference b§f, 11,1, N). Then (7) gives
6:60+/ud5+/iz/;dN“—/in/;d(N“WrN
a_ aZ.
:60+/udS+/z/;dR+N

with R as in (27), and of cours& = 0. We want to argue

that [ 11 dS, [+ dR, andN are allP-martingales and pairwise
P-orthogonal; then they as well @smust all vanish and this

will prove uniqueness.

Itis clear thatf 1z dS is a localP-martingale sincé® € IM 2.
Moreover, using the reverse Holder inequality(P) (via [19,
Prop. 1]) and the fact that € L2(M) due to (28) yields

t

Ej | sup /uu dS,

0<t<T

JP

t
sup //v‘u ds,
0<t<7 |

lleall 2 ary < o0 (29)
L*(P)

L2(P)

dP

L2(D)

<C

so thatf pdSisa trueP-margingale. The proof of Theorem 7
shows thatf ¢ dR is a local P-martingale, and an analogous

argument using?,(P) and (28) as above implies thjity) dR
is also a trueP-martingale. NextV L A andV L N¢imply
due to the representation (19)4f thatNV is a local P-martin-
gale sinceVZ” is in My 1..(P). BecauseV is in R*(P) due

to (28), it is even a trué’-martingale. Finally, the pairwise or-

thogonality of [ 1. dS, [ dR and N follows as in the proof of
Theorem 7 from the assumption thatis continuous.

2

for (7), we should thus choosé such thatZ.S becomes

a local P-martingale (which we have already done with

the above structure af) and such thatv = N°. But

then we end up withz = Z”, which tells us that we

should try to obtairb as theP-martingale with final value

by = H—and this is how the proof of Theorem 7 starts.
2) The results in [19] are stated under the assumption that

Fo is trivial. But we can still use them here for genefal

because the triviality of-, is not used except for getting

an initial value zero for some martingales.

Example: For our standard example of an Ité process model,
the standard assumptions guarantee that the minimal martingale
measurel’ associated toV = 0 in (11) is in IM? and satisfies
the reverse Holder inequalif§, (P). We already know that the
BSDE (6) fora takes the form

1
dn = (o + 267 + - () ) at
t
LYW, ar=1

wherell = o' (00 ")~ 1o denotes the projection on the range
of o 7. This is an equation for the pajr, Y*); we also know
that

N° = / v dW = / (I — DY) dW (30)

and we see that is continuous.
By plugging in the dynamics &f and using (30), we can first
rewrite (7) as

. by
b = (e = ) oS0t L T = 1V )
t

W

T oq: b a b
Once we know that is unique, the proof of Theorem 7 yields ~ + <°’t diag(Se)py + - ~(I — L)Y + ”t) dw, (31)

b=bo+ [pubdS + Lb with LY € R*(P) andp® € L3(M).

Hence, the estimate (29) shows that® dS is in R?(P), and

then so ig. g.e.d.
Remarks:

t

for (b, u®,%°, %), wherer? should be irker(oy) P-a.s. and sat-
isfy (1) T = 0 P-a.s. for allt. This uses tha® = [ v dW
by It6’s representation theorem i = " and expresses the

1) One could argue with some justification that the aboweonditionsN® L M and N” L N@.
results look slightly artificial because they exploit the al- If we now setY? := * + (¢*/a)(I — IDY* + 1/ with
ready known general structure of the solution to the MV := o Tdiag(S)u?, we obtain that? is the projection of}?
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on rangés,’ ) P-a.s. for allt and thug?’ = I1Y'*. Using thatt®
and:® are both orthogonal to® = (I — II)Y'® next yields

1/)b

SOE[SW>VWF}<cm (35)
0<t<T

a2, by the reverse Holder inequalify»( P) via [19, Prop. 1] and by

a\xTyvb __
¥")'Y’ = . 5 .
the fact thatV® € R=(P) by (28). So theP-martingale

|/
For*, plugging this into the definition of"* and solving for

¥ then gives
J N = E

7
Qs

[0 e .
! aNn+! o AN, | 7,

0TIV

b b
=(I-11Y"° —
V= Uy = S v 0<t<T

Finally, using the definition of the market price of rigkto write is well-defined, and choosing an RCLL version and setting

(n = r1)" diag(S)u’ = T IIY"

t b 2 t
P
leads from (31) to ¢ = —/ (ZS) d(N%)s — /as_ d(NY), + N
T 1 0 o 0
dbt = (Y;b) <Ht¢t — a_(I — Ht)Y;a> dt T (wb)? T
t b =F / 5 d<Na>S+/as—d<Nb>s f‘t )
+Y, dW,, br=H (32) s—
t t
for the pair(b,Y"*). This coincides (except for the interest rate 0<t<T (36)
which is 0 in our discounted situation) with [8, eq. (124)], in _ _ © o
view of their equations (125), (117), and (114). [ Clearly yields a solutior{c, N'’) of (8) satisfying (33). That

Let us next recall the BSDE (8) for. We fix a solu- th.is,c is of class(D) follows immediately from (36) together
tion (a, A%, N°) of (6), someH e L*(Fr,P), a solution With (34)and (35). o o )
(b, u¥, ", N*) of the corresponding equation (7) and consider F?r any two solutions satisfying (33), (8) 'mP"eS_théF ¢
(8). A solution of (8) is a pair(c, N(©)) satisfying (8) and = € — ¢ + N — N is a-martingale with final value
such thate is an RCLL semimartingale an®/(®) is a local 0; hence we ha\(el = ¢ which implies thatv(®) = N(*") as
P-martingale. (We deliberately add here parentheses to ¥gll; proving uniqueness. . q.e.d.
superscript: to avoid confusion with the standard notatiaii ~ Example: For our standard example of an It6 process model,
for the continuous local martingale part of a semimartingale obtain by straightforward calculations and by using the in-
N) termediate results from the derivation of_the BSDE (32) that the
Theorem 9:Suppose that/> # (. Take the solution 9eneral BSDE (8) reduces to the equation
(a, A%, N*) of (6) satisfying (12) and (14). Assume that the )
filtration # is continuous and thaf satisfies the reverse  dc, = —a; |(1 — 11,)Y}| dt+ Y, dw,, cr =0
Holder inequality Ro(P). For H € L?(Fr,P), take the
solution (b, zu?, 1*, N'*) of (7) satisfying (28). Then the BSDE for the pair(c, Y (). O
(8) for ¢ has a unique solutioft, N©)) with the property that

. . V. SOLVING THE MVH PROBLEM WITH THE HELP OFBSDES
N isnotonly alocal, butatru® — martingale. (33)

In this section, we show how to construct the solution to
Moreover,c is then of clas§ D) underP. the MVH problems (3) and (4) explicitly from the solutions of
Proof: That we can choose (a,A% N*) and the BSDEs (6)—(8) fom,b,c. The basic idea for this is both
(b,u’, 9", N*) as desired follows from Propositions 5well-known and very simple. The martingale optimality prin-
and 8. Moreover, the proof of Theorem 3 shows that 1. ciple in Proposition 1 tells us to look for a strategy such that

Hence, we obtain J(¥*) becomes a martingale. Since we guess #@t") is a
T quadratic function of’?" and know from the BSDEs (6)—(8)
B [ (1%)? dIN© how its coefficientsz, b, ¢ should behave, it is natural to start
/ s (Vs by computing this quadratic functional more explicitly. For that
0 purpose, we first fixeg € IR and define for any) € © the

T 2 process
s [ () dml oo (38
5 N 5o(9) = ar (vo + Go(®) — ) + &

g 2
sincey’ /a_ is in L*(N?) by (28), and =a (V7 —b) +a, 0<t<T.

A Proposition 10: Suppose that the filtration F' is
E /as_d(N">s < E[(N%7] continuous. FixH € L*Fr,P) andvy € IR If

2 (a, A%, N®), (b, u®, 9", N?), (¢, N(9)) are solutions of the
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BSDE’s (6)—(8), thenj(«) is a local P-submartingale for any Proof: Lemma 11 implies that (37) has a unique solution
¥ € ©, and a localP-martingale if and only i} satisfies 9* in L(S). To show that}* is in fact in® C L(S), we prove
that

0 =pub— <)\ + 2—) (vo + G(9) = b_). (37) G(¥*)is in R*(P). (40)

Proof: A straightforward but lengthy application of 1td's YSing Rz(P) via [19, Prop. 1] then yields first that” is in
formula gives L?(M), becausdS] = [M] = (M) by the continuity ofS,
and Theorem 2 of [19] tells us tha (M) = ©, again due to

djo(9) = - dM, + -~ - AN¢ + - -- dN? JrdNt<c) Ry(P). To prove (40), we introduce the process
+as- <(z9t — pg) + <)\t + 2—%) L= alvo + G") = b) (41)
T and claim that
X (vo + Gi(d) — bt—)> d(M): Lis in R%(P). (42)
X <(29t — i)+ <)\t + cﬁ%) Then, we solve for3(¥*) to get
X (1o + Go() — bt)> Gy = % o+ b

and the assertion follows. We spare the reader the details of néj deduce (40) from (42), the fact thiaf ) is bounded due to

i nd 1 2
computation and mention only that the assumption of a contlgg(;;())sgggigjr']ng to Theorem 6, and the fact thas in R*(P)
uous filtration is used to replace all square brackets by shar)fj]_O prove (42)' we apply the product rule to the definition
brackets, which in turn allows one to exploit the orthogonalit41 of L olu in, 61~(8) and (37) and simolifv to obtain after
relations between/, N¢, and V®. g.e.d ) , plug in (6)~(8) (37) plify

To obtain a localP-martingale forj(4*), we have to find straightforward but lengthy calculations the SDE

a solutiond* to (37). The next result is the first step in that 1 e b 1nra
direction. dLy = Ly | =M\ dMy + — dN{ | — by dVy

ap_
Lemma 11: Denote byL(S) the set of allIR*-valued pre- b _
dictable S-integrable proce(ss)es. For apyy € L(S) and any o ANy, Lo = ao(to = bo)
semimartingald”, the equation for L. This is a linear SDE whose solution is given explicitly in
[18, Th. V.52]. If we introduce the processes
9= p—GW) - Y_) (38)
E::—/z/;bdN”'—/a,dN”

then has a unique solutiaf? in L(S).

Proof: Due to [18, Th. V.7], the equation and

E(H):=¢& <—/)\dM+/idN“> =zr
AU = —U_~dS + (u+~Y_) dS, Uy=0 (39) a—

: o ) . by (19) in Proposition 4, we obtain
has a unique solutio&y in the class of continuous semimartin-

gales b(_acauséls continuous. The process.= p—~(U-Y_) [ [
is then inL(S), and 0

_ _ _ _ P i 1
G(9) = /MS: —/Ufyd5+/(u+ny_)dS: U =2Z"Lo - ZP/F <wbdN“+a_dNb
_ b
shows tha#? by its definition does satisfy (38). For amysatis- _¥ d(N“))
fying (38), G(4) satisfies (39); henc&(¥) = U by uniqueness a— \
and so¢ = 9. g.e.d. P P a- v, Y a
. =Z"Lo—Z — | dN — dN

If we choose in Lemma 1% = p®,v = A + (A%/a_), and 0 /Zf <d +a_ d
Y = b—wg, we obtain in particular the existence of a procg&ss e
in L(S) satisfying (37). Our next goal is to prove thas, ¥*) ~Z d(N”’))

is a bona fide strategy by showing th#tis in ©.

Proposition 12: Suppose thatM? # §, IF is continuous 2 Zf’/“_j dLb
and P satisfiesR,(P). Fix H € L?*(Fr,P) and choose the zr
solutions(a, A%, N@), (b, u®, 1", N*), (¢, N()) of (6)—(8) asin
Theorem 9. For any, € IR, (37) then has a unique solutidf, \ \
andd* € O if by is bounded. (This last condition is automati- b arb P “ P “
cally satisfied if 7y is trivial.) =N+ / P / o )

with
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— Nty /wb dR Corollary 15: Under the assumptions of Theorem 13, we
also have for every € ©

as in the proof of Theorem 7. SincB ¢ M?,Zf’ is in essinfeio00) E[(H — vo — Gr(p)? | Fi]

M2(P) C R?*(P), andLg = ag(vo — bp) is bounded since . 5 2
ag < 1, is deterministic andy is bounded. So it remains to = J(0) = je(9) = ar (V' = b)) +

show that P-a.s. for everyt € [0,7].

Proof: This follows immediately from Theorem 13 and
(the proof of) Lemma 2. g.e.d.
Now, we can solve the MVH problem (4) with fixed initial
Butthis is a consequence of [19, Lemma 7] or more precisely @pital.
the proof given there. To see this, note théis a P-martingale Corollary 15: Under the assumptions of Theorem 18,

and inR?(P) since P satisfiesR,(P), as argued in step 1) of solves the MVH problem (4), and the minimal quadratic risk
the proof of Theorem 7. This implies thEt*]r € L*(P) by attime 0 is given by

[19, Prop. 1], due td?,(P). Because: is bounded according

to Theorem 3L := [a_dL" is also aP-martingale and sat-  inf E[(H — vy — G7(¥))?] = E[ao(vo — bo)* + co]. (45)
isfies[L]z € L*(P). Moreover,L’ L S underP implies that ~ °<®

(L, M) = 0 sinceF is continuous and so the proof of [19, Proof: The same argument as in the proof of Theorem 13
Lemma 7] yields yields for anyd € © that

Z7 / Ll e R¥(P) E[(H — vo — Gr(1))’] = Elir(9)]
Z > Eljo(9)] = Elao(vo — bo)*co]

which is precisely (43). This completes the proof. q'e'g\'/ith equality fory = 9*. This proves the assertion. g.e.d.
Now, we have everything we need to solve the MVVH problem. By minimizing overuv,, we obtain the solution of the MVH

We first prove that/(9*) = j(9*); this shows that our guess inproblem 3).

Section Il was correct and justifiesposteriorithe assumption Corollary 16: Under the assumptions of Theorem 13, the so-

made in Lemma 2. . .
. . - lution of the MVH problem (3) is given bywg, 9*(v§)), where
. 2 0> 0
Theorem 13:Suppose thal/, # §, I is continuous and” ¥*(vg) is the solution of (37) for the choice = v = E7[H].

satisfiesR,(P). Fix H € L?(Fr, P) and choose the solutions o ol e

(a, A%, N%), (b, g, 16", N, (e, N()) of (6)(8) as in Theorem The minimal quadratic risk is given by

9. Suppose thd, is bounded. Fixy € IR and take the solution i g [(H — v — Gr(0))?]
= F]J

zP / % dL’ is in R2(P). (43)

¥* of (37) given by Proposition 12. Then, we have v €IR,PEO
ao]Var[bo] + Elcol.  (46)
essinfyeiow ) E[(H — vo — Gr(1))* | F] = J.(9")
2 Proof: Minimizing the right-hand side of (45) yieldg, =
= i(0") = a (Vid - bt) +ci (44)  Elagbo]/Eao]. Sincea = ZT/Z and Z, is deterministic, we
_ , _ obtainE[ao] = 1/Z, and
P-a.s. for everyt € [0,7]. In particular,J.(¢*) is a quadratic
function of V2" for eacht. 1 P 1
Proof: The outer two equalities in (44) are just the defini- Elaobo] = ZJE [ZO EplH | ]:O]} - Z_OE”[H]

tions; only the middle one needs proof. We know from Prop
sition 10 thatj(9) = a(vo + G(9) — b)? + cis a local P-sub-
martingale for any? € © and a localP-martingale for} = ¥*
which is in@ by j(¥) is even a trug’-submartingale angi(¥*)

%y the definition ofb in (26). Plugging this into (45) and using
again that: = Z”/ Z yields (46) if we note thaZ!” = 1 since

P = PonF. g.e.d.

a true P-martingale. To see this, note thi) is of class(D) Remark: Regall thatS is assumed continuous throgghout.
underP because is so, by Theorem 9, becausés bounded, by V\_/e_ have seen in Th_e_orem Sthata necessary and squf|C|ent con-
Theorem 3, and becausqy) € S2(P) C R2(P)ford € © d|t|0nfo_r the solval?l_llty of the BSDE (6) fot is th_a_ltMe # 0.

andb € R2(P), by Proposition 8. So if we take any= ¢ € Combining Propos_mon 1_2, T_heo_rem 9,_Proposm(2)n 8, and The-
te(9*) and use the final conditionsy = 1,b; = H, cp = 0, orem 3 shows that if the filtratioff” is continuousM - # ¢ plus

we obtain from the submartingale property the reverse Hélder inequalit§,(P) for P together form asuf-
ficient condition for the solvability of the BSDE system (6)—(8)

E[(H —vo — Gr(9))? | F) for a, b, c. ConverselyM? # () plus Ry(P) is alsonecessary
— El4 F1> i in a certain sense. More precisely, suppose fhais contin-
[‘IT(z/i) | 7] 5 3(¥) uous. If the BSDEs (6)—(8) are solvable for adye L?(Fr, P)
— a (v;9 - bt) ¥ e = u(0%) with solutions that satisfy (12), (28), and (33), and if the solution

9* to (37) (which exists thanks to Lemma 11) is@nfor any
becausei + G, (1) = vo + G4(9*) = V;?" for ¢ € 'O(9*). wo € IR, then we obtain thab/? -  and P satisfiesR,(P). In
Fory = ¥*, we get equality sincg(*) is aP-martingale, and fact, solvability of (6) impliesli/? # () by Theorem 3, and the
so (44) follows. g.e.d. argument for Corollary 15 shows that (4) is solvabledsyfor
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anyH € L*(Fr, P). However, this means thétr (¢) must be and

closed inL?(P) which impliesR,(P) by [3, Th. 4.1]. 9
While the above converse result is gratifying because it shows

that our conditions are sharp, it is not really useful since the .

condition that¥* should be in® is difficult to check. o ¢hr
To round off this section, we briefly explain how the above

results are related to the solution of the MVH problem via theyis oincides with the recursive equation (48)190r

martingale and projection approach in [22]. As explained there

one first has to find the variance-optimal martingale measure

and represent the procegsfrom (15) as

=u’ - <)\ + ‘2—a> (v + G(*) —b_)

—é(V_H’i)—EIs[H]—/ﬁ* ds).

'Remark: When this paper was almost completed, we re-

ceived a preprint version of [16] by Mania and Tevzadze, who

also study the mean-variance hedging problem for a continuous
semimartingale model. These authors actually consider in
[16] the more general problem of minimizing the’-norm

of the final shortfall and derive a backward equation for the

Then one needs the Galtchouk—Kunita—Watanabe decompasirresponding value process. For the case 2, they prove

tion of H underP as in particular that the value function is quadratic and derive a

system of BSDEs for its coefficients. So their focus is more

on deriving the BSDEs, whereas we concentrate on proving
existence and unigueness and on finding sharp conditions for

Z:Zo—i—/de. (47)

T
H = E[H|Fo] + /55’7’”’ ds, + LT,
0 this.

One writes

VM = BR[H | 7] = E[H | F ]

t
+/§f’i) ds., + Lf{’i’, 0<t<T
0

[2]
o (3]
and obtains the optimal strate¢lj, ) for (3) as
. (4]
Vo = Ep[H]
and . [5]
§ =il _ % <V”’f) — E[H] - / MS) . (48) el

All this is taken from [22, Th. 4.6].
To relate this to our present setting, we first note that the proof

(7]

of Theorem 3 gives ug = Zf’/Z and therefore (8]

. . o

§=—<A+A—> 4g) O

Z a— [10]

by (16). Because we also have from (47) that = [11]
ZoE(f(¢/Z)dS), we get

(12]

- 1 A(I,

Z = a—OS <—/ <)\+ I) dS) (50) [13]
sinceZg’ = 1. We remark in passing that this means that
(1/ap)(A + (A®/a_)) is anadjustment process the termi-  [14]
nology of [21]. Combining (49) and (50) yields

[15]
- 1 A° A®
(=—— <)\+—)8<—/<)\+—> dS).
aop a_ a_
[16]
From the proof of Theorem 7, we obtdin= VHP b= eHP [17]
andL? = L¥.T, So, the solution to (3) obtained from Corollary
16 can be written as [18]
[19]

vy = EplH]=Vo

O
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