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Mean-Variance Hedging and Stochastic Control:
Beyond the Brownian Setting

Olga Bobrovnytska and Martin Schweizer

Abstract—We show for continuous semimartingales in a
general filtration how the mean-variance hedging problem can
be treated as a linear-quadratic stochastic control problem.
The adjoint equations lead to backward stochastic differential
equations for the three coefficients of the quadratic value process,
and we give necessary and sufficient conditions for the solvability
of these generalized stochastic Riccati equations. Motivated
from mathematical finance, this paper takes a first step toward
linear-quadratic stochastic control in more general than Brownian
settings.

Index Terms—Backward stochastic differential equations,
linear-quadratic stochastic control, mean-variance hedging,
reverse Hölder inequality, stochastic Riccati equations, vari-
ance-optimal martingale measure.

I. INTRODUCTION

STOCHASTIC control methods have a venerable history in
the field of financial engineering, and a number of Nobel

Prizes bear ample witness to the fruitfulness of this interaction.
One can for instance think of Merton’s seminal contributions to
portfolio optimization and option pricing, among other things.
Even earlier, Harry Markowitz was concerned with mean-vari-
ance analysis in financial markets, and this topic has retained its
popularity even after 50 years; see, for instance, the survey [23]
which contains more than 200 references. However, in contrast
to portfolio optimization based on utility functions, mean-vari-
ance analysis in dynamic intertemporal frameworks has only re-
cently been linked to stochastic control in a more systematic
way. Our goal in this paper is to explore this avenue further and
to show that it leads to results and insights in stochastic control
even beyond the usual settings.

In a given financial market, themean-variance hedging
problem is to find for a given payoff a best approximation
by means of self-financing trading strategies; the optimality
criterion is the expected squared error. In a series of recent
papers, this problem has been formulated and treated as a
linear-quadratic(LQ) stochastic controlproblem at increasing
levels of generality; see for instance [11], [13], [8], [7], [10],
[24], or [9] for an overview and a historical perspective. In
the general case where the market coefficients are random
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processes, the adjoint equations turn out to lead to a coupled
system ofbackward stochastic differential equations(BSDEs)
for the coefficients of the (quadratic) value functional. This has
led to new interest in and new results on general LQ stochastic
control problems, and the mean-variance hedging problem has
been treated fairly explicitly by these methods.

From the mathematical finance point of view, one drawback
of this approach is that almost all existing papers impose rather
restrictive assumptions. To apply general results from LQ
stochastic control, authors work with Itô processes and assume
that all their coefficients are uniformly bounded, which ex-
cludes many practically relevant models. Moreover, the theory
of BSDEs is only rarely used beyond the setting of a filtration
generated by a Brownian motion and, thus, strongly relies
on a martingale representation theorem. On the other hand,
the mean-variance hedging problem has been solved in much
higher generality by martingale and projection techniques. One
can allow continuous semimartingales in general filtrations and
only needs an absence-of-arbitrage condition; see [17] and [22]
for recent overviews. The present paper is a first step toward
a fusion beetween mathematical finance and LQ stochastic
control at this more general level. For related recent results, see
[16].

The paper is structured as follows. Section II presents the
basic model, explains the mean-variance hedging problem and
casts it in the form of an LQ stochastic control problem. Com-
bining the martingale optimality principle with the natural guess
that the value process of this problem should have a quadratic
structure, we then derive a system of BSDEs for the conjectured
coefficients . Section III gives a necessary and sufficient
condition for the first of these BSDEs (for the quadratic coeffi-
cient ) to be solvable under the sole assumption that the under-
lying asset price processis continuous. One can also show that

is the value process of a dual control problem, but we do not
dwell on this issue here. Section IV gives sufficient conditions
for the other BSDEs (for the linear and constant coefficients
and , respectively) to be solvable. Apart from continuity of,
we need that the filtration is continuous and that the vari-
ance-optimal martingale measuresatisfies the reverse Hölder
inequality . Finally, SectionV shows how one can explic-
itly construct a solution for the mean-variance hedging problem
from the solutions of the BSDEs for . This is conceptually
well known, but of course technically slightly different than in
the usual case of a Brownian filtration.

II. BASIC SETUP

This section introduces the model and the concepts used
throughout the rest of the paper: the mean-variance hedging
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(MVH) problem, its formulation as a linear-quadratic sto-
chastic control (LQSC) problem, and the associated backward
stochastic differential equations (BSDEs). The goal is to study
the relations between these objects.

Our starting point is a stochastic model for the evolution of the
discounted prices for finitely many assets in a financial market.
We begin with a finite time horizon and a probability
space with a filtration satisfying
the usual conditions of right-continuity and completeness.

is an -valued semimartingale and we think of
as asset’s discounted price at time. In addition, there is a
riskless asset whose discounted price is 1 at all times.

Throughout this paper, we impose thestanding assumption
that

is continuous (1)

Hence, can be uniquely written as

with an -valued continuous local martingale and an
-valued continuous adapted processof finite variation

(FV), both null at 0. In addition, we assume thathas the form

(2)

for an -valued predictable process , i.e., satis-
fying -a.s. This is a weak absence-of-
arbitrage-type condition on; see [4] or [20].

Example: Thestandard exampleto be kept in mind is a mul-
tidimensionalItô process modelof the following type. Let be
an -valued Brownian motion on and
the -augmentation of the filtration generated by. Let

be the solution of the stochastic differential equa-
tions

with predictable - and -valued processesand that
are -a.s. on Lebesgue-integrable and Lebesgue-square-
integrable, respectively. models undiscounted prices and,
which is of the same form as the other, describes an addi-
tional asset that we use as a numeraire for discounting; so in our
abstract setup, we consider for . We
can for instance think of as a reference stock or a zero coupon
bond with a suitable maturity. But for concreteness, we focus on
the special case where so that has finite variation.

is then called a (classical)savings account, is the
instantaneousshort rate, and takes the form

The condition that has the form (2) is then equivalent to as-
suming that range -a.s. for all , with

, and then is given by
with , provided that has full rank

-a.s. for all . A frequently encountered assumption is
that themarket price of risk, ,
is bounded uniformly in and ; this implies that

is bounded -a.s. as well. We shall refer to this entire setup as
the standard example with thestandard assumptions.

One very special feature of the standard example is that one
has a martingale representation theorem in the filtration .
This simplifies many things, and one of our goals here is to avoid
this type of assumption.

We now return to our general setting and introduce the MVH
problem. Let be a linear subspace of the set of all -valued
predictable -integrable processes. The stochastic integral
process is thus well-defined for every ,
and we assume that for every , i.e.,

. However, this is not enough to obtain good
results; one also needs to impose integrability properties on

as a process. This issue will be addressed more carefully
later on (in Section III) when the need arises.

Themean-variance hedging problem(for , with respect to
) is to

minimize

over all pairs (3)

where is a square-integrable -measurable
random variable. The financial interpretation of (3) is as follows.
Any pair describes a dynamic trading strategy which
starts at time 0 with initial capital , holds shares of asset

at time and is self-financing, thus leading to a wealth of
at time . The random variable models

the discounted payoff of some financial instrument. This is usu-
ally some obligation and so (3) has the goal of minimizing, by
the choice of a strategy, the average hedging error measured as
the expected quadratic deviation of the final wealthfrom the
target . Mathematically, this amounts to projecting in
on the linear subspace , and so (3) is solvable for any

if and only if is closed in . We will
return to this in Sections III and V.

The MVH problem is seen to be a special case of aLQ sto-
chastic control problemif we rewrite it as

with the objective function
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which is to be minimized by the choice of . This is actu-
ally a slight variation of (3) since is taken as fixed. However,
if one can solve the above problem for any, one can also solve
(3) by simply optimizing over .

Example: In the standard example introduced previously, the
LQSC problem is first written as

with and with the same objective function as above.
To bring this closer to the usual formulations found in the liter-
ature, we introduce

which is the amount invested in assetat time . Then an obvious
change of notation gives

If we compare this to a typical LQSC problem of the form

with random coefficients and objective function

we see that we have the special case where is one-
dimensional and

.
In order to study the MVH problem (3), we now fix

and and consider the modified MVH
problem to

minimize over all (4)

The solution of (4), if it exists, will be denoted by and is
called an optimal strategy. As usual in stochastic control, it is
helpful to consider a dynamic version of (4). So, we introduce
for each and the set

on

of all strategies that coincide withup to time , we define the
random variables , and
we set

Since for
is the minimal expected squared hedging

error conditional on if we start at time with “initial capital”

, the wealth we have achieved by using
up to time .

Our first result is simply themartingale optimality principle
for stochastic control in the present setting. Note that this result
is valid without the assumption thatis continuous. The proof is
a standard dynamic programming argument as for [12, Th. 4.1]
and, therefore, omitted. With slight anticipation, we also remark
that the imposed assumption on the family of random variables

is satisfied for the specific spacethat we introduce later
in Section III.

Proposition 1: Fix and . Assume
that is such that for fixed and , the family

is stable under taking minima. Then

1) for each , the process is a -submartingale
and has an RCLL version that we again denote by ;

2) a process solves (4) if and only if is a
-martingale.

Because our stochastic control problem is quadratic, we guess
that its value process has a quadratic structure as well. Since the
optimal strategy is obtained by “setting the derivative equal to
0,” we also guess that and should be affinely related. It
will turn out that both guesses are correct. Moreover, using the
first guess as an a priori assumption will help us to find a sys-
tematic way of attacking the MVH problem. So let us see where
such an assumption gets us—again even without continuity of

.
Lemma 2: Fix and and sup-

pose that there exists some such that for each
is a quadratic function of . Then, there exist

adapted stochastic processes not depending on such that
we have for every

a.s. (5)

Proof: By assumption, is a
quadratic function of , with of course -measurable coef-
ficients. On the other hand, the definition of yields

and in the same way for any

Thus we see that has the same functional dependence of
as of . This establishes (5) and also makes it

clear that the coefficients do not depend on. q.e.d.
Remarks:

1) That the value process has a quadratic structure
was earlier noticed or conjectured by several authors in
particular cases; see for instance [2] for a situation in fi-
nite discrete time with finite , [1] for a study of some
Markovian models in discrete and continuous time, or [8],
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[10], and [24] in the framework of an Itô process model.
For the present setting, Mania and Tevzadze have very re-
cently proved in [16] under an additional assumption that

is indeed a quadratic function of . However,
the thrust of Lemma 2 is different because we want to ex-
amine for arbitrary .

2) The generality of Lemma 2 comes at a price because it
uses an unchecked assumption about, and its proof
gives us so far no information about the structure or even
path regularity of the processes . These issues will
be dealt with in future work.

By combining Proposition 1 and Lemma 2, we obtain in a
conceptually straightforward way a systematic method to at-
tack and solve the MVH problem. This goes as follows. Sup-
pose we have obtained in some way the quadratic structure (5).
Assumingthat from Lemma 2 are nice semimartingales,
we exploit the martingale optimality principle in Proposition 1
to derive equations that ought to satisfy. Then we study
these equations and show how their solutions can be used to
construct an optimal strategy for the MVH problem. Hence the
equations provide at leastsufficientconditions for the solvability
of the MVH problem. Because the derivation (which is sketched
later) of the equations is only heuristic, we do not know yet if
they are also necessary conditions. However, we think this is
the case and relegate the issues of proving (5) and of a rigorous
derivation for the equations to future work. For some very re-
cent progress, see also [24] and [16].

So let us assume that are well-behaved semimartingales
and that there exists an optimal strategy. Then we know from
(5) and Proposition 1 that is a submartin-
gale for every and a martingale for . Hence if we
use Itô’s formula to compute the canonical decomposition of

, we know that the minimum over of the finite variation
(FV) term must be 0 and attained by. If we do those calcula-
tions and formally differentiate with respect to, we first find
that must be an affine function of . (This will actually
be confirmed later; see Proposition 10 in Section V.) Plugging
this back in leads to an explicit expression for the FV part of

, namely a quadratic function of . But is a
martingale, so the FV part must vanish, and setting the coeffi-
cients of all powers of to be 0 produces (under suitable
assumptions) the following system of equations for :

(6)

(7)

(8)

Since we study these equations in detail in the rest of the
paper, we postpone most explanations for the moment. We
just note that (6)–(8) all are BSDEs, that (7) needs ingredi-
ents from (6), and (8) even from both (6) and (7). We also

mention that solutions of (6)–(8) are, respectively, tuples
, and , with properties still

to be specified. Our goal is to study the solvability of these
equations under minimal assumptions.

Equations (6)–(8) can be viewed as general versions of ear-
lier results derived under more specific assumptions. For the
case of an Itô process model, we explain below how we recover
some equations from [8]. Prior to that, [1] has studied the MVH
problem under Markovian assumptions in both discrete and con-
tinuous time; the general discrete-time case has been analyzed
(in an unpublished German diploma thesis) by Lehweß–Litz-
mann who eliminated the assumption in [2] thatis finite.

In discrete time, one can rigorously prove by backward in-
duction both the martingale optimality principle and the fact that

has the quadratic structure (5), without having to assume
ana priori relation between and ; this comes out as
a consequence. Again by backward induction, one can derive
a system of difference equations that must satisfy. The
BSDEs (6)–(8) are precisely the continuous-time analogues.

In continuous time and in a Markovian model, [1] derives a
system of three PDEs from the HJB equation associated to the
MVH problem. In fact, the assumption that is a quadratic
function of implies in that Markovian situation that
is a function of and the underlying Markovian state
variables. The martingale optimality principle reduces to the
HJB equation for , and the coefficient functions of the
quadratic function satisfy a coupled system of PDEs which
constitute the Markovian analogs of the BSDEs (6)–(8).

Example: Let us look at the structure of (6) for the case of
our standard example of an Itô process model. If we simply plug
in for and , we obtain the equation

(9)

with a local martingale that must be orthogonal to
. Because , this means that

with -a.s. for all . So if we set
with , we see that is the pro-

jection of on range -a.s. for all and, thus,
. Moreover, is

in range -a.s. for all , so and we obtain by
squaring out from (9) the equation

(10)

for the pair . This coincides (except for the interest rate
which is 0 in our discounted situation) with [8, eq. (117)] and,
thus, shows that our setting contains parts of that paper as a
special case. It is also explained in [8] how (10) reduces to a
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PDE under Markovian assumptions; see, in particular, in [8, eq.
(40)].

III. EQUIVALENT MARTINGALE MEASURES ANDSOLVABILITY

FOR

In this section, we relate the solvability of the BSDE (6) for
to a property of absence of arbitrage. Quite remarkably, it turns
out that there is a simple and natural necessary and sufficient
condition for a solution of (6) to exist.

Definition: An equivalent martingale measure (EMM)for
is a probability measure with on and such
that is a local -martingale. Thedensity processof with
respect to is an RCLL version of the strictly positive-mar-
tingale .

We denote by the set of all EMM’s for and by
the subset of those such that . For
readers less familiar with mathematical finance, we point out
that equivalent martingale measures forare the objects which
are naturally dual to self-financing trading strategies for. The
assumption that is intimately related to a condition
of absence of arbitrage for our financial market; see [6] for a
precise formulation. We also remark that implies the
structure (2) for because is continuous; see [20, Th. 1]. The
more stringent requirement that amounts to the condi-
tion that the dual of the MVH problem should have nonempty
domain.

Provided that , the variance-optimal martingale
measureis the unique element of that minimizes

over all . This uses that is
continuous; see [5] and [21]. Also, becauseis continuous,
any for is of the form
for some locally -square-integrable local -martingale

null at 0 (for brevity, we write ) with
-orthogonal to ; see [20, Th. 1]. If denotes the

space of all that are -orthogonal to and
such that is strictly positive and in ,
we can parametrize by via

(11)

Recall that the BSDE for has the form of (6). Asolution
of (6) is a triplet satisfying (6) and such that is
a strictly positive RCLL semimartingale with is
an -valued predictable -integrable process, and is a
local -martingale null at 0 ( , for short) and

-orthogonal to .
Theorem 3: The following statements are equivalent.

1) .
2) The BSDE (6) has a solution such that

is strictly positive and in (12)

Moreover, each of these conditions implies that we can find a
solution such that

is bounded from above uniformly in

a.s., to be precise (13)

and

is in the class i.e. is of class

under for every (14)

Proof: “2) 1)”: If we take a solution and
define , then is like in
and -orthogonal to . Moreover,

is by (12) strictly positive and in . This implies
, hence , and the measure with

density with respect to is in which proves 1).
“1) 2)”: If , the variance-optimal martingale mea-

sure exists in since is continuous, and we know that
the process

(15)

has the form for a deterministic constant
and an -valued predictable -integrable process; see [5,
Lemma 2.2]. Because is strictly positive and can thus
be written as with . Note that
is -integrable since is locally bounded, is -integrable
and is continuous with martingale part . On the other hand,
the density process has the form
for some . Setting

and applying Itô’s formula yields

So, if we set

(16)

and

we see from and by plugging in that the
triplet satisfies (6). Moreover, and are both
strictly positive because is continuous and is a strictly
positive -martingale; is like a local -martingale null
at 0 and -orthogonal to ; and is predictable and -in-
tegrable because and are locally bounded and are
both -integrable. Thus, is a solution of (6), and

is in
because . This proves 2).
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Since we know now that 1) and 2) are equivalent, we assume
1) and prove that satisfies (13) and (14). By the
Bayes formula and Jensen’s inequality

so that we get a.s. for all . This is (13). By
the same computation

for any stopping time , and since is variance-optimal, we
have

a.s.

(17)

for any . In fact, if (17) fails for some on a set
with , one easily checks that the measure

with density process

is in and has , contra-
dicting the optimality of . Hence, we get

for any stopping time , and since for ,
this shows that is of class under . Hence, we also
have (14). q.e.d.

Remarks:

1) Under the additional assumption that the filtrationis
continuous (i.e., all local -martingales are continuous),
we could also derive the implication “1) 2)” in The-
orem 3 from the results of Mania and Tevzadze in [14].
These authors consider the process [note the typo “sup”
in their equation (2.7)]

(18)
and derive in their Corollary 1 a BSDE (3.30) thatmust
satisfy. The process is the value process of the opti-
mization problem dual to the MVH problem, namely that
of finding the variance-optimal martingale measure.
Hence

by the Bayes formula, and we see thatand are related
by . If we now start with the BSDE for and

use Itô’s formula, we find that solves our BSDE (6).
However, this was not the way we originally derived (6).

If is not continuous, matters become more com-
plicated. The recent paper [15] again contains a BSDE
for the process from (18), but both the equation and
its derivation become technically much more difficult.
Hence, working directly with , as we do, appears to be
the better approach. This has recently also been done in
[16].

2) We have already seen at the end of Section II how the
BSDE (6) boils down to (10) in the framework of our
standard Itô process example. In the terminology of LQ
stochastic control, (10) is a particular case of astochastic
Riccati equation(SRE). Such equations have recently at-
tracted a lot of attention; see for instance [7], [10], and
[24], or [9] for a survey. However, all these papers stay
within the framework of a Brownian filtration .
Our BSDE (6) could be called ageneralized SRE, and
Theorem 3 is then an existence result in a general filtra-
tion. To be fair, we should add that the sharpness of our
Theorem 3 (necessary and sufficient conditions) is due to
the fact that our SRE has more structure than a general
SRE—both (6) itself as well as its reduced form (10).

We have so far not made any uniqueness assertion about the
solution of (6). In preparation for that, we now first explain how
one can construct the variance-optimal martingale measure
from a nice solution of the BSDE (6).

Proposition 4: Suppose that , and take any solution
of (6) satisfying (12) and (14). Then, the density

process of the variance-optimal martingale measureis given
by

(19)

Proof: Since , we know from Theorem 3 that
at least one solution with the above properties exists, and that

is for any solution with
(12) the density process of some . So, we have
to show that , i.e., is variance-optimal, if
has the extra property (14). We claim that for any
with density process , Itô’s formula
yields that is a local -submartingale, and a local

-martingale for . Thanks to the integrability condi-
tion (14), we then actually have (true)-submartingales and a
(true) -martingale and, thus, since

for any , with equality for . Hence is
indeed variance-optimal.

It remains to justify the above claim, and this is mainly a
matter of diligence in using Itô’s formula; the only complication
stems from the fact that and may be discontinuous.
Because with , we get

(20)
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and Itô’s formula gives

(21)

where we write as usual for the jump at time
of an RCLL process . To compute , we now

use (20), (21), and the BSDE (6) together with
and

to obtain

(22)

Note that we also have used

(23)

which follows immediately from the BSDE (6) since is
continuous. Now, we apply the product rule to ,
use (20)–(22) and plug in from the BSDE (6). Then, we use

and and,
after collecting terms and simplifying, end up with

local martingale

Finally, an elementary computation shows that the last sum is
equal to

Because is strictly positive, we therefore see that
is indeed always a local -submartingale. For , we
have , hence

by (23), and plugging in shows that
is then a local -martingale since both drift terms vanish. This
proves our claim and completes the proof. q.e.d.

We now use Proposition 4 to give a uniqueness result for the
BSDE (6).

Proposition 5: Suppose that . Then (6) has a unique
solution satisfying (12) and (14).

Proof: If we have two such solutions for
, Proposition 4 tells us that

for (24)

Moreover, the proof of Proposition 4 shows that is
a -martingale for and since , this implies that

. Because (24) yields ,
we conclude that as well. If we use the BSDE (6)
to write down the dynamics of and then use
and , we obtain that the zero process has a canonical
decomposition with local -martingale part ,
and this implies that (in the space , to be
precise). q.e.d.

Remark: Results similar to Propositions 4 and 5 can also be
found in [14] or [15], but only under the additional assumption
that is continuous or that the minimal martingale measure

(the EMM associated to in (11)) exists and satisfies
the reverse Hölder inequality . Since we do no need this
here, explanation of the latter is postponed for the moment. In
the framework of the usual Itô process example, (19) can also
be obtained by combining [8, eqs. (134), (125), and (117)].

The preceding results need no specific properties of the strate-
gies we consider and so the choice ofhas not been relevant
so far. This is so because (as already remarked and as evident
from the proofs) can be expressed directly in terms of the dual
of the MVH problem. For and , this is no longer the case, and
we have to make a precise choice for. We have decided to
work here with the same space of strategies as in [3] and [19].

Definition: The space consists of all -valued pre-
dictable -integrable processes such that the stochastic
integral is in the space of semimartin-
gales. Equivalently, if and only if is predictable and

In [3] and [19], this is also expressed by saying that
. It is easy to check for this space

that for fixed and , the family
is stable under taking minima. Hence, the assumption of
Proposition 1 is satisfied.

For the MVH problem to be solvable for arbitrary
, we want to be closed in . It

has been shown in [3] that this is here (whereis continuous)
equivalent to the condition that the variance-optimal martingale
measure satisfies the reverse Hölder inequality ; see
[3, Th. 4.1]. The condition is defined as follows.

Definition: We say that satisfies thereverse Hölder
inequality if there is a constant such that the
density process satisfies

a.s.

Our next result shows that for can be directly trans-
lated into an additional property of. This again sharpens pre-
vious results in [14] and [15].
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Theorem 6: The following statements are equivalent.

1) and satisfies .
2) and some satisfies .
3) The BSDE (6) has a solution satisfying (12)

and in addition that

is bounded from below uniformly in

a.s., to be precise (25)

Proof: The equivalence of 1) and 2) is directly from [3,
Th. 4.1]. If 1) holds, the proof of Theorem 3 shows that we can
construct a solution to (6) with

a.s.

where we have used the Bayes formula and . This yields
3). Conversely, suppose that 3) holds and use Theorem 3 to
choose a solution such that we also have (12). Then

is a -martingale by the proof of Proposition 4 and
since , we get

a.s.

due to (25). Thus, 1) holds and the proof is complete. q.e.d.

IV. BSDEsFOR AND

In this section, we prove existence and uniqueness for the
solutions and of (7) and (8) for arbi-
trary , assuming that we have already solved
(6) for . This will be done under the additional assumptions
that the filtration is continuous and that (or, equivalently
by Theorem 6, some ) satisfies the reverse Hölder in-
equality . If is continuous, then are actually all
continuous. But for ease of comparison with future extensions,
we shall still write and where this is appropriate.

Let us first recall the BSDE (7) for. We fix
and a solution triple of the BSDE (6) for . Then,
we consider (7). Asolutionof (7) is a quadruple
satisfying (7) and such that is an RCLL semimartingale,

is an -valued predictable -integrable process, is a
real-valued predictable -integrable process and is a local

-martingale null at 0 and -orthogonal to both and .
Theorem 7: Suppose that . Take the solution

of (6) satisfying (12) and (14). If the filtration
is continuous, the BSDE (7) for then has a solution

.
Proof: As usual, we denote by the variance-optimal

martingale measure.

1) Because is in , the process

(26)

is well-defined, can be chosen RCLL, is a semimartingale
and a -martingale and has . Since is contin-
uous, has under a Galtchouk–Kunita–Watanabe de-
composition

where is -valued, predictable and -integrable,
and is in and -orthogonal to . [If
satisfies in addition the reverse Hölder inequality ,
[19, Th. 3] even implies that and

, i.e., .] However,
(7) prescribes the behavior ofunder , not , and so
we need to understand how the local-martingale
behaves under .

2) By Theorem 3 and Propostion 5, (6) has a unique solution
with (12) and (14). Then is

in and the density process is
given by

according to (19) in Proposition 4. Hence,
exists and

Girsanov’s theorem tells us that

(27)

is a local -martingale. Because is continuous,
is continuous and so has under a Galtchouk–Ku-
nita–Watanabe decomposition as

where is predictable and -integrable and
is -orthogonal to . However,

due to (27) and since is continuous, is also
-integrable, and we obtain

which is (7) due to the form of . [If satisfies in addi-
tion , we know from 1) above that ,
and [19, Th. 3] then implies that
and .]

3) To show that is in and -orthogonal to
both and , we use the assumption that is con-
tinuous. Because all local martingales (under any

) are then continuous, orthogonality simply means that
the quadratic covariation process must vanish, and since
this can be computed pathwise, orthogonality is the same
under any . So, implies that

implies that and im-
plies that . Hence we also get
and it only remains to show that the local-martingale
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is also a local -martingale. However, (19) implies
that , hence also since
all local martingales are continuous, and so

and is indeed in . This com-
pletes the proof. q.e.d.

Proposition 8: Consider the situation of Theorem 7 and as-
sume in addition that satisfies the reverse Hölder inequality

. Then (7) has a unique solution satisfying

(28)

Moreover, is then in .
Proof: That (7) does have a solution satisfying (28) under

the given assumptions has already been argued in the proof of
Theorem 7. To prove uniqueness, take two solutions of (7) and
denote their difference by . Then (7) gives

with as in (27), and of course . We want to argue
that , and are all -martingales and pairwise

-orthogonal; then they as well asmust all vanish and this
will prove uniqueness.

It is clear that is a local -martingale since .
Moreover, using the reverse Hölder inequality (via [19,
Prop. 1]) and the fact that due to (28) yields

(29)

so that is a true -martingale. The proof of Theorem 7
shows that is a local -martingale, and an analogous
argument using and (28) as above implies that
is also a true -martingale. Next, and imply
due to the representation (19) of that is a local -martin-
gale since is in . Because is in due
to (28), it is even a true -martingale. Finally, the pairwise or-
thogonality of and follows as in the proof of
Theorem 7 from the assumption that is continuous.

Once we know that is unique, the proof of Theorem 7 yields
with and .

Hence, the estimate (29) shows that is in , and
then so is . q.e.d.

Remarks:

1) One could argue with some justification that the above
results look slightly artificial because they exploit the al-
ready known general structure of the solution to the MVH

problem—known, that is, from martingale and projection
techniques as opposed to stochastic control and BSDEs.
But with some thought, the above solution can also be
guessed. In fact, the BSDE (7) is linear and it is well
known that a change of measure is then often helpful in
finding a solution. So, if we introduce (as a density
process for a change of measure) via

with , we get

Because we want to have

for (7), we should thus choose such that becomes
a local -martingale (which we have already done with
the above structure of ) and such that . But
then we end up with , which tells us that we
should try to obtain as the -martingale with final value

—and this is how the proof of Theorem 7 starts.
2) The results in [19] are stated under the assumption that

is trivial. But we can still use them here for general
because the triviality of is not used except for getting
an initial value zero for some martingales.

Example: For our standard example of an Itô process model,
the standard assumptions guarantee that the minimal martingale
measure associated to in (11) is in and satisfies
the reverse Hölder inequality . We already know that the
BSDE (6) for takes the form

where denotes the projection on the range
of . This is an equation for the pair ; we also know
that

(30)

and we see that is continuous.
By plugging in the dynamics of and using (30), we can first

rewrite (7) as

(31)

for , where should be in -a.s. and sat-
isfy -a.s. for all . This uses that
by Itô’s representation theorem in and expresses the
conditions and .

If we now set with
, we obtain that is the projection of
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on range -a.s. for all and thus . Using that
and are both orthogonal to next yields

For , plugging this into the definition of and solving for
then gives

Finally, using the definition of the market price of riskto write

leads from (31) to

(32)

for the pair . This coincides (except for the interest rate
which is 0 in our discounted situation) with [8, eq. (124)], in
view of their equations (125), (117), and (114).

Let us next recall the BSDE (8) for. We fix a solu-
tion of (6), some , a solution

of the corresponding equation (7) and consider
(8). A solution of (8) is a pair satisfying (8) and
such that is an RCLL semimartingale and is a local

-martingale. (We deliberately add here parentheses to the
superscript to avoid confusion with the standard notation
for the continuous local martingale part of a semimartingale

.)
Theorem 9: Suppose that . Take the solution

of (6) satisfying (12) and (14). Assume that the
filtration is continuous and that satisfies the reverse
Hölder inequality . For , take the
solution of (7) satisfying (28). Then the BSDE
(8) for has a unique solution with the property that

is not only a local, but a true martingale. (33)

Moreover, is then of class under .
Proof: That we can choose and

as desired follows from Propositions 5
and 8. Moreover, the proof of Theorem 3 shows that .
Hence, we obtain

(34)

since is in by (28), and

(35)

by the reverse Hölder inequality via [19, Prop. 1] and by
the fact that by (28). So the -martingale

is well-defined, and choosing an RCLL version and setting

(36)

clearly yields a solution of (8) satisfying (33). That
this is of class follows immediately from (36) together
with (34) and (35).

For any two solutions satisfying (33), (8) implies that
is a -martingale with final value

0; hence we have which implies that as
well, proving uniqueness. q.e.d.

Example: For our standard example of an Itô process model,
we obtain by straightforward calculations and by using the in-
termediate results from the derivation of the BSDE (32) that the
general BSDE (8) reduces to the equation

for the pair .

V. SOLVING THE MVH PROBLEM WITH THE HELP OFBSDES

In this section, we show how to construct the solution to
the MVH problems (3) and (4) explicitly from the solutions of
the BSDEs (6)–(8) for . The basic idea for this is both
well-known and very simple. The martingale optimality prin-
ciple in Proposition 1 tells us to look for a strategysuch that

becomes a martingale. Since we guess that is a
quadratic function of and know from the BSDEs (6)–(8)
how its coefficients should behave, it is natural to start
by computing this quadratic functional more explicitly. For that
purpose, we first fix and define for any the
process

Proposition 10: Suppose that the filtration is
continuous. Fix and . If

are solutions of the



BOBROVNYTSKA AND SCHWEIZER: MEAN-VARIANCE HEDGING AND STOCHASTIC CONTROL 11

BSDE’s (6)–(8), then is a local -submartingale for any
, and a local -martingale if and only if satisfies

(37)

Proof: A straightforward but lengthy application of Itô’s
formula gives

and the assertion follows. We spare the reader the details of the
computation and mention only that the assumption of a contin-
uous filtration is used to replace all square brackets by sharp
brackets, which in turn allows one to exploit the orthogonality
relations between , and . q.e.d.

To obtain a local -martingale for , we have to find
a solution to (37). The next result is the first step in that
direction.

Lemma 11: Denote by the set of all -valued pre-
dictable -integrable processes. For any and any
semimartingale , the equation

(38)

then has a unique solution in .
Proof: Due to [18, Th. V.7], the equation

(39)

has a unique solution in the class of continuous semimartin-
gales because is continuous. The process
is then in , and

shows that by its definition does satisfy (38). For anysatis-
fying (38), satisfies (39); hence by uniqueness
and so . q.e.d.

If we choose in Lemma 11 , and
, we obtain in particular the existence of a process

in satisfying (37). Our next goal is to prove that
is a bona fide strategy by showing that is in .

Proposition 12: Suppose that is continuous
and satisfies . Fix and choose the
solutions of (6)–(8) as in
Theorem 9. For any , (37) then has a unique solution,
and if is bounded. (This last condition is automati-
cally satisfied if is trivial.)

Proof: Lemma 11 implies that (37) has a unique solution
in . To show that is in fact in , we prove

that

(40)

Using via [19, Prop. 1] then yields first that is in
, because by the continuity of ,

and Theorem 2 of [19] tells us that , again due to
. To prove (40), we introduce the process

(41)

and claim that

(42)

Then, we solve for to get

and deduce (40) from (42), the fact that is bounded due to
according to Theorem 6, and the fact thatis in

by Proposition 8.
To prove (42), we apply the product rule to the definition

(41) of , plug in (6)–(8) and (37) and simplify to obtain after
straightforward but lengthy calculations the SDE

for . This is a linear SDE whose solution is given explicitly in
[18, Th. V.52]. If we introduce the processes

by (19) in Proposition 4, we obtain

with
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as in the proof of Theorem 7. Since is in
, and is bounded since

is deterministic and is bounded. So it remains to
show that

(43)

But this is a consequence of [19, Lemma 7] or more precisely of
the proof given there. To see this, note thatis a -martingale
and in since satisfies , as argued in step 1) of
the proof of Theorem 7. This implies that by
[19, Prop. 1], due to . Because is bounded according
to Theorem 3, is also a -martingale and sat-
isfies . Moreover, under implies that

since is continuous and so the proof of [19,
Lemma 7] yields

which is precisely (43). This completes the proof. q.e.d.
Now, we have everything we need to solve the MVH problem.

We first prove that ; this shows that our guess in
Section II was correct and justifiesa posteriorithe assumption
made in Lemma 2.

Theorem 13:Suppose that is continuous and
satisfies . Fix and choose the solutions

of (6)–(8) as in Theorem
9. Suppose that is bounded. Fix and take the solution

of (37) given by Proposition 12. Then, we have

(44)

-a.s. for every . In particular, is a quadratic
function of for each .

Proof: The outer two equalities in (44) are just the defini-
tions; only the middle one needs proof. We know from Propo-
sition 10 that is a local -sub-
martingale for any and a local -martingale for
which is in by is even a true -submartingale and
a true -martingale. To see this, note that is of class
under because is so, by Theorem 9, becauseis bounded, by
Theorem 3, and because for
and , by Proposition 8. So if we take any

and use the final conditions ,
we obtain from the submartingale property

because for .
For , we get equality since is a -martingale, and
so (44) follows. q.e.d.

Corollary 15: Under the assumptions of Theorem 13, we
also have for every

-a.s. for every .
Proof: This follows immediately from Theorem 13 and

(the proof of) Lemma 2. q.e.d.
Now, we can solve the MVH problem (4) with fixed initial

capital.
Corollary 15: Under the assumptions of Theorem 13,

solves the MVH problem (4), and the minimal quadratic risk
at time 0 is given by

(45)

Proof: The same argument as in the proof of Theorem 13
yields for any that

with equality for . This proves the assertion. q.e.d.
By minimizing over , we obtain the solution of the MVH

problem (3).
Corollary 16: Under the assumptions of Theorem 13, the so-

lution of the MVH problem (3) is given by , where
is the solution of (37) for the choice .

The minimal quadratic risk is given by

(46)

Proof: Minimizing the right-hand side of (45) yields
. Since and is deterministic, we

obtain and

by the definition of in (26). Plugging this into (45) and using
again that yields (46) if we note that since

on . q.e.d.
Remark: Recall that is assumed continuous throughout.

We have seen in Theorem 3 that a necessary and sufficient con-
dition for the solvability of the BSDE (6) for is that .
Combining Proposition 12, Theorem 9, Proposition 8, and The-
orem 3 shows that if the filtration is continuous, plus
the reverse Hölder inequality for together form asuf-
ficientcondition for the solvability of the BSDE system (6)–(8)
for . Conversely, plus is alsonecessary
in a certain sense. More precisely, suppose thatis contin-
uous. If the BSDEs (6)–(8) are solvable for any
with solutions that satisfy (12), (28), and (33), and if the solution

to (37) (which exists thanks to Lemma 11) is infor any
, then we obtain that and satisfies . In

fact, solvability of (6) implies by Theorem 3, and the
argument for Corollary 15 shows that (4) is solvable byfor
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any . However, this means that must be
closed in which implies by [3, Th. 4.1].

While the above converse result is gratifying because it shows
that our conditions are sharp, it is not really useful since the
condition that should be in is difficult to check.

To round off this section, we briefly explain how the above
results are related to the solution of the MVH problem via the
martingale and projection approach in [22]. As explained there,
one first has to find the variance-optimal martingale measure
and represent the processfrom (15) as

(47)

Then one needs the Galtchouk–Kunita–Watanabe decomposi-
tion of under as

One writes

and obtains the optimal strategy for (3) as

and

(48)

All this is taken from [22, Th. 4.6].
To relate this to our present setting, we first note that the proof

of Theorem 3 gives us and therefore

(49)

by (16). Because we also have from (47) that
, we get

(50)

since . We remark in passing that this means that
is an adjustment processin the termi-

nology of [21]. Combining (49) and (50) yields

From the proof of Theorem 7, we obtain
and . So, the solution to (3) obtained from Corollary
16 can be written as

and

This coincides with the recursive equation (48) for.
Remark: When this paper was almost completed, we re-

ceived a preprint version of [16] by Mania and Tevzadze, who
also study the mean-variance hedging problem for a continuous
semimartingale model. These authors actually consider in
[16] the more general problem of minimizing the -norm
of the final shortfall and derive a backward equation for the
corresponding value process. For the case , they prove
in particular that the value function is quadratic and derive a
system of BSDEs for its coefficients. So their focus is more
on deriving the BSDEs, whereas we concentrate on proving
existence and uniqueness and on finding sharp conditions for
this.
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