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0. Introduction

“Ask not only what finance can do for insurance. Ask also what insurance can do for
finance.” This very free adaptation of a famous dictum to the spirit of Hans Biithlmann
(1987) could serve as the motto for the present paper. Its starting point is the rather
banal observation that the valuation of random amounts is an important topic in both
actuarial and financial mathematics and has been studied extensively in both fields.
In almost any textbook, one will find a treatment under headings such as premium
principles (in insurance) or derivative pricing (in finance). This paper is an attempt
to bring these approaches together by embedding an actuarial valuation principle in a
financial environment.

The basic idea is quite simple. We begin with an a priori valuation rule which
assigns a number (“premium”, “price”) to any random payoff from a suitable class.
Typically, this rule is given or motivated by an actuarial premium principle. But the
payoffs we consider do not exist in a vacuum. They are surrounded by a financial
environment described by the outcomes of trades available to participants in a financial
market. Such trades can for instance be used to reduce the risk one has contracted
by the sale or purchase of some random amount like an insurance claim or a financial
obligation. To value a given payoff in this environment, we compare two alternative
strategies. One of them is to ignore the payoff completely and simply trade in the
financial market in an optimal way. More precisely, the first strategy tries to obtain
via trading from a given initial capital a final outcome with maximal value, where the
value is computed according to the given a priori rule. The second strategy starts by
selling the payoff under consideration in order to increase the initial capital. Then it
looks for a trade whose resulting net final outcome (trading outcome minus payoff) has
maximal value. The selling price for the payoff is then defined implicitly by equating
these two maximal values; it thus compensates the seller of the payoff for his risk since
he becomes indifferent between optimal trading alone and the combination of selling at
this price and optimal trading including the payoff. The resulting a posteriori valuation
is called the financial transform of the a priori valuation rule.

Of course, this abstract program is too general to be useful. We therefore specialize
the financial environment to a frictionless market, modelled by a linear subspace G of
L? with a riskless asset B. We consider two specific examples of actuarial valuation
principles and explicitly find their financial transforms. As a whole, this paper is a
joint venture between finance and insurance. Finance makes explicit the transformation
mechanism, and insurance provides the input on which the mechanism can operate. In
particular, an actuarial justification for the choice of one particular a priori valuation
could with this approach lead to a foundation for pricing in an incomplete financial

market.



The paper is organized as follows. Section 1 explains the financial background
(G, B), introduces a no-arbitrage type condition and presents some of its implications.
In particular, we obtain a decomposition of any random payoff into an attainable part
and a non-hedgeable part. The former is riskless, and the latter contains all the finan-
cial riskiness of the payoff. Section 2 describes a change of measure required for passing
from original to discounted payoffs and defines the important concept of the B-variance-
optimal signed (G, B)-martingale measure P. Section 3 gives a more formal description
of the basic idea and determines the financial transform of the actuarial variance prin-
ciple. This turns out to have a very similar structure: It is again a variance principle,
but the expectation is taken under P and the variance component considers only the
non-hedgeable part of the payoff. A similar result is obtained in the final section 4
where we find the financial transform of the actuarial standard deviation principle.

As it often happens, most of the ideas in this paper have appeared before in
some form or other. The use of an indifference argument to implicitly determine a
valuation is a standard approach from economics; it has recently been taken up again
in a number of papers on option pricing under transaction costs. Pricing and hedging
with a mean-variance utility has been studied by Mercurio (1996) in a special case of our
framework for G. That paper in fact provided the main single motivation for our work.
Replacing the variance in the utility by the standard deviation has been suggested by
Aurell/Zyczkowski (1996) in the very special case where the financial environment is
generated by a trinomial model for stock prices. Both these papers relied on sometimes
rather heavy computations to obtain results. The main point of the present paper
is that it combines all these isolated ideas into a general and unified framework; the
novelty is perhaps that we explicitly point out that this induces a transformation on the
set of valuation rules. It would be very interesting to see other examples of financial
transforms of particular valuation principles. Explicit examples for the environment
(G, B) that allow for more concrete computations with the resulting financial valuation

rule will be discussed elsewhere.

1. Sure profits and projections in L2

Let (Q, F, P) be a probability space and L? = L2(Q,F, P) the space of all square-

integrable real random variables with scalar product (Y, Z) = E[Y Z] and norm

V] = VY,Y) = VE[Y?] forY e L2

For any subset ) of L2, we denote by
Y+ ={ZeL?|(ZY)=0forall Y € Y}
the orthogonal complement of J in L? and by ) the closure of Y in L2.
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Now fix B € L? with B > 0 P-as., let G be a fixed subset of L? and set A :=
IRB + G. Clearly, G+ is a closed linear subspace of L2, and we denote by 7 the
projection in L% on G1. The pair (G, B) will represent the financial environment in
which the subsequent considerations take place. An element g of G models the total
gains from trade resulting from a self-financing trading strategy with initial capital 0. B
is interpreted as the final value of some riskless asset with initial value 1; “riskless” here
means that there will always be some money left at the end which is captured by the
strict positivity of B. An important special case is B = 1; this corresponds to working
directly with discounted quantities. The set A is the space of those random payoffs
which are strictly attainable in the sense that they can be obtained as the final wealth
of some trading strategy with some initial capital. Later on, we shall assume that G
is a linear subspace of L?; this corresponds to a financial market without frictions like
transaction costs, constraints or other restrictions on strategies. Square-integrability
is imposed to obtain a nice Hilbert space structure and because we want means and

variances to exist.

Example. Let 7 C IR be a time index set and X = (X;)ie7 an IR%valued semi-
martingale with respect to P and a filtration IF' = (F;)ie7 on (2, F). Let © be the
space of all IR%valued IF-predictable X-integrable processes 9 = (J;);e7 such that
the stochastic integral process G(9) := [9dX is in the space S? of semimartingales.
Then we could take B = 1 and G := G7(©), where T := sup7 is the time hori-
zon of our economy. In this example, X models the discounted price evolution of d
risky assets, and each 9 € © can be interpreted as a self-financing dynamic portfolio
strategy so that G (1) describes the total gains that result from trading according
to 9. For a continuous-time model where 7 = [0,T] for some T € (0, 00|, the space
G1(©) has been studied by Delbaen/Monat/Schachermayer/Schweizer/Stricker (1996)
and Gouriéroux/Laurent/Pham (1996), among others. Ford =1and 7 = {0,1,...,T}
with 7' € IN, Schweizer (1995) has studied the projection in L? on G (), and Mercurio
(1996) has introduced and computed mean-variance utility prices under an additional
(restrictive) condition on X. Also in discrete time, Aurell/Zyczkowski (1996) have ex-
amined mean-standard-deviation utility prices for a very special process X. The results
of Mercurio (1996) and Aurell/Zyczkowski (1996) have been generalized by Gharago-
zlou (1997).

Definition. We say that G admits no sure profits in L? if G does not contain B.

With the preceding interpretations, this notion is very intuitive: It says that one
cannot approximate (in the L?-sense) the riskless payoff B by a self-financing strategy

with initial wealth 0. This is one way to formulate a no-arbitrage condition on the
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financial environment; loosely speaking, it should be impossible to turn nothing into
something without incurring costs. For the case where B =1 and G consists of elemen-
tary stochastic integrals with respect to a given square-integrable stochastic process, a
very similar condition has been studied by Stricker (1990).
Lemma 1. If§ is a linear subspace of L?, the following assertions are equivalent:

1) G admits no sure profits in L.

2) =(B) is not P-a.s. identically 0.

3) E[Bw(B)]>0.

4) Gtn(RB+G) #{0}.

5) There is some Z in G- N (IRB+ G) with (B, Z) > 0.

Proof. Since G is a linear subspace of L2, G+ = G. Thus L? = G+ @ G, and so the

riskless payoff B has the orthogonal decomposition
B =n(B)+ (B —7(B)).

In particular, 7(B) € G+ N (IRB + G) and

E[Br(B)] = E [(W(B)f] > 0.

This shows that 1) — 4) are all equivalent and imply 5) with Z = 7(B). As 5) clearly
implies 4), the proof is complete.
q.e.d.

Actually, it is easy to show that linearity of G implies that G+t n (RB + Q_) =
m(IRB), but we shall not use this in the sequel. The second part of the next result will

not be used either, but may be useful for applications.

Lemma 2. Let G be a linear subspace of L? and assume that G admits no sure profits
in L?. Then:

1) At =A=RB+G=RB+G+.

2) A is closed in L? if and only if G is closed in L?.

Proof. 1) Since A and G are both linear subspaces, the first and third equalities are

clear without further assumptions. Any g € G is the limit in L? of a sequence (g,) in
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G: hence ¢B + g,, = a,, is a Cauchy sequence in 4 and thus converges in L? to a limit
a € A so that cB + g = a € A. This gives the inclusion “D” for the middle equality.
For the converse, we use the assumption that G admits no sure profits in L2. Lemma
1 then gives us a Z € Gtn (BB—I—Q_) with (B, Z) > 0. For any a € A, there is a
sequence a, = ¢, B + g, in A converging to a in L2. Since ¢, B + g, € IRB + G for all

n, we conclude that
(an, Z) = (cn B+ gn, Z) = (cn B, Z) = cn(B, Z)

converges in IR to (a, Z), and since (B, Z) > 0, (¢,,) converges to ¢ = % Therefore
Gn = an — cp B converges in L2 to g := a — c¢B, and since this limit is in G, we have

a = cB + g € IRB + G which proves the inclusion “C”.

2) The “if” part is immediate from 1). Conversely, let (g,) be any sequence in G
converging in L2 to some g, which is in A since G C A. If A is closed in L2, we thus
obtain g, € A, hence go, = ¢B + g for some ¢ € IR and g € G. Since G admits no sure

profits in L2, we can choose Z as in Lemma 1 to obtain

¢(B,Z)=(cB+9,7) = (goo, £4) = li_)m (gn,Z) =0

because of g, € G and Z € G+. Since (B, Z) > 0, we conclude that ¢ = 0 so that
Joo = g € G, and this proves the “only if” part.
q.e.d.

The next result provides an important decomposition for arbitrary payoffs in L2.

Its interpretation is deferred until the end of section 2.

Corollary 3. Let G be a linear subspace of L? and assume that G admits no sure

profits in L2. Then every H € L? has a unique decomposition as
(1.1) H=c"B+g¢" +N"

with ¢ € R, g? € G and N¥ € A‘. In particular, we have E [BN"] = 0 and
E[NHgl=0forallge g

Proof. Writing L? = A @ At yields H = o + N¥ with unique elements o =
B+ gH € Aand N2 € A+, If a¥! = ¢B + g for some ¢ € IR and g € G and if Z is

as in Lemma 1, we obtain
c(B,Z) = (a",2) = H(B, Z)

which proves the uniqueness of the decomposition (1.1) because (B, Z) > 0.

q.e.d.



Consider now the optimization problem
(1.2) Minimize E [(H —cB —g)?] overallc€ IR and all g € G
for a fixed H € L2. Since A = IRB + G, this can equivalently be rewritten as
(1.3) Minimize |[H — a||® over all a € A

and is therefore recognized as the problem of projecting H in L? on A. The resulting

minimal distance will later turn out to play an important role.

Lemma 4. Let G be a linear subspace of L? and assume that G admits no sure profits

in L2. For every fixed H € L? with decomposition (1.1), we then have

,_ . B N2] s o2 H\?2
Joi= inf E[(H-cB-g)] = inf |H ~a _E[(N )}.

If g* is in G, then the solution of (1.2) or (1.3) is given by (c®,g”) € Rx G. In

particular, this is always the case if G is closed in L?.

Proof. Clearly, we have Jy, = inf4||H— a||2 = inf |H — a||2. By Corollary 3, the
ac a€EA

projection of H in L? on A is ¢ B + ¢, and so
H H|2 H|2 H\2
Jo=H—=c"B—g"|" = |NT|" = B[ (NT)’].

The remaining assertions are clear.

2. Changing the measure

In this section, we introduce some additional measures on (2, ). This has two reasons.
For one thing, it will allow us to obtain alternative expressions for the quantity Jy in
Lemma 4 and for the constant ¢ in the decomposition (1.1) of H. More importantly,
however, we shall also need one of them in the formulation of our a priori valuation

rules in the next section. We first define a probability measure P ~ P by

drP® B2
dP =~ E[B?]

Note that here and in the sequel, all expectations and variances without sub- or super-

scripts refer to P. It is clear that a random variable H is in L? = L?(P) if and only if
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% is in L2(PB). In financial terms, dividing by B is called discounting with respect to

B, since it serves to express everything in units of B. Thus P? is the natural measure
to be used when working with B-discounted quantities. The next result collects some

simple properties for later use; superscripts ? in the sequel always refer to PB.

Lemma 5. Assume that H € L? has a decomposition H = ¢?B + ¢ + N¥ as in
(1.1). Then EB [NT;I] = 0 and Cov” (%, NT;> =0 for all g € G so that under PB, 2L~

has zero mean and is uncorrelated with %g .

Proof. From the definition of P2, we obtain

NH 1
EB = E[BNH] =
| = T =0
by Corollary 3. Hence we have
(9 N¥ B[g N¥ 1 P
Z ) =EB|Z = E [gNT] =
Cov (B’ B) [B B | T E[BY gN"] =0

for all g € G again by Corollary 3.
q.e.d.

The next concept has been introduced by Schweizer (1996) for B = 1; the extension
to positive B follows Gouriéroux/Laurent/Pham (1996).

Definition. A signed (G, B)-martingale measure is a signed measure ) on (2, F) with
QI =1,Q < P with L99 ¢ 1.2 and

91 _ (LdQ 1\ _
EQ[B]_(BdP,g)—O for all g € G.

A signed (G, B)-martingale measure P is called B -variance-optimal if

1dP

1dpP) _|1dQ
BdP

B dP H for all signed (G, B)-martingale measures Q).

<

(To indicate the dependence on B, we could write PB instead of ]3, but as B is fixed

throughout, this would only clutter up the notation.)

Remarks. 1) Clearly, EB [%] = Q[ = 1 for every signed (G, B)-martingale

measure (). Since
Q _ dQ B
dP ~ dPB E[B?]
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by the definition of P2, we obtain

- e [(oZTQB” = gy (Vo [ap| +1).

This shows that P is B-variance-optimal if and only if its B-discounted density with

|5

respect to PP has minimal PB-variance among all signed (G, B)-martingale measures
Q; hence the terminology.

2) In the setting of the example in section 1, P actually turns out to be equiv-
alent to P (and in particular nonnegative) if the asset price process X is contin-
uous. This has been proved by Delbaen/Schachermayer (1996) for B = 1 and by
Gouriéroux/Laurent/Pham (1996) for B and & bounded, and their proofs can be ex-
tended to the present setting. But in general, P will only be a signed measure so that

some care is needed in practical applications.

Lemma 6. The B-variance-optimal signed (G, B)-martingale measure P exists if and

only if G admits no sure profits in L?. In that case, Pis unique and given by

21) dP  Bn(B) Y =
' dP  E[Brn(B)] dPB  pB [”(TB]

Proof. For B = 1, this can be found in Delbaen/Schachermayer (1996) or Schweizer
(1996). The argument for general B > 0 is quite similar, but we include it here for

completeness. If Q) is a signed (G, B)-martingale measure, then & flg € G by definition,

1= Q[0 = (%Z—i,B) _ (%Z—g,ww)).

This shows that the set of signed (G, B)-martingale measures is nonempty if and only if

and so

m(B) # 0, hence by Lemma 1 if and only if G admits no sure profits in L2. Since the set
of all B-discounted densities + 5 d—P of signed (G, B)-martingale measures () is convex and

closed in L?, it is clear that the B-variance-optimal signed (G, B)-martingale measure

then exists and is unique. To prove (2.1), we first note that fBL(B))] is well-defined by

Lemma 1 since G admits no sure profits in L2, and so P defined by the first equation in
(2.1) is a signed (G, B)-martingale measure. Moreover, 7(B) is in IRB + G by Lemma
1, hence of the form ¢B + g for some ¢ € IR and g € G, and so

1dQ 1dP 1 1dQ c
(22) (Ed_P’ ETP) = E[Br(B)] (ETP’”“”) = E[Br(B)]
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is constant over all signed (G, B)-martingale measures Q. If @) is now an arbitrary

signed (G, B)-martingale measure, then so is R := 2Q — 15, and Q = P+ R%ﬁ. Hence

we obtain

2 2

T 1db
BdpP

1 dP

1dpP 1 d(R— P)
BdP

B dP

I

1
1 2

1dQ
BdP

‘ 2

because the mixed term disappears thanks to (2.2). This proves that P defined by the
first expression in (2.1) is indeed B-variance-optimal. The alternative second expression

is obtained by noting that

dP  dP dP  =(B)EBY] = ™2
dPB ~ dPdPB ~ BE[Br(B)] n(B)
(Br(B)] " a2 2]
by the first half of (2.1) and the definition of PB.
q.e.d.
For future reference, we shall compute the minimal variance Var? [(ﬁ%] explicitly

in terms of P, B and 7(B). We first observe that

)

Thanks to (2.1), we thus obtain

1

BY ~ E[B?

E [(W(B))2] = ﬁE[Ew(B)] — EB [@] .

(2.3) Var®

EB [1- =]
- EB [M}

B

_ E[B(B-n(B))]
E[Bn(B)]

_IB=x(B)I?
In(B)IP

by the orthogonality of w(B) and B — n(B) in L2.

Corollary 7. Let G be a linear subspace of L? and assume that G admits no sure
profits in L?. For H € L?, consider the representation H = ¢ B + g" + NH from

Corollary 3. Then
~[H 1dP
H _ tll I
¢ _E[B} (BdP’H>’



where E denotes expectation with respect to the B-variance-optimal signed (G, B)-

martingale measure P. Moreover,

2 2 B "
2.4 — inf |H —af? = E [B?] Var® | 2|
(2.4) Jo = inf [|H —a [B*] Var {B]

Proof. By (2.1) and Lemma 1, %g—g isin Gt N (RB+G) = G- N A by Lemma 2.

Since ¢¥ € G and N¥ € A+, we thus obtain

NH_ldf)H H HY _ HpiO] — H
E[B}_(BdP’C B+g"+N )—c P[Q] = c¢".

Moreover, Lemma 4 and Lemma 5 imply that

(%)

Jo=E|(N")’| = B [B] E”

In view of Corollary 7, the decomposition
(1.1) H=c"B+¢% + NH

in Corollary 3 has a very intuitive financial interpretation. It tells us that H splits
naturally into an attainable part ¢ B+ g € A and a non-hedgeable part N¥ which is
orthogonal to the space A of attainable payoffs. The constant c¥ is the initial capital
of the attainable part; it can be computed in a simple way as the ﬁ-expectation of
the B-discounted payoff %. Moreover, (2.4) tells us that the PB-variance of the B-
discounted non-hedgeable part of H is a measure for the intrinsic financial risk of H

in terms of approximation in L? by attainable, hence riskless payoffs.

3. The financial variance principle

Consider a fixed random variable H € L? and think of this as a random payoff. In a
financial context, H could represent the net payoff of some derivative product, e.g., of
one unit of a European call option. In insurance terms, H should be thought of as the
negative of a claim amount to be paid by the insurer. Since financial derivatives are
often termed contingent claims, it seems appropriate to call H a general claim. How

much should we receive or pay if we sell or buy v units of this claim?
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This question has a standard answer from classical option pricing theory, but only
in a special case. Assume as before that G is a linear subspace of L? and that H is strictly
attainable in the sense that H € A. Thus we can write H = ¢ B + ¢¥ with ¢ € R
and ¢¥ € G, and then the price per unit of H must be ¢ to avoid the possibility of
constructing riskless profit opportunities. To illustrate the underlying idea, suppose for
instance that H is nonnegative and offered at a price 2 < ¢. Then one can buy % units
of H and finance this initial investment of ¢c¥ with the trading strategy (—cH ,—gH )
The terminal payoff from this costless deal is then %H —ciB—gH = (% — 1) H > 0;
thus one has turned nothing into something, and this is postulated to be impossible.
A similar argument applies if one can sell one unit of H for more than ¢?. In an
incomplete financial market, this line of reasoning breaks down: A general contingent
claim is typically not attainable, and its price will depend on subjective preferences.

If we think of —H as an insurance risk, there is also a standard approach to its
valuation from insurance mathematics: We simply apply a valuation principle which
seems appropriate for our needs. Thus we choose a mapping v from random variables
Y into IR and think of u(Y) as the value or the utility associated to the random amount

Y. For instance, the classical actuarial variance principle would correspond to
u(Y) := E[Y] — AVar[Y];

the slightly unfamiliar choice of signs is due to our convention that —H and not H
corresponds to an insurance claim.

Just applying some u to H is of course one possible way to arrive at a valuation.
But from a financial perspective, this is too simplistic because it ignores the possibil-
ities of trading represented by G. We therefore use a utility indifference argument to
obtain our financial valuation rule. This is a well-known general approach in economics,
and we follow here Mercurio (1996) and Aurell/Zyczkowski (1996) who combined this
with an L2-framework to determine option prices in some special cases. For a general
formulation of the basic idea, we start with an initial capital ¢ € IR and our a priori
valuation principle u. In order to decide on the price of v units of H, we compare the

following two alternatives:

(i) Invest optimally into a trading strategy with initial capital ¢ and simply ignore the
possibility of selling H. This amounts to maximizing u(cB+ g) over all g € G, and
we denote by

v(c,0) :=supu(cB + g)
geG

the value of this control problem.

(ii) Sell « units of H for the amount h(c,v) € IR to increase the initial wealth to
¢ + h(c,7y). This can then be invested into a trading strategy and leads to a
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total final wealth of (c + h(e, ’y))B + g — vH, since we have to pay out the claims

from H at the end. To obtain an optimal investment, we thus have to maximize
u((c + h(c, 'y))B +g— ’)/H) over all g € G, and the value of this second control

problem is

v(e,y) = zlellg)u((c-l— h(c,7))B+g— 'yH).

Indifference with respect to u prevails if h(c,y) is chosen in such a way that neither of

these alternatives is preferred to the other. More formally:

Definition. We say that h(c,v) is a u-indifference price for v units of H if h(c,y)

satisfies
v(ey) = (e 0),
i.e.,
(3.1) Supu((c—l- h(c,’y))B—i—g—fyH) = supu(cB + g).

geg geg

Note that for every choice of u, h(c,0) = 0 is always a w-indifference price for 0
units of H, although h(c,7) need not be unique. If H = ¢#B + g¥ € A is strictly
attainable, it is also easily checked that h(c,7) = vyc¥ is a u-indifference price whatever
u is. In general, the price for v units of H can depend on the initial capital ¢ and need
not be linear in v; the “price per unit of H”, @, is therefore of limited use only. For
~v = £1, we can nevertheless think of h(c,+1) as the ask and bid prices for one unit of
H, respectively.

Recall now the probability measure PP ~ P introduced in section 2. Our goal in

this paper is to determine the u-indifference prices for the two valuation principles

B B

uy(Y) := EB [%] — Ay [Var® [%]

where A > 0 is a risk aversion parameter. The corresponding u-indifference prices

(32) up (Y) := EP [Z] — AvVar® [K]

and

will be denoted by hi 2(c,7), respectively. Note that both u; and u, account for the
presence of the riskless asset B by first discounting with respect to B and then working

with the measure P® appropriate for B-discounted quantities.

12



Lemma 8. For u € {uy,us}, the u-indifference price h(c,~y) for any H € L? does not

depend on c and is given by

h(c,v) = h(y) = supu(g) — supu(g — yH) = supu(g) — supu(g — vH)
geg geg geg g€eG

for all v, c € IR.

Proof. Since the variance of a random variable does not change if we add a constant,

we have

_ H _ H ﬂ1,2
uis((c+2)B+g—~H) = E° [c+x+g 37 }—A(VarB [c+x+g 37 D

=c+z+ua(g—vH)

for any c,x € IR, where 8; =1 and (33 = % This implies that

v(e,y) = supu((c-l— h(c,’y))B-l—g—’yH) =c+ h(c,y) +supu(g —vH)
geg geg

and

v(c,0) =supu(c+g) = c+supu(g)
geyg geg

for u € {uy,us}. Since h(c,7) is defined by (3.1), we obtain the first and second
equalities.
For the third equality, it is obviously enough to show that for any Y € L2, we have

(3.3) L:=supu(g+Y)=supu(g+Y)=:R.
geg geg

Clearly, L < R, and so it only remains to show that L > R. For any g € G, there is a

sequence (gn)new in G converging to g in L2, This implies that

converges to EP 9tY | and that Jn + Y| nemw is bounded in n. Since
B €

lgn +YI* = llg+ Y1?| < llgn — ol (SE,% lgn + Y11+ llg + Y||)
n

and
(E[B(gn +Y)])? = (E[B(g + Y)))*|

< |E[B(gn - 9)]| (:3% |E[B(g + V)] + |E[B(g + Y)H)

< 151" lgn ~ g 5up o + Y11 + g + Y1),
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we conclude that

‘VarB [‘L - Y] — Var? [79 +Y
B

| < g [B o + 17 - B [0+ YY)

1 2
+ gz | BBl + V) - (BB + V)]

converges to 0 as n — oo. Given £ > 0, we thus have EP [%} > EB [%] —¢ and

Var? [%} < Var? [9+Y] + ¢ for n sufficiently large. This implies that

L>u(gn+Y)

B
Wt Y ntY
=er [t ale )

Y Y “
> EB [%] —e—A <VarB [%] -l—s)

for n sufficiently large, hence

by letting e tend to 0, and since g € G was arbitrary, we obtain (3.3).
q.e.d.

Theorem 9. Let G be a linear subspace of L? and assume that G admits no sure
profits in L?. For any H € L? and any vy, ¢ € IR, the u;-indifference price for y units of
H is then

(3.4) hi(c,y) = hi(y) = vcfT + Ay? EEBQ] =~E [g} + Ay*Var® {N?f[] ,

where E denotes expectation with respect to the B-variance-optimal signed (G, B)-

martingale measure P.

Proof. By Corollary 3, H can be decomposed as H = ¢ B + gH + N as in (1.1) so
that

ui(g —vH) = w (—ve" B+ g —vg" —yN") = —vc? +uy (9 — vg™ —yNT).

Since G is a linear subspace of L2, the mapping g — ¢’ := g — v¢® is a bijection of G
into itself for every fixed H € L? and « € IR, and so Lemma 8 implies that

(3.5) hi(y) = supui(g) + e — sup u1 (¢’ — yNH).
g€y 9'eg

14



! H

But EB [NTH} = 0 and Cov®? (%, %) = 0 for all ¢’ € G by Lemma 5, and so we
obtain

1 NH 1 NH
ur (9" - ’YNH) =EB [%} — AVar® [%]

_ms[9]_ B[9'] _ 42y [NH
=F [B] AVar {B] A~*Var [B

NH
= U]_(g,) — A’y2VarB [?:| .

Combining this with (3.5) yields

NH
hi(y) = supuyi(g) + ve — sup ui(g') + Ay*Var® {—} ;
g€eg g'eg B
and this together with Corollary 7 implies the assertion.

q.e.d.

The valuation formula (3.4) in Theorem 9 has a number of very attractive features.
To see the most striking of these, let us interpret hy(+1) as the buying (y = —1) and
selling (y = +1) prices for one unit of H, respectively. Then we see from (3.4) that

(3.6) hi(+1) =E [%] + AVar®? [N?f{] .

This looks very similar to the actuarial valuation principle (3.2), but differs by two
H

important points. First of all, the expectation of the B-discounted claim 7 is not
taken under the original measure PZ, but under the B-variance-optimal signed (G, B)-
martingale measure P. Secondly, the variance component in (3.6) is not based on H,
but only on the non-hedgeable part N of H. Thus we have to pass from the real-world
measure PP to the (appropriate) risk-neutral measure P for computing expectations,
and we do not add or subtract a risk-loading (under PB) for that part of H which
can be hedged away by judicious trading. In view of the perfect analogy to (3.2), the
prescription (3.6) could therefore be called the financial variance principle.

If H is attainable in the sense that H = ¢ + g is in A, then (3.6) reduces to
hi(£1) = cf. This is exactly what we expect from the classical arbitrage arguments

from option pricing. For a general claim H, we obtain a bid-ask spread of

hi(+1) — hi(—1) = 24AVar® [N?f[]

which is proportional to the risk aversion A and the intrinsic financial risk % of H;

see Corollary 7. Finally, note that the valuation in (3.4) does not depend on the initial

15



capital ¢ and that it is not linear in the number « of claims. It might be interesting to

compare this to empirically observed prices.

4. The financial standard deviation principle

In this section, we determine the us-indifference prices ha(c, y) for the actuarial standard

deviation principle

(4.1) uy (V) := EB [%] — Ay | Var® [%]

From Lemma 8, we know that

ha(c,y) = ha(7y) = sup uz(g) — sup uz(g — vH)
geg geg

for any H € L? and ¢,y € IR. Moreover, Corollary 3 yields the decomposition
g—7H=—"B+g—yg" —yN",
and since N7 has expectation 0 and is uncorrelated with %g‘ under PP by Lemma 5,

we obtain as in the proof of Theorem 9 that

— ~agH _~gH NH
us(g —vH) = —yc? + EP [&} — A\/VarB [ﬂ] + ~42Var® [_}

B B B

for any v € IR. Since G is a linear subspace of L2, the mapping g — ¢’ := g —v¢H is a
bijection of G into itself for every fixed H € L? and v € IR, and so we get

(42)  ha(y) =vc" + ztelg (EB [%} - A\/VMT[%D
(3] [ [

We start by analyzing the last term.

Lemma 10. Let G be a linear subspace of L? and assume that G admits no sure profits

in L2. For any y € IR, we then have

@ (e [5]0)
_A\/?T2 for B € G+

] sup m—A\/miQN}—i—y2 for B ¢ G+.

meR VarB [%
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Proof. If B € G+, then EB [%} = ﬁE[Bg] = for all g € G, and so we can simply
minimize the PP-variance of £ by choosing g = 0. For the case where B ¢ Gt the
idea is to perform the maximization in two steps: we first restrict attention to those g
satisfying the constraint EZ [%} = m and then maximize over m € IR. In analogy to
Corollary 16 of Schweizer (1996), we therefore define

mE|B?]

gm = cm (B — 7(B)) = = [(B - W(B))Q] (B — n(B)).

Since B ¢ G+, we have E [B(B —7(B))] = F [(B — W(B))2j| > 0, and so g, is well-

defined and in G+1 = G since G is linear. Moreover,

EB [%”] - ﬁE[Bgm] = m.

If we take any g € G with EB [%] = m, then

lg = emBI* = lg = gm + cmm(B)II”

2 2
= llg = gmll” + e 17 (B)|

2
> 2, |=(B)||
= ||gm - CmB||2 s
and so we deduce that
1 m
Var® [%} = Var® [% - cm] = BB lg — cmB||*> — (m — ¢m)? > Var? [%] .

This implies that
sup {EB [%] - A\/VarB [%} + y?

- [5]-ayf []

=m — A\/CEnVarB [1 - @] + y2.

g € G with EB [%] :m}

But

_ ﬁ 1B —=(B)|? - (E[lB2]E [(B - W(B))2i|>2a
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and so we get

R WP 1021

2 yuB [1_ "B E[B?)
e V2 [1 B ]‘ E[(B-n(B)’] |B - =(B)|*

Together with (2.3), this proves the assertion.
q.e.d.

The next result is elementary analysis; its proof is only included for completeness.

Lemma 11. For any y € IR, let

s(y) := sup (a: — \/m>

z€IR

for a fixed C > 0. Then

5(0) = s(y) = { \/?72\/@ for C > 1

undefined for C < 1.

Proof. Fix y € IR and let f(z) := z — \/Cx2 + y2 for z € IR. Then

2
(4.4) TR G, +1—/c+L ) =+1-VC.
z—+o0 |.7]“ T—+oo ;L‘z

For C < 1, this implies that lirin f(z) = too, and since f is continuous, we conclude
T—rL 00

that f has no finite maximum so that s = 400 in this case.
For C > 1, we write f(z) as

(O 4y _ (-t
z++/Cz?+y? x+./Cz2+y?

f(z)

this shows that f < 0. If C = 1, the numerator does not depend on x and the
denominator goes to +oo for x — +o00. Hence we conclude that s = 0 in this case. If
C > 1 and y = 0, the maximum of f < 0 is attained in = 0 so that s(0) = 0 for
C > 1. Finally, if C > 1 and y? > 0, f is continuously differentiable with derivative

Cx

18
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Since f’ > 0 for x < 0, it is easily checked that f’ vanishes at the unique point

r* = ,/#2_1), and f(z*) = —\/y?y/1 — & by computation. By (4.4), f must have
its maximum at x*, and so the assertion follows.

q.e.d.
Combining the two previous results, we now obtain

Theorem 12. Let G be a linear subspace of L? and assume that G admits no sure
profits in L?. For any H € L? and any v, c € IR, the us-indifference price for v units of
H is then

(4.5)  ha(c,y) =

_ B[ +A\7|\/1 - 37 Var” [M2] for 42 > Var” [ 2L |
undefined for A% < Var® [%];

where E denotes expectation with respect to the B-variance-optimal signed (G, B)-

martingale measure P.

Proof. We first observe that if B € G, then m(B) = B and therefore Var®? [dPB] =0

by (2.1). This shows that for B € G+, the second case in (4.5) will never occur. If
B € G+, then (4.2) and (4.3) imply that

NH ~H NH
ha(y) = ’ycH-}-A\/’y?VarB [?] =~E [E] + Aly|y/Var® [F]

by Corollary 7. If B ¢ G+, then (4.2) and (4.3) yield

H
ha(y) = vc™ + sup (m B Cm2) — sup (m - \/Cm2 + A2y2Var® [%D ’

meR meR

where we have set
A2
C=—Zrm12"
Var [W]

From Lemma 11 and Corollary 7, we thus obtain

Var® [dn] [ 4

~[H
= — A 1-—
ha(7y) VE[B}Jr vl yE 5

for C > 1, while ha(7y) is undefined for C' < 1. This proves the assertion.
q.e.d.
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As in the last section, the valuation formula (4.5) in Theorem 12 has a very ap-

pealing interpretation. If we write

E[H var® ["STP;] B [nH 2 B[ 4P
undefined for A2 < Var® [ (ng’; ],

we see that our approach transforms the actuarial standard deviation principle (4.1) into
the financial standard deviation principle (4.6). Note that like (3.4), the valuation in
(4.5) is based on the expectation under the B-variance-optimal signed (G, B)-martingale
measure P and (the square root of) the intrinsic financial risk of H. The corresponding

bid-ask spread is given by

\/ Var® [%] B [NH 2 B[ aP
ha(+1) — hy(—1) = 2A\[1 — ——5—/Var [?} for A¢ > Var [drﬁ}
undefined for A% < Var? [dd—i]

In contrast to (3.4), the valuation (4.5) is piecewise linear in the number «y of claims
to be valued; this implies that selling and buying prices for an arbitrary amount of
H are proportional to the selling and buying price of 1 unit of H, respectively. A
second major difference to the last section is that all these results need a sufficiently
high risk aversion for hs(c,y) to be well-defined. The lower bound on A depends on
the PB-variance of the density of P with respect to PB. It is thus determined by the
global properties of the financial environment (G, B) and in particular independent of
the individual claim under consideration. In a very special case, a result like Theorem
12 has also been obtained by Aurell/ Zyczkowski (1996) by means of rather laborious

calculations.
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