
        

A stochastic control approach to

a robust utility maximization problem

Giuliana Bordigoni Anis Matoussi

Dipartimento di Matematica Laboratoire de Statistique et Processus

Politecnico di Milano Université du Maine
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0. Introduction

This paper takes one step in the problem of utility maximization under model uncertainty .

At a very general level, the latter could be formulated as

(0.1) find sup
π

inf
Q

U(π,Q),

where π runs through a set of strategies (portfolios, investment decisions, . . . ) and Q ∈ Q
through a set of models. In the simplest case, there is one known model so that Q = {P} for a

fixed probability measure P , and U(π, P ) has the form of a P -expected utility from terminal

wealth and/or consumption, both of which are determined by π. There is a vast literature

on this by now classical problem; but there is always the drawback that one assumes the

underlying model to be exactly known.

To address this issue, one recent line of research considers a non-singleton set Q of

probability measures while keeping for U(π,Q) a Q-expected utility. Such a setting for Q
is often called a multiple priors model , and the corresponding optimization problem (0.1) is

known as robust utility maximization. Some results in this area have been obtained in Gundel

(2005), Quenez (2004) and Schied/Wu (2005), among others, and the overall approach relies

a lot on convex duality ideas. The set Q of models under consideration is assumed to have

certain properties, but is otherwise quite abstract and usually not specified in any detail.

Instead of working with a somehow given set of models, an alternative is to allow a priori

all possible models Q, but to include in U(π,Q) a penalization term; this should only depend

on Q (not on π) and quantify the decision maker’s attitude towards the model Q. Such an

approach has for instance been suggested in Anderson/Hansen/Sargent (2003) and Hansen

et al. (2006); they take as U(π,Q) the sum of a Q-expected utility like above plus a penalty

term based on the relative entropy of Q with respect to a reference model (measure) P . This

is also the setting that we use here. For a very recent treatment of a closely related problem

via duality methods, see Schied (2007).

The focus of the analysis in Anderson/Hansen/Sargent (2003) and Hansen et al. (2006)

is on general insights about the qualitative behaviour of a solution to (0.1) in their framework.

This is done via a mostly formal study of the corresponding Hamilton-Jacobi-Bellman (HJB)

equations in a Markovian setting. Our goal in contrast is to obtain rigorous mathematical

results, and the present paper achieves some progress in that direction for the partial (inner)

problem of minimizing U(π,Q) over Q when π is kept fixed. This problem has also been

studied by Skiadas (2003) who has obtained very similar results, but with a different approach;

see Section 5 for a more detailed comparison.

The paper is structured as follows. Section 1 sets the stage by giving a precise definition

of the functional Q 7→ U(π,Q) with fixed π and of the corresponding optimization problem,

and by introducing notations and key assumptions. Section 2 provides a number of auxiliary

results for subsequent use. In Section 3, we show with the help of a standard Komlós-type
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argument that there exists a unique minimizing measure Q∗, and we prove that Q∗ is even

equivalent to P . This mainly functional analytic approach is complemented by Section 4.

There we treat our optimization problem by stochastic control methods and show that for a

continuous filtration, the corresponding dynamic value process is characterized as the unique

solution of a generalized backward stochastic differential equation (BSDE) with a quadratic

term in its driver. Our BSDE is a slight generalization of an equation studied in detail by

Schroder/Skiadas (1999), but our method of attack is rather different. Like in Schroder/

Skiadas (1999), however, our BSDE involves unbounded terms in the driver and the terminal

value which cannot be handled by existing techniques from the BSDE literature. Hence our

approach has to exploit the precise structure of our equation. The final Section 5 contains a

brief comparison with some of the most closely related literature.

1. The basic optimization problem

This section gives a precise formulation of our optimization problem and introduces a number

of notations for later use.

We start with a filtered probability space (Ω,F , IF, P ) over a finite time horizon T ∈
(0,∞). The filtration IF = (Ft)0≤t≤T satisfies the usual conditions of right-continuity and

P -completeness. For any probability measure Q ¿ P on FT , the density process of Q with

respect to P is the RCLL P -martingale ZQ = (ZQt )0≤t≤T with

ZQt = dQ
dP

∣∣
Ft = EP

[
dQ
dP

∣∣∣Ft
]

, 0 ≤ t ≤ T.

Since ZQ is closed on the right by ZQT = dQ
dP

∣∣
FT , we can and do identify ZQ with Q. (More

precisely, ZQ determines the restriction of Q to FT , but this will be enough for our purposes.)

The basic ingredients for our optimization problem are now

– parameters α, α′ ∈ [0,∞) and β ∈ (0,∞);

– progressively measurable processes δ = (δt)0≤t≤T and U = (Ut)0≤t≤T ;

– an FT -measurable random variable U ′T .

Interpretations will follow presently. We define the discounting process

Sδt := exp
(
−

t∫
0

δs ds
)

, 0 ≤ t ≤ T,
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the auxiliary quantities

Uδt,T := α

T∫

t

Sδs
Sδt
Us ds+ α′

SδT
Sδt
U ′T , 0 ≤ t ≤ T,

Rδt,T (Q) :=

T∫

t

δs
Sδs
Sδt

log
ZQs

ZQt
ds+

SδT
Sδt

log
ZQT
ZQt

, 0 ≤ t ≤ T

for Q¿ P on FT and consider the cost functional

c(ω,Q) := Uδ0,T (ω) + βRδ0,T (Q)(ω).

The basic goal is to

(1.1) minimize the functional Q 7→ Γ(Q) := EQ[c( · , Q)]

over a suitable class of probability measures Q¿ P on FT . Note that in the language of the

introduction, Γ(Q) represents U(π,Q) for fixed π.

A closer look at the cost functional c(ω,Q) shows that

Γ(Q) = EP

[
ZQT

(
α
T∫
0

SδsUs ds+ α′SδTU
′
T

)]
+ βEP

[
T∫
0

δsS
δ
sZ

Q
s logZQs ds+ SδTZ

Q
T logZQT

]
(1.2)

consists of two terms. The first is a Q-expected discounted utility with discount rate δ, utility

rate Us at time s and terminal utility U ′T at time T . Usually, Us comes from consumption

and U ′T from final wealth. As explained above, we consider the strategy decisions π as being

frozen for the moment; a maximization over some π determining U(π) and U ′T (π) will only

be done in a second step. The weights α and α′ can be used to obtain as special cases the

extreme situations of utility rate only or terminal utility only. The second summand is a

sort of discounted relative entropy term with both an “entropy rate” as well as a “terminal

entropy”. The (constant) factor β determines the strength of this penalty term.

Definition. Dexp
0 is the space of all progressively measurable processes y = (yt)0≤t≤T with

EP

[
exp

(
γ ess sup

0≤t≤T
|yt|
)]

<∞ for all γ > 0.

Dexp
1 denotes the space of all progressively measurable processes y = (yt)0≤t≤T such that

EP

[
exp

(
γ
T∫
0

|ys| ds
)]

<∞ for all γ > 0.
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Definition. For any probability measure Q on (Ω,F),

H(Q|P ) :=

{
EQ

[
log dQ

dP

∣∣
FT

]
if Q¿ P on FT

+∞ otherwise

denotes the relative entropy of Q with respect to P on FT . We denote by Qf the space of

all probability measures Q on (Ω,F) with Q ¿ P on FT , Q = P on F0 and H(Q|P ) < ∞.

Clearly P ∈ Qef := {Q ∈ Qf |Q ≈ P on FT }.

For a precise formulation of (1.1), we now assume

(A1) 0 ≤ δ ≤ ‖δ‖∞ <∞ for some constant ‖δ‖∞;

(A2) the process U is in Dexp
1 ;

(A3) EP [exp (γ|U ′T |)] <∞ for all γ > 0.

We shall see below that EQ[c( · , Q)] is then well-defined and finite for Q ∈ Qf . Due to (A1),

a simple estimation gives

EP
[
SδTZ

Q
T logZQT

]
≥ −e−1 + e−‖δ‖∞TH(Q|P ).

Hence the second term in Γ(Q) explodes unless H(Q|P ) <∞. Because we want to minimize

Γ(Q), this explains why we only consider measures Q in Qf .

Remark. The special case δ ≡ 0 is much simpler and already gives a flavour of the results

we obtain for general δ. In fact, δ ≡ 0 yields Sδ ≡ 1 and allows us to rewrite Γ(Q) as

Γ(Q) = EQ[U0
0,T ] + βH(Q|P ) = βH(Q|PU )− β logEP

[
exp

(
− 1

β U0
0,T

)]

if we define a new probability measure PU ≈ P by

dPU := const. exp
(
− 1

β U0
0,T

)
dP.

Hence (1.1) amounts to minimizing the relative entropy of Q with respect to PU , and it is

well known from Csiszár (1975) that there exists a unique solution Q∗ to this problem and

that Q∗ is equivalent to PU , hence also to P . In fact, the minimizer obviously is Q∗ = PU .

For δ 6≡ 0, we shall also find that there exists a unique minimizer Q∗ of Γ(Q) and that

Q∗ ≈ P . However, it does not seem possible to reduce the general δ case to δ ≡ 0 in a simple

way. We remark that the presence of a discounting term with positive δ is indispensable

for an infinite horizon version of (1.1); see Hansen et al. (2006) and forthcoming work by

G. Bordigoni for more on this issue. ¦
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We later embed the minimization of Γ(Q) in a stochastic control problem and to that

end now introduce a few more notations. Let S denote the set of all IF -stopping times τ with

values in [0, T ] and D the space of all density processes ZQ with Q ∈ Qf . We define

D(Q, τ) :=
{
ZQ

′ ∈ D
∣∣Q′ = Q on Fτ

}
,

Γ(τ,Q) := EQ[c( · , Q) | Fτ ]

and the minimal conditional cost at time τ ,

J(τ,Q) := Q - ess inf
ZQ′∈D(Q,τ)

Γ(τ,Q′).

Then (1.1) can be reformulated to

(1.3) find inf
Q∈Qf

Γ(Q) = inf
Q∈Qf

EQ[c( · , Q)] = EP [J(0, Q)]

by using the dynamic programming equation and the fact that Q = P on F0 for every Q ∈ Qf .

2. Auxiliary estimates

In this section, we prove a number of auxiliary estimates that will help us later in establishing

our main results. We frequently use the inequalities

x log x ≥ −e−1 for all x ≥ 0,(2.1)

|x log x| ≤ x log x+ 2e−1 for all x ≥ 0

(where we set 0 log 0 := 0) and

(2.2) xy ≤ y log y − y + ex for all x ∈ IR, y ≥ 0.

The latter is simply the observation that the function x 7→ xy− ex on IR takes its maximum

for y > 0 in x = log y. Throughout this section, we assume that (A1) – (A3) hold.

We first show that Γ(Q) can be controlled by H(Q|P ).

Lemma 1. There is a constant C ∈ (0,∞) depending only on α, α′, β, δ, T, U, U ′T such that

Γ(Q) ≤ EQ[|c( · , Q)|] ≤ C
(
1 +H(Q|P )

)
for all Q ∈ Qf .

Proof. The first inequality is obvious. For the second, we set R := α
T∫
0

|Us| ds+ α′|U ′T | and

use first the definition of c(ω,Q), the Bayes formula, (A1) and 0 ≤ Sδ ≤ 1, and then (2.1)
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and (2.2) to obtain

EQ[|c( · , Q)|] ≤ EP [ZQT R] + βEP

[
‖δ‖∞

T∫
0

|ZQs logZQs | ds+ |ZQT logZQT |
]

≤ EP [ZQT logZQT − ZQT + eR]

+ 2e−1β(‖δ‖∞T + 1) + βEP

[
‖δ‖∞

T∫
0

ZQs logZQs ds+ ZQT logZQT

]
.

By Jensen’s inequality and conditioning on Fs, we have

EP [ZQs logZQs ] ≤ EP [ZQT logZQT ] = H(Q|P )

and therefore

EQ[|c( · , Q)|] ≤ EP [eR] + 2e−1β(‖δ‖∞T + 1) +
(
1 + β(‖δ‖∞T + 1)

)
H(Q|P ).

Hence

C := max
(
EP [eR] + 2e−1β(‖δ‖∞T + 1), 1 + β‖δ‖∞T + β

)

will do, and C <∞ due to (A1) – (A3) and the definition of R. q.e.d.

An immediate but very useful consequence is

Corollary 2. Assume (A1) – (A3). Then

c( · , Q) ∈ L1(Q) for every Q ∈ Qf ,

and in particular Γ(Q) is well-defined and finite for every Q ∈ Qf .

Our next result now shows that conversely, H(Q|P ) can also be controlled by Γ(Q). This

is a bit more tricky and will be crucial later on. Note how the argument exploits almost the

full strength of the integrability assumptions (A2) and (A3).

Proposition 3. There is a constant C ∈ (0,∞) depending only on α, α′, β, δ, T, U, U ′T with

(2.3) H(Q|P ) ≤ C
(
1 + Γ(Q)

)
for all Q ∈ Qf .

In particular, inf
Q∈Qf

Γ(Q) > −∞.

Proof. We first prove for later use an auxiliary inequality in somewhat greater generality.

Fix a stopping time τ ∈ S. Using the Bayes formula, (A1), 0 ≤ Sδ ≤ 1 and (2.1) gives

EQ

[
T∫
0

δsS
δ
s logZQs ds

∣∣∣∣Fτ
]

=
τ∫
0

δsS
δ
s logZQs ds+

1

ZQτ
EP

[
T∫
τ

δsS
δ
sZ

Q
s logZQs ds

∣∣∣∣Fτ
]

≥
τ∫
0

δsS
δ
s logZQs ds−

1

ZQτ
‖δ‖∞Te−1.
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Similarly, using 1 ≥ SδT ≥ e−‖δ‖∞T yields

EQ[SδT logZQT | Fτ ] = 1

ZQτ
EP [SδTZ

Q
T logZQT | Fτ ]

≥ 1

ZQτ

(
− e−1 + e−‖δ‖∞T (e−1 + EP [ZQT logZQT | Fτ ])

)

≥ 1

ZQτ

(
− e−1 + e−‖δ‖∞TEP [ZQT logZQT | Fτ ]

)
.

Moreover, using 0 ≤ Sδ ≤ 1 and again setting R := α
T∫
0

|Us| ds+ α′|U ′T | gives

EQ[Uδ0,T |Fτ ] ≥ −EQ[R|Fτ ] = − 1

ZQτ
EP [ZQT R | Fτ ]

so that we get

Γ(τ,Q) ≥ − 1

ZQτ

(
EP

[
ZQT

(
α
T∫
0

|Us| ds+ α′|U ′T |
) ∣∣∣∣Fτ

]
(2.4)

+ β
(
− ‖δ‖∞Te−1 − e−1 + e−‖δ‖∞TEP [ZQT logZQT | Fτ ]

))

+ β
τ∫
0

δsS
δ
s logZQs ds.

To estimate the first term in (2.4), we now use (2.2) with x = γR, y = 1
γZ

Q
T and γ > 0 to be

chosen later. This yields

EP [ZQT R | Fτ ] ≤ EP
[

1
γZ

Q
T logZQT − 1

γZ
Q
T log γ − 1

γZ
Q
T

∣∣∣Fτ
]

+ EP [eγR | Fτ ]

= 1
γEP [ZQT logZQT | Fτ ]− 1

γ (log γ + 1)ZQτ + EP [eγR | Fτ ].

We plug this into (2.4) to obtain for later use

Γ(τ,Q) ≥ 1

γ
(log γ + 1)− 1

ZQτ
EP

[
exp

(
γα

T∫
0

|Us| ds+ γα′|U ′T |
) ∣∣∣∣Fτ

]
(2.5)

− 1

ZQτ
βe−1(‖δ‖∞T + 1) +

1

ZQτ
EP [ZQT logZQT | Fτ ]

(
βe−‖δ‖∞T − 1

γ

)

+ β
τ∫
0

δsS
δ
s logZQs ds.

If we choose τ = 0 and take expectations, this gives in particular

Γ(Q) ≥ 1
γ (log γ + 1)− EP [eγR]− βe−1(‖δ‖∞T + 1) +H(Q|P )

(
βe−‖δ‖∞T − 1

γ

)
.

For any γ > 0 such that βe−‖δ‖∞T − 1
γ ≥ η > 0, we thus obtain (2.3) with

C := 1
η max

(
1, EP [eγR] + 1

γ (| log γ|+ 1) + βe−1(‖δ‖∞T + 1)
)
,
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and C < ∞ due to (A1) – (A3) and the definition of R. The final assertion is clear since

H(Q|P ) ≥ 0. q.e.d.

A slight modification in the proof of Proposition 3 also yields the following technical

estimate.

Lemma 4. For any γ > 0 and any set A ∈ F , we have

EQ[|Uδ0,T |IA] ≤ 1

γ
H(Q|P ) +

1

γ
(e−1 + | log γ|+ 1) + EP

[
IA exp

(
γα

T∫
0

|Us| ds+ γα′|U ′T |
)]
.(2.6)

Proof. We again use (2.2) with x = γR := γ
(
α
T∫
0

Sδs |Us| ds+α′SδT |U ′T |
)

, y = 1
γZ

Q
T and then

multiply by IA to obtain

ZQT |Uδ0,T |IA ≤ ZQT RIA ≤ IA
(

1
γZ

Q
T logZQT − 1

γZ
Q
T (log γ + 1) + eγR

)
.

Adding e−1 and using (2.1) then yields

ZQT |Uδ0,T |IA ≤ 1
γ (ZQT logZQT + e−1) + ZQT

1
γ (| log γ|+ 1) + eγRIA,

and (2.6) follows by taking expectations under P . q.e.d.

We later want to use the martingale optimality principle from stochastic control theory.

Although we know from Corollary 2 that c( · , Q) is Q-integrable for every Q ∈ Qf , this is not

enough since we have no uniformity in Q. Therefore we prove here directly that each J(τ,Q)

is Q-integrable.

Lemma 5. For each τ ∈ S and Q ∈ Qf , the random variable J(τ,Q) is in L1(Q).

Proof. By definition,

J(τ,Q) ≤ Γ(τ,Q) ≤ EQ
[
|c( · , Q)|

∣∣Fτ
]

so that
(
J(τ,Q)

)+ ≤ EQ
[
|c( · , Q)|

∣∣Fτ
]

is Q-integrable by Corollary 2. Dealing with the negative part is a bit more delicate. We

first fix ZQ
′ ∈ D(Q, τ) and consider Γ(τ,Q′). Our goal is to find a Q-integrable lower bound

for Γ(τ,Q′) which does not depend on Q′ because this will then also work for J(τ,Q) =

ess inf
ZQ′∈D(Q,τ)

Γ(τ,Q′). To that end, we use (2.5) withQ′ instead ofQ and observe that ZQ
′

= ZQ
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on [[0, τ ]] because Q′ = Q on Fτ . Choosing γ > 0 to satisfy βe−‖δ‖∞T − 1
γ = 0 thus yields

(
Γ(τ,Q′)

)− ≤ B :=
1

γ
(| log γ|+ 1) +

1

ZQτ

(
EP

[
exp

(
γα

T∫
0

|Us| ds+ γα′|U ′T |
) ∣∣∣∣Fτ

]

+ βe−1(‖δ‖∞T + 1)

)
+ β

τ∫
0

δsS
δ
s | logZQs | ds.

But this nonnegative random variable does not depend on Q′, and thus we conclude that

J(τ,Q) = ess inf
ZQ′∈D(Q,τ)

Γ(τ,Q′) ≥ ess inf
ZQ′∈D(Q,τ)

−
(
Γ(τ,Q′)

)− ≥ −B

so that
(
J(τ,Q)

)− ≤ B. Finally, B ∈ L1(Q) because (A1) – (A3) and Q ∈ Qf yield that

EQ[B] ≤ 1

γ
(| log γ|+ 1) + EP

[
exp

(
γα

T∫
0

|Us| ds+ γα′|U ′T |
)]

+ βe−1(‖δ‖∞T + 1)

+ βEP

[
T∫
0

δsS
δ
s | logZQs | ds

]
<∞;

in fact, the last summand is at most β‖δ‖∞T
(
H(Q|P ) + 2e−1

)
by the same computation as

in the proof of Lemma 1. q.e.d.

3. Existence of an optimal measure Q∗

The main result of this section is that the problem (1.1) of minimizing Γ(Q) = EQ[c( · , Q)]

over Q ∈ Qf has a unique solution Q∗ ∈ Qf , and that Q∗ is even equivalent to P . This is

proved for a general filtration IF .

Theorem 6. Assume (A1) – (A3). Then there exists a unique Q∗ ∈ Qf which minimizes

Q 7→ Γ(Q) over all Q ∈ Qf .

Proof. 1) x 7→ x log x is strictly convex and δ and Sδ are nonnegative; hence Q 7→ Γ(Q) is

also strictly convex and Q∗ must be unique if it exists.

2) Let (Qn)n∈IN be a sequence in Qf such that

↘ − lim
n→∞

Γ(Qn) = inf
Q∈Qf

Γ(Q) > −∞

and denote by Zn = ZQ
n

the corresponding density processes. Since each ZnT ≥ 0, it follows

from Komlós’ theorem that there exists a sequence (Z̄nT )n∈IN with Z̄nT ∈ conv(ZnT , Z
n+1
T , . . .)
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for each n ∈ IN and such that (Z̄nT ) converges P -a.s. to some random variable Z̄∞T , which is

then also nonnegative but may take the value +∞. Because Qf is convex, each Z̄nT is again

associated to some Q̄n ∈ Qf . We claim that this also holds for Z̄∞T , i.e., that dQ̄∞ := Z̄∞T dP

defines a probability measure Q̄∞ ∈ Qf . To see this, note first that we have

(3.1) Γ(Q̄n) ≤ sup
m≥n

Γ(Qm) ≤ Γ(Qn) ≤ Γ(Q1)

because Q 7→ Γ(Q) is convex and n 7→ Γ(Qn) is decreasing. Hence Proposition 3 yields

(3.2) sup
n∈IN

EP [Z̄nT log Z̄nT ] = sup
n∈IN

H(Q̄n|P ) ≤ C
(
1 + sup

n∈IN
Γ(Q̄n)

)
≤ C

(
1 + Γ(Q1)

)
<∞.

Thus (Z̄nT )n∈IN is P -uniformly integrable by de la Vallée-Poussin’s criterion and therefore

converges in L1(P ) as well. This implies that EP [Z̄∞T ] = lim
n→∞

EP [Z̄nT ] = 1 so that Q̄∞ is

indeed a probability measure and Q̄∞ ¿ P on FT . Because x 7→ x log x is bounded below

by −e−1, Fatou’s lemma and (3.2) yield

(3.3) H(Q̄∞|P ) = EP [Z̄∞T log Z̄∞T ] ≤ lim inf
n→∞

EP [Z̄nT log Z̄nT ] <∞.

Finally, we also have Q̄∞ = P on F0; in fact, (Z̄nT ) converges to Z̄∞T strongly, hence also

weakly in L1(P ) and so we have for every A ∈ F0

Q̄∞[A] = EP [Z̄∞T IA] = lim
n→∞

EP [Z̄nT IA] = lim
n→∞

Q̄n[A] = P [A]

since all the Q̄n are in Qf and hence agree with P on F0. This shows that Q̄∞ ∈ Qf .

3) We now want to show that Q∗ := Q̄∞ attains the infimum of Q 7→ Γ(Q) in Qf and

therefore examine Γ(Q̄∞) more closely. Let Z̄∞ be the density process of Q̄∞ with respect

to P . Because we know that (Z̄nT ) converges to Z̄∞T in L1(P ), Doob’s maximal inequality

P

[
sup

0≤t≤T
|Z̄∞t − Z̄nt | ≥ ε

]
≤ 1

ε
EP
[
|Z̄∞T − Z̄nT |

]

implies that
(

sup
0≤t≤T

|Z̄∞t − Z̄nt |
)
n∈IN

converges to 0 in P -probability. By passing to a sub-

sequence that we still denote by (Z̄n)n∈IN , we may thus assume that (Z̄n. ) converges to Z̄∞.
uniformly in t with P -probability 1. This implies that

Z̄nT c( · , Q̄n) −→ Z̄∞T c( · , Q̄∞) P -a.s.

and in more detail with

Ȳ n1 := Z̄nT Uδ0,T , Ȳ n2 := β
( T∫

0

δsS
δ
s Z̄

n
s log Z̄ns ds+ SδT Z̄

n
T log Z̄nT

)
= βRδ0,T (Q̄n)

10



         

for n ∈ IN ∪ {∞} that

lim
n→∞

Ȳ ni = Ȳ∞i P -a.s. for i = 1, 2.

Since Ȳ n2 is by (A1) like x log x bounded below, uniformly in n and ω, Fatou’s lemma yields

(3.4) EP [Ȳ∞2 ] ≤ lim inf
n→∞

EP [Ȳ n2 ].

We prove below that we also have

(3.5) EP [Ȳ∞1 ] ≤ lim inf
n→∞

EP [Ȳ n1 ].

Adding (3.5) and (3.4) then yields by (3.1) that

Γ(Q̄∞) = EP [Ȳ∞1 + Ȳ∞2 ] ≤ lim inf
n→∞

Γ(Q̄n) ≤ lim inf
n→∞

Γ(Qn) ≤ inf
Q∈Qf

Γ(Q)

which proves that Q̄∞ is indeed optimal.

4) Although Ȳ n1 is linear in Z̄nT , it is more difficult to handle than Ȳ n2 because the factor

Uδ0,T is not bounded. However, Uδ0,T and R := α
T∫
0

|Us| ds+α′|U ′T | are still manageable thanks

to the exponential integrability properties from (A2) and (A3); they imply that R is almost

bounded in the sense that eγR ∈ L1(P ) for all γ > 0. To exploit this, we set

R̃m := Uδ0,T I{Uδ
0,T
≥−m} ≥ −m for m ∈ IN

so that we have for each n ∈ IN ∪ {∞}

Ȳ n1 = Z̄nT Uδ0,T = Z̄nT R̃m + Z̄nT Uδ0,T I{Uδ
0,T

<−m}.

Because R̃m ≥ −m and each Z̄nT has P -expectation 1, Fatou’s lemma yields

EP [Z̄∞T R̃m] = −m+ EP [Z̄∞T (R̃m +m)] ≤ lim inf
n→∞

EP [Z̄nT R̃m]

and therefore by adding and subtracting EP
[
Z̄nT Uδ0,T I{Uδ0,T<−m}

]

EP [Ȳ∞1 ] ≤ lim inf
n→∞

EP [Z̄nT R̃m] + EP
[
Z̄∞T Uδ0,T I{Uδ

0,T
<−m}

]

≤ lim inf
n→∞

EP [Ȳ n1 ] + 2 sup
n∈IN∪{∞}

EP
[
Z̄nT |Uδ0,T |I{Uδ

0,T
<−m}

]
.

Hence (3.5) will follow once we prove that

(3.6) lim
m→∞

sup
n∈IN∪{∞}

EP
[
Z̄nT |Uδ0,T |I{Uδ

0,T
<−m}

]
= 0.

11



          

However, Lemma 4 yields for each n ∈ IN ∪ {∞}

EP
[
Z̄nT |Uδ0,T |I{Uδ

0,T
<−m}

]
= EQ̄n

[
|Uδ0,T |I{Uδ

0,T
<−m}

]

≤ 1
γH(Q̄n|P ) + 1

γ (e−1 + | log γ|+ 1) + EP
[
I{Uδ

0,T
<−m}e

γR
]

and therefore by using (3.2) and (3.3)

sup
n∈IN∪{∞}

EP
[
Z̄nT |Uδ0,T |I{Uδ0,T<−m}

]
≤ 1

γ

(
C(1+Γ(Q1)+e−1+| log γ|+1

)
+EP

[
I{Uδ

0,T
<−m}e

γR
]

for each γ > 0. The first term on the right-hand side becomes arbitrarily small for γ large

enough, and the second converges for each fixed γ to 0 as m→∞ by dominated convergence,

due to the exponential integrability of R from (A1) – (A3). This proves (3.6) and completes

the proof. q.e.d.

Remark. In abstract terms, the proof of Theorem 6 can morally be summarized as follows:

a) Use Komlós’ theorem to produce a candidate Q̄∞ for the optimal measure, where Z̄∞T
is a P -almost sure limit of convex combinations Z̄nT formed from a minimizing sequence

(ZnT )n∈IN .

b) View Γ(Q) like in (1.2) as a function g(ZQ) defined on density processes ZQ. Minimality

of Q̄∞ then follows by standard reasoning if g is convex and lower semicontinuous with

respect to P -almost sure convergence of ZQT .

While convexity of g is immediate, lower semicontinuity is not obvious at all. For the entropy

term
(
the second summand in (1.2)

)
, we can use Fatou’s lemma, but we first need the

convergence of the entire density process ZQ. and not only of its final value ZQT . We have

done this above by using L1(P )-convergence of the final values, but this requires of course

P -uniform integrability. Due to linearity in ZQT , there is no convergence problem for the

integrand of the first summand in (1.2); but we cannot use Fatou’s lemma there since we

have no uniform lower bound. The arguments in steps 3) and 4) of the above proof show

that while g is probably not lower semicontinuous on all of D with respect to P -almost sure

convergence of ZQT , it is so along any sequence
(
ZQ

n

T

)
n∈IN which is bounded in entropy in

the sense that sup
n∈IN

H(Qn|P ) <∞. Note that we exploit the full strength of the assumptions

(A2) and (A3) because we need to let γ tend to ∞.

The above problems disappear if the utility terms U and U ′T are uniformly bounded below

or if we have a uniform bound on H(Q|P ) for all measures Q we allow in the minimization

problem. In Bordigoni (2005), this is for instance achieved by minimizing over a set Q̃ ⊆ Qf
which is convex and satisfies sup

Q∈Q̃

∥∥dQ
dP

∥∥
Lp(P )

< ∞ for some p > 1. One major achievement

of the present work is that it avoids such restrictive assumptions on U , U ′T and Q. ¦
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Having established existence and uniqueness of an optimal Q∗, our next goal is to prove

that Q∗ is equivalent to P . This uses an adaptation of an argument by Frittelli (2000), and

we start with an auxiliary result.

Lemma 7. Suppose for i = 0, 1 that Qi ∈ Qf with density processes Zi = ZQ
i

. Then

(3.7) sup
0≤t≤T

EP
[
(Z1

t logZ0
t )+
]
≤ 2 + e−1 +H(Q1|P ) <∞.

Proof. This slightly sharpens a result obtained in the proof of Lemma 2.1 in Frittelli (2000).

For completeness we give details. If we set ψ(x) := x log x, Zx := xZ1 + (1− x)Z0 and

(3.8) H(x; t) := 1
x

(
ψ(Zxt )− ψ(Z0

t )
)

for x ∈ (0, 1] and t fixed,

the random function x 7→ H(x; t) is increasing because ψ is convex, and so

H(1; t) ≥ lim
x↘0

ψ(Zxt )− ψ(Z0
t )

x
=

d

dx
ψ(Zxt )

∣∣∣
x=0

= ψ′(Z0
t )(Z1

t − Z0
t ) = (logZ0

t + 1)(Z1
t − Z0

t ).

Rearranging terms gives

(3.9) Z1
t logZ0

t ≤ ψ(Z1
t )− ψ(Z0

t ) + Z0
t logZ0

t + Z0
t − Z1

t ≤ ψ(Z1
t ) + e−1 + Z0

t + Z1
t ,

and the right-hand side is by (2.1) nonnegative with

EP [ψ(Z1
t )] ≤ EP [ψ(Z1

T )] = H(Q1|P )

by Jensen’s inequality. Hence (3.7) follows from (3.9). q.e.d.

Now we are ready to prove the second main result of this section.

Theorem 8. Assume (A1) – (A3). Then the optimal measure Q∗ from Theorem 6 is equiv-

alent to P .

Proof. 1) As in the proof of Lemma 7, we take Q0, Q1 ∈ Qf , set Qx := xQ1 + (1− x)Q0 for

x ∈ [0, 1] and denote by Zx the density process of Qx with respect to P . With ψ(x) = x log x

and H as in (3.8), we then obtain

1
x

(
Γ(Qx)− Γ(Q0)

)
= EP [(Z1

T − Z0
T )Uδ0,T ]

+
1

x
βEP

[
T∫
0

δsS
δ
s

(
ψ(Zxs )− ψ(Z0

s )
)
ds+ SδT

(
ψ(ZxT )− ψ(Z0

T )
)]

= EP [(Z1
T − Z0

T )Uδ0,T ] + βEP

[
T∫
0

δsS
δ
sH(x; s) ds+ SδTH(x;T )

]
.
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As x decreases to 0, H(x; s) decreases as in the proof of Lemma 7 to (logZ0
s + 1)(Z1

s − Z0
s ),

and

H(x; s) ≤ H(1; s) = ψ(Z1
s )− ψ(Z0

s ) ≤ ψ(Z1
s ) + e−1

shows that we have an integrable upper bound. Hence we can use monotone convergence to

conclude that

d

dx
Γ(Qx)

∣∣∣
x=0

= EP [(Z1
T − Z0

T )Uδ0,T ](3.10)

+ βEP

[
T∫
0

δsS
δ
s (logZ0

s + 1)(Z1
s − Z0

s ) ds+ SδT (logZ0
T + 1)(Z1

T − Z0
T )

]

=: EP [Y1] + EP [Y2].

As in the proof of Lemma 1, (A1) – (A3) imply that Y1 ∈ L1(P ), and since x 7→ H(x; s) is

increasing, Y2 is majorized by

T∫
0

δsS
δ
sH(1; s) ds+ SδTH(1;T ) ≤

T∫
0

δsS
δ
s

(
ψ(Z1

s ) + e−1
)
ds+ SδT

(
ψ(Z1

T ) + e−1
)

which is P -integrable because Q1 ∈ Qf . Hence Y +
2 ∈ L1(P ) and so the right-hand side of

(3.10) is well-defined in [−∞,+∞).

2) Now take Q0 = Q∗ and any Q1 ∈ Qf which is equivalent to P ; this is possible since

Qf contains P . The optimality of Q∗ yields Γ(Qx)− Γ(Q∗) ≥ 0 for all x ∈ (0, 1], hence also

(3.11)
d

dx
Γ(Qx)

∣∣∣
x=0
≥ 0.

Therefore the right-hand side of (3.10) is nonnegative which implies that Y2 must be in L1(P ).

This allows us to rearrange terms and rewrite (3.11) by using (3.10) as

βEP

[
T∫
0

δsS
δ
sZ

1
s logZ∗s ds+ SδTZ

1
T logZ∗T

]
≥ −EP [(Z1

T − Z∗T )Uδ0,T ]

+ βEP

[
T∫
0

δsS
δ
sZ
∗
s logZ∗s ds+ SδTZ

∗
T logZ∗T

]
(3.12)

− βEP
[
(Z1

T − Z∗T )
T∫
0

δsS
δ
s ds+ SδT

]
.

But the right-hand side of (3.12) is > −∞ and the first term on the left-hand side is < +∞ due

to (A1) and Lemma 7. Moreover, (A1) gives SδT ≥ e−‖δ‖∞T > 0. So if we have Q∗ 6≈ P , we get

(logZ∗T )− =∞ on the set A := {Z∗T = 0} and P [A] > 0. This gives (Z1
T logZ∗T )− =∞ on A

because Z1
T > 0 since Q1 ≈ P . But since we know from Lemma 7 that (Z1

T logZ∗T )+ ∈ L1(P ),

we then conclude that EP [SδTZ
1
T logZ∗T ] = −∞, and this gives a contradiction to (3.12).

Therefore Q∗ ≈ P . q.e.d.
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4. A BSDE description for the dynamic value process

In this section, we use stochastic control techniques to study the dynamic value process V

associated to the optimization problem (1.1) or (1.3). We show that V is the unique solution of

a backward stochastic differential equation (BSDE) with a quadratic driver, if the underlying

filtration is continuous. This extends earlier work by Skiadas (2003), Schroder/Skiadas (1999)

and Lazrak/Quenez (2003).

We first recall from Section 1 the conditional cost Γ(τ,Q) = EQ[c( · , Q) | Fτ ] and the

minimal conditional cost

J(τ,Q) = Q - ess inf
ZQ′∈D(Q,τ)

Γ(τ,Q′) for τ ∈ S and Q ∈ Qf .

A measure Q̃ ∈ Qf is called optimal if it minimizes Q 7→ Γ(Q) = EQ[c( · , Q)] over Q ∈ Qf .

Then we have the following martingale optimality principle from stochastic control.

Proposition 9. Assume (A1) – (A3). Then:

1) The family {J(τ,Q) | τ ∈ S, Q ∈ Qf} is a submartingale system; this implies that for

any Q ∈ Qf , we have for any stopping times σ ≤ τ the Q-submartingale property

(4.1) EQ[J(τ,Q) | Fσ] ≥ J(σ,Q) Q-a.s.

2) Q̃ ∈ Qf is optimal if and only if {J(τ, Q̃) | τ ∈ S} is a Q̃-martingale system; this means

that instead of (4.1), we have for any stopping times σ ≤ τ

EQ[J(τ, Q̃) | Fσ] = J(σ, Q̃) Q̃-a.s.

3) For each Q ∈ Qf , there exists an adapted RCLL process JQ = (JQt )0≤t≤T which is a

right closed Q-submartingale such that

JQτ = J(τ,Q) Q-a.s. for each stopping time τ .

Proof. This is almost a direct consequence of Theorems 1.15
(
for 1)

)
, 1.17

(
for 2)

)
and 1.21

(
for 3)

)
in El Karoui (1981). It is straightforward (but a little tedious; see Bordigoni (2005)

for details) to check that our control problem satisfies all the assumptions required for these

results, with just one exception; we have neither c ≥ 0 nor inf
ZQ′∈D(Q,τ)

EQ′ [|c( · , Q′)|] < ∞

for all τ ∈ S and Q ∈ Qf as required in El Karoui (1981). However, closer inspection of the

proofs in El Karoui (1981) shows that all the assertions there still hold true if one can show

that EQ[|J(τ,Q)|] <∞ for each Q ∈ Qf and τ ∈ S. Because we have proved this in Lemma

5, our assertion follows. q.e.d.
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We already know from Theorem 6 that there exists an optimal Q∗ ∈ Qf , and we even

have Q∗ ∈ Qef by Theorem 8. Hence we may equally well minimize Q 7→ Γ(Q) only over

Q ∈ Qef without losing any generality. For each Q ∈ Qef and τ ∈ S, we now define

Ṽ (τ,Q′) := EQ′ [Uδτ,T |Fτ ] + βEQ′ [Rδτ,T (Q′)|Fτ ]

and

V (τ,Q) := Q - ess inf
ZQ′∈D(Q,τ)

Ṽ (τ,Q′).

The latter is the value of the control problem started at time τ instead of 0 and assuming

one has used the model Q up to time τ . By using the Bayes formula and the definition of

Rδτ,T (Q′), one easily sees that each Ṽ (τ,Q′) depends only on the values of ZQ
′

on ]]τ, T ]]

and therefore not on Q, since ZQ
′ ∈ D(Q, τ) only says that ZQ

′
= ZQ on [[0, τ ]]. So we can

equally well take the ess inf under P ≈ Q and over all Q′ ∈ Qf and call the result V (τ) since

it does not depend on Q ∈ Qef .

From the definition of Rδτ,T (Q′), we have for Q′ with ZQ
′ ∈ D(Q, τ) that

Rδ0,T (Q′) =
τ∫
0

δsS
δ
s logZQ

′
s ds+ SδτRδτ,T (Q′) +

( T∫
τ

δsS
δ
s ds+ SδT

)
logZQ

′
τ

= SδτRδτ,T (Q′) +
τ∫
0

δsS
δ
s logZQs ds+ Sδτ logZQτ .

Comparing the definitions of V (τ) = V (τ,Q) and J(τ,Q) therefore yields for Q ∈ Qef

J(τ,Q) = SδτV (τ) + α
τ∫
0

SδsUs ds+ β
τ∫
0

δsS
δ
s logZQs ds+ βSδτ logZQτ ,

because we can also take the ess inf for J(τ,Q) under P ≈ Q. Since each J( · , Q) admits

an RCLL version by Proposition 9, we can choose an adapted RCLL process V = (Vt)0≤t≤T
such that

Vτ = V (τ) = V (τ,Q) P -a.s. for τ ∈ S and Q ∈ Qef ,

and then we have for each Q ∈ Qef

(4.2) JQ = SδV + α
∫
SδsUs ds+ β

∫
δsS

δ
s logZQs ds+ βSδ logZQ.

As P is in Qef and JP is a P -submartingale by Proposition 9, (4.2) yields via JP = SδV +

α
∫
SδsUs ds that V is a P -special semimartingale. We write its canonical decomposition as

V = V0 +MV +AV

16



          

and want to know more about MV and AV . Since Sδ is uniformly bounded from below and

JP is a P -submartingale, (A2) implies that MV is a P -martingale. In a continuous filtration,

we even obtain much stronger results a bit later.

Consider now the semimartingale backward equation

dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt,(4.3)

YT = α′U ′T .

A solution of (4.3) is a pair (Y,M) satisfying (4.3), where Y is a P -semimartingale and M

is a locally square-integrable local P -martingale null at 0. Note that Y is then automatically

P -special, and that if M is continuous, so is Y .

Remark. Like the optimization problem (1.1), the BSDE (4.3) becomes much simpler when

δ ≡ 0; in fact, one can explicitly write down its solution. This has already been observed in

Schroder/Skiadas (1999), and we come back to this point at the end of this section. ¦

Our main result in this section shows that (V,MV ) is the unique solution of (4.3) if the

filtration IF is continuous. As a preliminary, we first establish some auxiliary results about

the structure and uniqueness of solutions to (4.3).

Lemma 10. Assume (A1), (A2) and let (Y,M) be a solution of (4.3) with M continuous.

Assume either Y ∈ Dexp
0 or that E

(
− 1

βM
)

is a true P -martingale. For any pair of stopping

times σ ≤ τ , we then have the recursive relation

(4.4) Yσ = −β logEP

[
exp

(
1
β

τ∫
σ

(δsYs − αUs) ds− 1
βYτ

) ∣∣∣∣Fσ
]
.

Proof. From (4.3), we have

Yτ − Yσ =
τ∫
σ

dYs =
τ∫
σ

(δsYs − αUs) ds+Mτ −Mσ + 1
2β

(
〈M〉τ − 〈M〉σ

)
.

Divide by −β, exponentiate and use continuity of M to obtain

(4.5)
E
(
− 1

βM
)
τ

E
(
− 1

βM
)
σ

= exp
(

1
βYσ + 1

β

τ∫
σ

(δsYs − αUs) ds− 1
βYτ

)
.

If E
(
− 1

βM
)

is a P -martingale, (4.4) follows directly by conditioning on Fσ and solving for

Yσ. In general, we stop E
(
− 1

βM
)

after σ by τn to have the P -martingale property and thus

obtain (4.5) and (4.4) with τn ∧ τ instead of τ . Then (A1), (A2) and the assumption that
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Y ∈ Dexp
0 yield a P -integrable majorant for the right-hand side of (4.5) and so we can use

dominated convergence to let n→∞ and again get (4.4) for τ . q.e.d.

The argument for the next result is a simple adaptation of the proof for Lemma A2 in

Schroder/Skiadas (1999).

Lemma 11. 1) For any semimartingale Y , there is at most one local P -martingale M such

that (Y,M) solves (4.3).

2) Assume (A1), (A2). Then (4.3) has at most one solution (Y,M) with Y ∈ Dexp
0 and

M continuous.

Proof. 1) For any solution (Y,M) of (4.3), Y is P -special, and its unique local P -martingale

part is M by (4.3).

2) Let (Y,M) and (Ỹ , M̃) be two solutions as stated. Suppose that for some t ∈ [0, T ],

the event A := {Yt > Ỹt} has P [A] > 0. Since YT = α′U ′T = ỸT , the stopping time

τ := inf
{
s ≥ t

∣∣Ys ≤ Ỹs
}

has values in [t, T ], and since Y, Ỹ are both continuous, we have

Yτ = Ỹτ on A and Ys > Ỹs on A ∩ {t ≤ s < τ}. This implies that

τ∫
t

(δsYs − αUs) ds− Yτ >
τ∫
t

(δsỸs − αUs) ds− Ỹτ on A ∈ Ft

so that Lemma 10 yields

exp
(
− 1

βYt
)

= EP

[
exp

(
1
β

τ∫
t

(δsYs − αUs) ds− 1
βYτ

) ∣∣∣∣Ft
]
> exp

(
− 1

β Ỹt

)
on A.

Hence Yt < Ỹt on A, in contradiction to the definition of A, and so Y and Ỹ must be

indistinguishable. By part 1), M and M̃ must then coincide as well. q.e.d.

Armed with the above results, we can now prove the announced characterization of

(V,MV ) as the unique solution of the generalized BSDE (4.3).

Theorem 12. Assume (A1) – (A3). If IF is continuous, the pair (V,MV ) is the unique

solution in Dexp
0 ×M0,loc(P ) of the BSDE

dYt = (δtYt − αUt) dt+
1

2β
d〈M〉t + dMt,(4.3)

YT = α′U ′T .

Moreover, E
(
− 1

βM
V
)

is a true P -martingale.

Proof. 1) We first use the martingale optimality principle to show that (V,MV ) is indeed a

solution. For each Q ∈ Qef , we have ZQ = E(LQ) for some continuous local P -martingale LQ
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null at 0 since Q = P on F0. This implies that d(logZQ) = dLQ − 1
2 d〈LQ〉, and combining

this with Itô’s formula applied to (4.2) yields

(4.6) dJQ = Sδ(dMV + dAV )− δSδV dt+ αSδU dt+ βSδ
(
dLQ − 1

2 d〈LQ〉
)
.

By Girsanov’s theorem,

NQ := MV + βLQ − 〈MV + βLQ, LQ〉

is a local Q-martingale. Together with (4.6), this gives the Q-canonical decomposition

(4.7) dJQ = Sδ dNQ + Sδ
(
dAV − δV dt+ αU dt+ d〈MV , LQ〉+ β d〈LQ〉 − β

2 d〈LQ〉
)
.

Because JQ is by Proposition 9 a Q-submartingale for any Q ∈ Qef and a Q∗-martingale for

the optimal Q∗ (which exists and is in Qef by Theorem 6 and Theorem 8), the second term

in (4.7) is increasing for any Q ∈ Qef and constant (at 0) for Q = Q∗. Thus we have

AV =
∫

(δV − αU) dt− ess inf
Q∈Qe

f

(
〈MV , LQ〉+ β

2 〈LQ〉
)
,

where the ess inf is taken with respect to the strong order ¹ (so that A ¹ B means that

B −A is increasing). Step 2) shows that the ess inf term equals − 1
2β 〈MV 〉 so that we get

dVt = dMV
t + dAVt = (δtVt − αUt) dt+ 1

2β d〈MV 〉t + dMV
t .

Since clearly from the definitions VT = V (T,Q) = α′U ′T , (4.3) follows with M = MV .

2) We claim that

(4.8) ess inf
Q∈Qe

f

(
〈MV , LQ〉+ β

2 〈LQ〉
)

= − 1
2β 〈MV 〉,

and that the ess inf is attained for LQ
∗

= − 1
βM

V . To prove this, choose localizing stopping

times (τn)n∈IN such that for Ln := − 1
β (MV )τn , the process Zn := E(Ln) is bounded. Then

Zn is a strictly positive P -martingale starting at 1 with EP [|ZnT logZnT |] <∞ so that dQn :=

ZnT dP defines an element Qn ∈ Qef . Moreover, the definition of Ln gives

〈MV , Ln〉t + β
2 〈Ln〉t = − 1

β 〈MV 〉t∧τn + 1
2β 〈MV 〉t∧τn

and so we get for n→∞ that

ess inf
Q∈Qe

f

(
〈MV , LQ〉+ β

2 〈LQ〉
)
≤ lim
n→∞

(
〈MV , Ln〉+ β

2 〈Ln〉
)

= − 1
2β 〈MV 〉.

Because we also have

(4.9) 〈MV , LQ〉+ β
2 〈LQ〉 = β

2

〈
LQ + 1

βM
V
〉
− 1

2β 〈MV 〉 ≥ − 1
2β 〈MV 〉,
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(4.8) follows. Finally, since the ess inf in (4.8) is attained by Q∗ due to Proposition 9,

combining (4.8) with (4.9) for Q = Q∗ yields

− 1
2β 〈MV 〉 =

(
〈MV , LQ

∗〉+ β
2 〈LQ

∗〉
)

= β
2

〈
LQ
∗

+ 1
βM

V
〉
− 1

2β 〈MV 〉,

and this implies that LQ
∗

= − 1
βM

V .

3) By step 2), E
(
− 1

βM
V
)

= E
(
LQ
∗)

= ZQ
∗

is a true P -martingale.

4) Since IF is continuous, so is MV ; hence uniqueness follows from Lemma 11 once we

show that V ∈ Dexp
0 . This is done below in Proposition 15, and completes the proof. q.e.d.

A closer look at the proof of Theorem 12 shows that we have the following additional

integrability property for the P -martingale MV .

Corollary 13. Assume (A1) – (A3). If IF is continuous, the optimal measure Q∗ is given

by ZQ
∗

= E
(
− 1

βM
V
)
, and E

(
− 1

βM
V
)

is a P -martingale whose supremum is in L1(P ).

Proof. The first assertion is just step 3) from the preceding proof. Because Q∗ ∈ Qef , we

have EP
[
ZQ

∗

T logZQ
∗

T

]
= H(Q∗|P ) <∞, and this implies that sup

0≤t≤T
ZQ

∗

t is in L1(P ). q.e.d.

To finish the proof of Theorem 12, it remains to show that V ∈ Dexp
0 . We begin with

Lemma 14. Assume (A1) – (A3). Then the process (JP )+ is in Dexp
0 .

Proof. We have seen in the proof of Lemma 5 that

(
J(τ, P )

)+ ≤ EP
[
|c( · , P )|

∣∣Fτ
]
.

Fix γ > 0 and choose an RCLL version of the P -martingale N := EP
[
eγ|c( · ,P )| ∣∣ IF

]
. Then

Proposition 9, right-continuity of JP and Jensen’s inequality imply that

(4.10) exp
(
γ ess sup

0≤t≤T
(JPt )+

)
= exp

(
γ sup

0≤t≤T
(JPt )+

)
≤ sup

0≤t≤T
Nt.

Since Sδ ≤ 1, we have |c( · , P )| = |Uδ0,T | ≤ α
T∫
0

|Us| ds+ α′|U ′T | =: R, and since eγR ∈ Lp(P )

for every p ∈ (1,∞) by (A2) and (A3), Doob’s inequality implies that sup
0≤t≤T

Nt is in Lp(P )

for every p ∈ (1,∞). Hence the assertion follows from (4.10). q.e.d.

We have already shown that (V,MV ) is a solution of (4.3) and that E
(
− 1

βM
V
)

is a

true P -martingale. This allows us now to use Lemma 10 and prove that V inherits the good

integrability properties of U and U ′T .
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Proposition 15. Assume (A1) – (A3). If IF is continuous, the process V is in Dexp
0 .

Proof. Because Dexp
0 is a vector space, it is enough to prove that V + and V − lie both in it.

Using (4.4) for V with σ = t, τ = T and Jensen’s inequality gives

−Vt ≥ EP
[
T∫
t

(δsVs − αUs) ds− α′U ′T
∣∣∣∣Ft
]

and therefore

V +
t = Vt + V −t ≤ V −t + EP

[
‖δ‖∞T sup

0≤s≤T
V −s + α

T∫
0

|Us| ds+ α′|U ′T |
∣∣∣∣Ft
]
.

Due to (A2) and (A3), the same argument via Doob’s inequality as in the proof of Lemma

14 shows that the last term is in Dexp
0 as soon as V − is, and this implies then in turn that

V + is in Dexp
0 . Hence it only remains to prove that V − is in Dexp

0 .

Now (4.2) for Q = P gives

δsVs = δs

(
JPs − α

s∫
0

SδrUr dr
)/

Sδs ≤ ‖δ‖∞
(

sup
0≤t≤T

(JPt )+ + α
T∫
0

|Ur| dr
)
e‖δ‖∞T ,

and combining this with (4.4) for V with σ = t, τ = T yields

−Vt ≤ β log

(
1 + EP

[
exp

(
1
β

T∫
t

(δsVs − αUs) ds− 1
βα
′U ′T

) ∣∣∣∣Ft
])

(4.11)

≤ β log

(
1 + EP

[
exp

(
1
β ‖δ‖∞e‖δ‖∞T

(
sup

0≤t≤T
(JPt )+ + α

T∫
0

|Ur| dr
)

+ 1
βα

T∫
0

|Us| ds+ 1
βα
′|U ′T |

) ∣∣∣∣Ft
])

=: β log
(
1 + EP [eB |Ft]

)
.

Due to (A2), (A3) and Lemma 14, the random variable B satisfies EP [eγ|B|] < ∞ for all

γ > 0. Hence the martingale EP [eB |IF ] has its supremum in Lp(P ) for every p ∈ (1,∞) by

Doob’s inequality, and this implies by (4.11) that V − is in Dexp
0 . q.e.d.

Remarks. 1) The above argument needs continuity of IF because we exploit via Lemma 10

the BSDE for V . However, one feels that the integrability of V should be a general result,

and this raises the question if there is an alternative proof for Proposition 15 which works

for general IF .

2) The BSDE (4.3) is very similar to an equation studied in detail in Mania/Schweizer

(2005), but has a crucial difference: If the final value YT = α′U ′T is unbounded, there is no

evident way in which the results from Mania/Schweizer (2005) could be used or adapted. ¦
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By exploiting the BSDE for (V,MV ), we can show that the P -martingale MV has very

good integrability properties. This adapts an argument in the proof of Lemma A1 from

Schroder/Skiadas (1999).

Proposition 16. Assume (A1) – (A3). If IF is continuous, then MV lies in the martingale

space Mp
0(P ) for every p ∈ [1,∞).

Proof. Because V ∈ Dexp
0 by Proposition 15, (A1) – (A3) imply via Doob’s inequality that

the (continuous) P -martingale

N := EP

[
exp

(
1
β

T∫
0

(δsVs − αUs) ds− 1
βα
′U ′T

) ∣∣∣∣ IF
]

lies in every Mp
0(P ), and so 〈N〉T ∈ Lp(P ) for every p by the BDG inequalities. Moreover,

Lemma 10 applied to (V,MV ) with σ = t, τ = T yields

(4.12) Vt = −β logNt +
t∫

0

(δsVs − αUs) ds , 0 ≤ t ≤ T

which implies that

(4.13)
1

Nt
= exp

(
1
βVt − 1

β

t∫
0

(δsVs − αUs) ds
)

, 0 ≤ t ≤ T.

Using (4.3) for (V,MV ) and comparing the local P -martingale parts in (4.12) gives via Itô’s

formula that MV = −β
∫

1
N dN . Combining this with (4.13), we get

〈
MV

〉
T

= β2
T∫
0

1
N2
t
d〈N〉t

≤ β2〈N〉T sup
0≤t≤T

1

N2
t

≤ β2〈N〉T exp
(

2
β sup

0≤t≤T
|Vt|(1 + ‖δ‖∞T ) + 2

βα
T∫
0

|Us| ds
)
.

Due to (A1), (A2) and V ∈ Dexp
0 , all the terms on the right-hand side are in Lp(P ) for every

p ∈ [1,∞), and hence so is
〈
MV

〉
T

by Hölder’s inequality. So the assertion follows by the

BDG inequalities. q.e.d.

We have formulated Theorem 12 as a result on the characterization of the dynamic value

process V for the stochastic control problem (1.3). If we want to restate our results in pure

BSDE terms, we also have shown
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Theorem 17. Let δ and % be progressively measurable processes and B an FT -measurable

random variable. Assume that δ is nonnegative and uniformly bounded, that % ∈ Dexp
1 and

that exp(γ|B|) ∈ L1(P ) for every γ > 0. If the filtration IF is continuous, there exists for

every β > 0 a unique solution (Y,M) ∈ Dexp
0 ×M0,loc(P ) to the BSDE

dYt = (δtYt + %t) dt+
1

2β
d〈M〉t + dMt,(4.14)

YT = B.

For this solution, we have M ∈Mp
0(P ) for every p ∈ [1,∞).

Remark. As mentioned above, the BSDE (4.3) or (4.14) can be explicitly solved for δ ≡ 0.

This has already been observed in Schroder/Skiadas (1999), Appendix A; in fact, it follows

immediately from Lemma 10 which gives for σ = t and τ = T the representation

Yt = −β logEP

[
exp

(
− 1

β

T∫
t

%s ds− 1
βB
) ∣∣∣∣Ft

]

for the solution of (4.14). Choosing % = αU and B = α′U ′T gives the solution to (4.3). ¦

5. A comparison with related results

This section is an attempt to position the results of the present paper in relation to other

work in the area. Such a comparison naturally cannot be complete, but we have made an

effort to include at least some of the most relevant papers.

5.1. Skiadas (2003) and Schroder/Skiadas (1999)

Our primary inspiration clearly comes from the two papers Skiadas (2003) and Schroder/

Skiadas (1999) ([S03] and [SS99], for short). In [S03], Skiadas studies essentially the same

optimization problem as (1.1) or (1.3), and proves that its dynamic value process V can be

described by the BSDE

dVt = (δtVt − αUt) dt+
1

2β
|zt|2 dt+ zt dWt,(5.1)

VT = α′U ′T .

This is clearly our BSDE (4.3) specialized to the case of a filtration IF = IFW generated

by a P -Brownian motion W . It is a minor point that [S03] only treats the case α′ = 0.

The important differences to our work lie in the interpretation and in the way that [S03]
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derives its results. The main point Skiadas wants to make is that the BSDE (5.1) coincides

with one describing a stochastic differential utility; hence working with a standard expected

utility under (a particular form of) model uncertainty is observationally equivalent to working

with a corresponding stochastic differential utility under one fixed model. For the derivation,

Skiadas argues in a first step that (5.1) does have a solution (V ∗, z∗), since this is proved in

[SS99]. In a second step, he uses explicit computations to show that z∗ induces an optimal

measure Q∗: in our terminology, he proves for every τ ∈ S that

Vτ = Ṽ (τ,Q∗) ≤ Ṽ (τ,Q′) for every Q′ with ZQ
′ ∈ D(Q∗, τ).

However, this approach has a disadvantage. The existence proof for (V ∗, z∗) relies on a

fixed point argument in [SS99], and thus from the beginning uses the assumption that IF =

IFW . (One could slightly generalize this fixed point method to a continuous filtration; see

forthcoming work by G. Bordigoni.) In contrast, our method first shows for a general filtration

the existence of an optimal measure Q∗. Only then do we assume and use continuity of IF to

deduce via the martingale optimality principle that V satisfies a BSDE. As a further minor

point, the integrability of MV in Proposition 16 is not given in [SS99].

An alternative proof for the result in [S03] can be found in Lazrak/Quenez (2003). They

also assume IF = IFW and in addition impose the severe condition that U and U ′T are

bounded. The argument then uses a comparison result for BSDEs from Kobylanski (2000).

5.2. Robustness, control and portfolio choice

Our second important source of inspiration has been provided by the work of L. P. Hansen and

T. Sargent with coauthors; see for instance the homepage of Hansen at the URL

http://home.uchicago.edu/∼lhansen. We explicitly mention here the two papers An-

derson/Hansen/Sargent (2003) and Hansen et al. (2006) which also contain more references.

They both introduce and discuss (in slightly different ways) the basic problem of robust

utility maximization when model uncertainty is penalized by a relative entropy term. Both

papers are cast in Markovian settings and use mainly formal manipulations of Hamilton-

Jacobi-Bellman (HJB) equations to provide insights about the optimal investment behaviour

in these situations. While Hansen et al. (2006) find that “One Hamilton-Jacobi-Bellman

(HJB) equation is worth a thousand words”, our (still partial) analysis here is driven by a

desire to obtain rigorous results in a general setting by stochastic methods.

A related paper by Maenhout (2004) studies (also via formal HJB analysis) a problem

where the penalization parameter β is allowed to depend on V ; this is also briefly discussed

in Skiadas (2003). And when the present paper was almost finished, we discovered that

A. Schied has also been working on the problem (1.1) with a fairly general penalization term

for Q; see Schied (2007). However, his (static) results do not contain ours even without the

dynamic parts in Section 4 — they only cover as one example the simple case δ ≡ 0.
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5.3. BSDEs with quadratic drivers

In the setting of a Brownian filtration IF = IFW , the pure BSDE (4.14) takes the form

dYt =

(
δtYt + %t +

1

2β
|zt|2

)
dt+ zt dWt,(5.2)

YT = B.

This is one particular BSDE with a driver (dt-term) which is quadratic in the z-variable. Such

BSDEs have been much studied recently and typically appear in problems from mathematical

finance; see Duffie/Epstein (1992) for probably the first appearance of such a BSDE (derived

in the context of stochastic differential utility), and for instance El Karoui/Peng/Quenez

(2001), El Karoui/Hamadène (2003) or Schroder/Skiadas (2005) for some recent references.

However, almost all (existence and comparison) results for these equations (with nonvanish-

ing quadratic term) assume that the terminal value B is bounded. This condition is too

restrictive for our purposes and seems very difficult to get rid of. A class of BSDEs with

quadratic growth and unbounded terminal value has recently been studied by Briand/Hu

(2006), but (5.2) does not satisfy their assumptions as soon as % is unbounded.
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